def do_evaluation(self, modeleval: ModelEvaluation, round_value=False, make_nonnegative=False): ts_pred = self.fit_and_forecast(modeleval) if round_value: ts_pred = np.around(ts_pred) if make_nonnegative: ts_pred[ts_pred < 0] = 0 modeleval.evaluate(modeleval.ts_test, ts_pred)
def do_evaluation(self, modeleval: ModelEvaluation, round_value=False, make_nonnegative=False): # print("Fitting:", self.__class__) ts_pred = self.fit(modeleval) if round_value: ts_pred = np.around(ts_pred) if make_nonnegative: ts_pred[ts_pred < 0] = 0 modeleval.evaluate(modeleval.ts_test, ts_pred)
def do_evaluation(self, modeleval: ModelEvaluation): ts_pred = self.fit(modeleval) modeleval.evaluate(modeleval.ts_test, ts_pred)