def main(config): logger = load_logger(config) try: np.random.seed(config.random_seed) # 设置随机种子 data_gainer = Data(config) if config.do_train: train_X, valid_X, train_Y, valid_Y = data_gainer.get_train_and_valid_data( ) train(config, logger, [train_X, train_Y, valid_X, valid_Y]) if config.do_predict: test_X, test_Y, test_date = data_gainer.get_test_data( return_label_data=True) pred_result = predict(config, test_X) pred_result = [np.argwhere(i == max(i)) for i in pred_result] pred_result = np.squeeze(pred_result) test_Y = np.squeeze(test_Y) draw(config, data_gainer, logger, pred_result, test_Y, test_date) #save_predict(config,pred_result,test_date) if config.do_predict_all: test_X, test_date = data_gainer.get_test_data( return_label_data=False, predict_all=True) pred_result = predict(config, test_X) pred_result = [np.argwhere(i == max(i)) for i in pred_result] pred_result = np.squeeze(pred_result) #draw(config, data_gainer, logger, pred_result, test_Y,test_date) save_predict(config, pred_result, test_date) except Exception: logger.error("Run Error", exc_info=True)
def main(config): logger = load_logger(config) try: np.random.seed(config.random_seed) # 设置随机种子,保证可复现 data_gainer = Data(config) if config.do_train: train_X, valid_X, train_Y, valid_Y = data_gainer.get_train_and_valid_data( ) train(config, logger, [train_X, train_Y, valid_X, valid_Y]) if config.do_predict: test_X, test_Y = data_gainer.get_test_data() pred_ys, real_ys, pred_ys_no_flat = predict( config, [test_X, test_Y]) target_names = ['class flat', 'class down', 'class rise'] # label: 0:平 1:跌 2:涨 print('Classification table for test set:') print( classification_report(real_ys, pred_ys, target_names=target_names)) # draw(config, data_gainer, logger, pred_result) except Exception: logger.error("Run Error", exc_info=True)
def main(config): np.random.seed(config.random_seed) data_gainer = Data(config) if config.do_train: train_X, valid_X, train_Y, valid_Y = data_gainer.get_train_and_valid_data( ) train(config, train_X, train_Y, valid_X, valid_Y) if config.do_predict: test_X, test_Y = data_gainer.get_test_data(return_label_data=True) pred_result = predict(config, test_X) draw(config, data_gainer, pred_result)
def main(config): logger = load_logger(config) try: np.random.seed(config.random_seed) # 设置随机种子,保证可复现 data_gainer = Data(config) if config.do_train: train_X, valid_X, train_Y, valid_Y = data_gainer.get_train_and_valid_data() train(config, logger, [train_X, train_Y, valid_X, valid_Y]) if config.do_predict: test_X, test_Y = data_gainer.get_test_data(return_label_data=True) pred_result = predict(config, test_X) # 这里输出的是未还原的归一化预测数据 draw(config, data_gainer, logger, pred_result) except Exception: logger.error("Run Error", exc_info=True)
def main(config): logger = load_logger(config) try: np.random.seed(config.random_seed) data_gainer = Data(config) if config.do_train: train_X, train_Y = data_gainer.get_dataset('train') valid_X, valid_Y = data_gainer.get_dataset('val') train(config, logger, [train_X, train_Y, valid_X, valid_Y]) if config.do_predict: test_X, test_Y = data_gainer.get_test_data(return_label_data=True) pred_result = predict(config, test_X) # TODO:save prediction result into csv file save_prediction_data(config, data_gainer, pred_result) #draw(config, data_gainer, logger, pred_result) except Exception: logger.error("Run Error", exc_info=True)