def main(): h, w = map(int, args.input_size.split(',')) input_size = (h, w) cudnn.enabled = True # create network model = Res_Deeplab(num_classes=args.num_classes) # load pretrained parameters if args.restore_from[:4] == 'http' : saved_state_dict = model_zoo.load_url(args.restore_from) else: saved_state_dict = torch.load(args.restore_from) # only copy the params that exist in current model (caffe-like) new_params = model.state_dict().copy() for name, param in new_params.items(): print (name) if name in saved_state_dict and param.size() == saved_state_dict[name].size(): new_params[name].copy_(saved_state_dict[name]) print('copy {}'.format(name)) model.load_state_dict(new_params) model.train() model=nn.DataParallel(model) model.cuda() cudnn.benchmark = True # init D model_D = Discriminator_concat(num_classes=args.num_classes) if args.restore_from_D is not None: model_D.load_state_dict(torch.load(args.restore_from_D)) model_D = nn.DataParallel(model_D) model_D.train() model_D.cuda() if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) train_dataset = VOCDataSet(args.data_dir, args.data_list, crop_size=input_size, scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN) train_dataset_size = len(train_dataset) train_gt_dataset = VOCGTDataSet(args.data_dir, args.data_list, crop_size=input_size, scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN) if args.partial_data ==0: trainloader = data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True) trainloader_gt = data.DataLoader(train_gt_dataset, batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True) else: #sample partial data partial_size = int(args.partial_data * train_dataset_size) trainloader_iter = enumerate(trainloader) trainloader_gt_iter = enumerate(trainloader_gt) # implement model.optim_parameters(args) to handle different models' lr setting # optimizer for segmentation network optimizer = optim.SGD(model.module.optim_parameters(args), lr=args.learning_rate, momentum=args.momentum,weight_decay=args.weight_decay) optimizer.zero_grad() # optimizer for discriminator network optimizer_D = optim.Adam(model_D.parameters(), lr=args.learning_rate_D, betas=(0.9,0.99)) optimizer_D.zero_grad() # loss/ bilinear upsampling bce_loss = torch.nn.BCELoss() interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear') if version.parse(torch.__version__) >= version.parse('0.4.0'): interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear', align_corners=True) else: interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear') # labels for adversarial training pred_label = 0 gt_label = 1 for i_iter in range(args.num_steps): loss_seg_value = 0 loss_adv_pred_value = 0 loss_D_value = 0 loss_semi_value = 0 loss_semi_adv_value = 0 optimizer.zero_grad() adjust_learning_rate(optimizer, i_iter) optimizer_D.zero_grad() adjust_learning_rate_D(optimizer_D, i_iter) for sub_i in range(args.iter_size): # train G # don't accumulate grads in D for param in model_D.parameters(): param.requires_grad = False # do semi first # train with source try: _, batch = trainloader_iter.next() except: trainloader_iter = enumerate(trainloader) _, batch = trainloader_iter.next() images, labels, _, _ = batch images = Variable(images).cuda() ignore_mask = (labels.numpy() == 255) pred = interp(model(images)) loss_seg = loss_calc(pred, labels) D_gt = Variable(one_hot(labels)).cuda() D_out = model_D(torch.cat([F.softmax(pred,dim=1),D_gt,F.sigmoid(images)],1)) loss_adv_pred = bce_loss(D_out, make_D_label(gt_label,D_out)) loss = loss_seg + args.lambda_adv_pred * loss_adv_pred*5 # proper normalization loss = loss/args.iter_size loss.backward() loss_seg_value += loss_seg.data.cpu().numpy()[0]/args.iter_size loss_adv_pred_value += loss_adv_pred.data.cpu().numpy()[0]/args.iter_size # train D # bring back requires_grad for param in model_D.parameters(): param.requires_grad = True # train with pred pred = pred.detach() D_out =model_D(torch.cat([F.softmax(pred,dim=1),D_gt,F.sigmoid(images)],1)) loss_D = bce_loss(D_out, make_D_label(pred_label,D_out)) loss_D = loss_D/args.iter_size/2 loss_D.backward() loss_D_value += loss_D.data.cpu().numpy()[0] # train with gt # get gt labels try: _, batch = trainloader_gt_iter.next() except: trainloader_gt_iter = enumerate(trainloader_gt) _, batch = trainloader_gt_iter.next() img_gt, labels_gt, _, _ = batch img_gt=Variable(img_gt).cuda() pred_gt = interp(model(img_gt)) pred_gt = pred_gt.detach() D_gt_v = Variable(one_hot(labels_gt)).cuda() ignore_mask_gt = (labels_gt.numpy() == 255) D_out = model_D(torch.cat([D_gt_v,F.softmax(pred_gt,dim=1),F.sigmoid(img_gt)],1)) loss_D = bce_loss(D_out, make_D_label(gt_label,D_out)) loss_D = loss_D/args.iter_size/2 loss_D.backward() loss_D_value += loss_D.data.cpu().numpy()[0] optimizer.step() optimizer_D.step() print('exp = {}'.format(args.snapshot_dir)) print('iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.3f}, loss_semi = {5:.3f}, loss_semi_adv = {6:.3f}'.format(i_iter, args.num_steps, loss_seg_value, loss_adv_pred_value, loss_D_value, loss_semi_value, loss_semi_adv_value)) if i_iter >= args.num_steps-1: print( 'save model ...') torch.save(model.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+os.path.abspath(__file__).split('/')[-1].split('.')[0]+'_'+str(args.num_steps)+'.pth')) #torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+os.path.abspath(__file__).split('/')[-1].split('.')[0]+'_'+str(args.num_steps)+'_D.pth')) break if i_iter % args.save_pred_every == 0 and i_iter!=0: print ('taking snapshot ...') torch.save(model.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+os.path.abspath(__file__).split('/')[-1].split('.')[0]+'_'+str(i_iter)+'.pth')) #torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+os.path.abspath(__file__).split('/')[-1].split('.')[0]+'_'+str(i_iter)+'_D.pth')) end = timeit.default_timer() print(end-start,'seconds')
def main(): tag = 0 h, w = map(int, args.input_size.split(',')) input_size = (h, w) cudnn.enabled = True # create network model = Res_Deeplab(num_classes=args.num_classes) model = nn.DataParallel(model) model.cuda() # load pretrained parameters if args.restore_from[:4] == 'http': saved_state_dict = model_zoo.load_url(args.restore_from) else: saved_state_dict = torch.load(args.restore_from) # only copy the params that exist in current model (caffe-like) saved_state_dict = torch.load( '/data1/wyc/AdvSemiSeg/snapshots/VOC_t_baseline_1adv_mul_20000.pth') new_params = model.state_dict().copy() for name, param in new_params.items(): print(name) if name in saved_state_dict and param.size( ) == saved_state_dict[name].size(): new_params[name].copy_(saved_state_dict[name]) print('copy {}'.format(name)) else: print 123456 model.load_state_dict(new_params) model.train() cudnn.benchmark = True # init D model_D = Discriminator2(num_classes=args.num_classes) if args.restore_from_D is not None: model_D.load_state_dict(torch.load(args.restore_from_D)) model_D = nn.DataParallel(model_D) model_D.train() model_D.cuda() if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) train_dataset = VOCDataSet(args.data_dir, args.data_list, crop_size=input_size, scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN) train_dataset_size = len(train_dataset) train_gt_dataset = VOCGTDataSet(args.data_dir, args.data_list, crop_size=input_size, scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN) if args.partial_data == 0: trainloader = data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True) trainloader_gt = data.DataLoader(train_gt_dataset, batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True) else: #sample partial data partial_size = int(args.partial_data * train_dataset_size) trainloader_iter = enumerate(trainloader) trainloader_gt_iter = enumerate(trainloader_gt) # implement model.optim_parameters(args) to handle different models' lr setting # optimizer for segmentation network optimizer = optim.SGD(model.module.optim_parameters(args), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) optimizer.zero_grad() # optimizer for discriminator network optimizer_D = optim.Adam(model_D.parameters(), lr=args.learning_rate_D, betas=(0.9, 0.99)) optimizer_D.zero_grad() # loss/ bilinear upsampling bce_loss = torch.nn.BCELoss() interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear') if version.parse(torch.__version__) >= version.parse('0.4.0'): interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear', align_corners=True) else: interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear') # labels for adversarial training pred_label = 0 gt_label = 1 for i_iter in range(args.num_steps): loss_seg_value = 0 loss_adv_pred_value = 0 loss_D_value = 0 loss_semi_value = 0 loss_semi_adv_value = 0 optimizer.zero_grad() adjust_learning_rate(optimizer, i_iter) optimizer_D.zero_grad() adjust_learning_rate_D(optimizer_D, i_iter) for sub_i in range(args.iter_size): # train G # don't accumulate grads in D for param in model_D.parameters(): param.requires_grad = False # train with source try: _, batch = trainloader_iter.next() except: trainloader_iter = enumerate(trainloader) _, batch = trainloader_iter.next() images, labels, _, _ = batch images = Variable(images).cuda() ignore_mask = (labels.numpy() == 255) indices_1 = torch.index_select( images, 1, Variable(torch.LongTensor([0])).cuda()) indices_2 = torch.index_select( images, 1, Variable(torch.LongTensor([1])).cuda()) indices_3 = torch.index_select( images, 1, Variable(torch.LongTensor([2])).cuda()) img_re = torch.cat([ indices_1.repeat(1, 21, 1, 1), indices_2.repeat(1, 21, 1, 1), indices_3.repeat(1, 21, 1, 1), ], 1) mul_img = img_re for i_l in range(labels.shape[0]): label_set = np.unique(labels[i_l]).tolist() for ls in label_set: if ls != 0 and ls != 255: ls = int(ls) img_p = torch.cat([ mul_img[i_l][ls].unsqueeze(0).unsqueeze(0), mul_img[i_l][ls + 21].unsqueeze(0).unsqueeze(0), mul_img[i_l][ls + 21 + 21].unsqueeze(0).unsqueeze(0) ], 1) imgs = img_p.squeeze() imgs = imgs.transpose(0, 1) imgs = imgs.transpose(1, 2) imgs = imgs.data.cpu().numpy() img_ori = images[0] img_ori = img_ori.squeeze() img_ori = img_ori.transpose(0, 1) img_ori = img_ori.transpose(1, 2) img_ori = img_ori.data.cpu().numpy() print imgs # print pred_ori.shape if tag == 0: print ls cv2.imwrite('/data1/wyc/1.png', imgs) cv2.imwrite('/data1/wyc/2.png', img_ori) tag = 1 D_out = model_D(mul_img) loss_adv_pred = bce_loss(D_out, make_D_label(gt_label, D_out)) loss = args.lambda_adv_pred * loss_adv_pred # proper normalization loss = loss / args.iter_size loss.backward() #loss_seg_value += loss_seg.data.cpu().numpy()[0]/args.iter_size loss_adv_pred_value += loss_adv_pred.data.cpu().numpy( )[0] / args.iter_size # train D # bring back requires_grad for param in model_D.parameters(): param.requires_grad = True # train with pred pred = pred.detach() pred_re2 = F.softmax(pred, dim=1).repeat(1, 3, 1, 1) mul_img2 = pred_re2 * img_re D_out = model_D(mul_img2) loss_D = bce_loss(D_out, make_D_label(pred_label, D_out)) loss_D = loss_D / args.iter_size / 2 loss_D.backward() loss_D_value += loss_D.data.cpu().numpy()[0] # train with gt # get gt labels try: _, batch = trainloader_gt_iter.next() except: trainloader_gt_iter = enumerate(trainloader_gt) _, batch = trainloader_gt_iter.next() img_gt, labels_gt, _, _ = batch img_gt = Variable(img_gt).cuda() D_gt_v = Variable(one_hot(labels_gt)).cuda() ignore_mask_gt = (labels_gt.numpy() == 255) pred_re3 = D_gt_v.repeat(1, 3, 1, 1) indices_1 = torch.index_select( img_gt, 1, Variable(torch.LongTensor([0])).cuda()) indices_2 = torch.index_select( img_gt, 1, Variable(torch.LongTensor([1])).cuda()) indices_3 = torch.index_select( img_gt, 1, Variable(torch.LongTensor([2])).cuda()) img_re3 = torch.cat([ indices_1.repeat(1, 21, 1, 1), indices_2.repeat(1, 21, 1, 1), indices_3.repeat(1, 21, 1, 1), ], 1) mul_img3 = pred_re3 * img_re3 D_out = model_D(mul_img3) loss_D = bce_loss(D_out, make_D_label(gt_label, D_out)) loss_D = loss_D / args.iter_size / 2 loss_D.backward() loss_D_value += loss_D.data.cpu().numpy()[0] optimizer.step() optimizer_D.step() print('exp = {}'.format(args.snapshot_dir)) print( 'iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.3f}, loss_semi = {5:.3f}, loss_semi_adv = {6:.3f}' .format(i_iter, args.num_steps, loss_seg_value, loss_adv_pred_value, loss_D_value, loss_semi_value, loss_semi_adv_value)) if i_iter >= args.num_steps - 1: print('save model ...') torch.save( model.state_dict(), osp.join( args.snapshot_dir, 'VOC_' + os.path.abspath(__file__).split('/')[-1].split('.')[0] + '_' + str(args.num_steps) + '.pth')) #torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+os.path.abspath(__file__).split('/')[-1].split('.')[0]+'_'+str(args.num_steps)+'_D.pth')) break if i_iter % 100 == 0 and i_iter != 0: print('taking snapshot ...') torch.save( model.state_dict(), osp.join( args.snapshot_dir, 'VOC_' + os.path.abspath(__file__).split('/')[-1].split('.')[0] + '_' + str(i_iter) + '.pth')) #torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+os.path.abspath(__file__).split('/')[-1].split('.')[0]+'_'+str(i_iter)+'_D.pth')) end = timeit.default_timer() print(end - start, 'seconds')
def main(): tag = 0 h, w = map(int, args.input_size.split(',')) input_size = (h, w) cudnn.enabled = True # create network model = Res_Deeplab(num_classes=args.num_classes) # load pretrained parameters if args.restore_from[:4] == 'http': saved_state_dict = model_zoo.load_url(args.restore_from) else: saved_state_dict = torch.load(args.restore_from) # only copy the params that exist in current model (caffe-like) new_params = model.state_dict().copy() for name, param in new_params.items(): print(name) if name in saved_state_dict and param.size( ) == saved_state_dict[name].size(): new_params[name].copy_(saved_state_dict[name]) print('copy {}'.format(name)) model.load_state_dict(new_params) model.train() model = nn.DataParallel(model) model.cuda() cudnn.benchmark = True # init D model_DS = [] for i in range(20): model_DS.append(Discriminator2_mul(num_classes=args.num_classes)) # if args.restore_from_D is not None: # model_D.load_state_dict(torch.load(args.restore_from_D)) for model_D in model_DS: model_D = nn.DataParallel(model_D) model_D.train() model_D.cuda() model_D2 = Discriminator2(num_classes=args.num_classes) if args.restore_from_D is not None: model_D2.load_state_dict(torch.load(args.restore_from_D)) model_D2 = nn.DataParallel(model_D2) model_D2.train() model_D2.cuda() if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) train_dataset = VOCDataSet(args.data_dir, args.data_list, crop_size=input_size, scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN) train_dataset_size = len(train_dataset) train_gt_dataset = VOCGTDataSet(args.data_dir, args.data_list, crop_size=input_size, scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN) if args.partial_data == 0: trainloader = data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True) trainloader_gt = data.DataLoader(train_gt_dataset, batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True) else: #sample partial data partial_size = int(args.partial_data * train_dataset_size) trainloader_iter = enumerate(trainloader) trainloader_gt_iter = enumerate(trainloader_gt) # implement model.optim_parameters(args) to handle different models' lr setting # optimizer for segmentation network optimizer = optim.SGD(model.module.optim_parameters(args), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) optimizer.zero_grad() # optimizer for discriminator network optimizer_DS = [] for model_D in model_DS: optimizer_DS.append( optim.Adam(model_D.parameters(), lr=args.learning_rate_D, betas=(0.9, 0.99))) for optimizer_D in optimizer_DS: optimizer_D.zero_grad() optimizer_D2 = optim.Adam(model_D2.parameters(), lr=args.learning_rate_D, betas=(0.9, 0.99)) optimizer_D2.zero_grad() # loss/ bilinear upsampling bce_loss = torch.nn.BCELoss() interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear') if version.parse(torch.__version__) >= version.parse('0.4.0'): interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear', align_corners=True) else: interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear') # labels for adversarial training pred_label = 0 gt_label = 1 for i_iter in range(args.num_steps): loss_seg_value = 0 loss_adv_pred_value = 0 loss_D_value = 0 loss_semi_value = 0 loss_semi_adv_value = 0 optimizer.zero_grad() adjust_learning_rate(optimizer, i_iter) for optimizer_D in optimizer_DS: optimizer_D.zero_grad() adjust_learning_rate_D(optimizer_D, i_iter) optimizer_D2.zero_grad() adjust_learning_rate_D(optimizer_D2, i_iter) for sub_i in range(args.iter_size): # train G # don't accumulate grads in D for model_D in model_DS: for param in model_D.parameters(): param.requires_grad = False for param in model_D2.parameters(): param.requires_grad = False # train with source try: _, batch = trainloader_iter.next() except: trainloader_iter = enumerate(trainloader) _, batch = trainloader_iter.next() images, labels, _, _ = batch images = Variable(images).cuda() ignore_mask = (labels.numpy() == 255) pred = interp(model(images)) loss_seg = loss_calc(pred, labels) pred_re0 = F.softmax(pred, dim=1) pred_re = pred_re0.repeat(1, 3, 1, 1) indices_1 = torch.index_select( images, 1, Variable(torch.LongTensor([0])).cuda()) indices_2 = torch.index_select( images, 1, Variable(torch.LongTensor([1])).cuda()) indices_3 = torch.index_select( images, 1, Variable(torch.LongTensor([2])).cuda()) img_re = torch.cat([ indices_1.repeat(1, 21, 1, 1), indices_2.repeat(1, 21, 1, 1), indices_3.repeat(1, 21, 1, 1), ], 1) mul_img = pred_re * img_re #10,63,321,321 D_out_2 = model_D2(mul_img) loss_adv_pred_ = 0 for i_l in range(labels.shape[0]): label_set = np.unique(labels[i_l]).tolist() for ls in label_set: if ls != 0 and ls != 255: ls = int(ls) img_p = torch.cat([ mul_img[i_l][ls].unsqueeze(0).unsqueeze(0), mul_img[i_l][ls + 21].unsqueeze(0).unsqueeze(0), mul_img[i_l][ls + 21 + 21].unsqueeze(0).unsqueeze(0) ], 1) #print 1,img_p.size()#(1L, 3L, 321L, 321L) imgs = img_p imgs1 = imgs[:, :, 0:107, 0:107] imgs2 = imgs[:, :, 0:107, 107:214] imgs3 = imgs[:, :, 0:107, 214:321] imgs4 = imgs[:, :, 107:214, 0:107] imgs5 = imgs[:, :, 107:214, 107:214] imgs6 = imgs[:, :, 107:214, 214:321] imgs7 = imgs[:, :, 214:321, 0:107] imgs8 = imgs[:, :, 214:321, 107:214] imgs9 = imgs[:, :, 214:321, 214:321] #print 2, imgs1.size()#(1L, 3L, 107L, 107L) img_ps = torch.cat([ imgs1, imgs2, imgs3, imgs4, imgs5, imgs6, imgs7, imgs8, imgs9 ], 0) #print 3, img_ps.size()#(9L, 3L, 107L, 107L) D_out = model_DS[ls - 1](img_ps) loss_adv_pred_ = loss_adv_pred_ + bce_loss( D_out, make_D_label(gt_label, D_out)) loss_adv_pred = loss_adv_pred_ * 0.5 + bce_loss( D_out_2, make_D_label(gt_label, D_out_2)) loss = loss_seg + args.lambda_adv_pred * loss_adv_pred # proper normalization loss = loss / args.iter_size loss.backward() loss_seg_value += loss_seg.data.cpu().numpy()[0] / args.iter_size loss_adv_pred_value += loss_adv_pred.data.cpu().numpy( )[0] / args.iter_size # train D # bring back requires_grad for model_D in model_DS: for param in model_D.parameters(): param.requires_grad = True for param in model_D2.parameters(): param.requires_grad = True # train with pred pred = pred.detach() pred_re0 = F.softmax(pred, dim=1) pred_re2 = pred_re0.repeat(1, 3, 1, 1) mul_img2 = pred_re2 * img_re D_out_2 = model_D2(mul_img2) loss_adv_pred_ = 0 for i_l in range(labels.shape[0]): label_set = np.unique(labels[i_l]).tolist() for ls in label_set: if ls != 0 and ls != 255: ls = int(ls) img_p = torch.cat([ mul_img2[i_l][ls].unsqueeze(0).unsqueeze(0), mul_img2[i_l][ls + 21].unsqueeze(0).unsqueeze(0), mul_img2[i_l][ls + 21 + 21].unsqueeze(0).unsqueeze(0) ], 1) # print 1,img_p.size()#(1L, 3L, 321L, 321L) imgs = img_p imgs1 = imgs[:, :, 0:107, 0:107] imgs2 = imgs[:, :, 0:107, 107:214] imgs3 = imgs[:, :, 0:107, 214:321] imgs4 = imgs[:, :, 107:214, 0:107] imgs5 = imgs[:, :, 107:214, 107:214] imgs6 = imgs[:, :, 107:214, 214:321] imgs7 = imgs[:, :, 214:321, 0:107] imgs8 = imgs[:, :, 214:321, 107:214] imgs9 = imgs[:, :, 214:321, 214:321] # print 2, imgs1.size()#(1L, 3L, 107L, 107L) img_ps = torch.cat([ imgs1, imgs2, imgs3, imgs4, imgs5, imgs6, imgs7, imgs8, imgs9 ], 0) # print 3, img_ps.size()#(9L, 3L, 107L, 107L) D_out = model_DS[ls - 1](img_ps) loss_adv_pred_ = loss_adv_pred_ + bce_loss( D_out, make_D_label(pred_label, D_out)) loss_D = loss_adv_pred_ * 0.5 + bce_loss( D_out_2, make_D_label(pred_label, D_out_2)) loss_D = loss_D / args.iter_size / 2 loss_D.backward() loss_D_value += loss_D.data.cpu().numpy()[0] # train with gt # get gt labels try: _, batch = trainloader_gt_iter.next() except: trainloader_gt_iter = enumerate(trainloader_gt) _, batch = trainloader_gt_iter.next() img_gt, labels_gt, _, name = batch img_gt = Variable(img_gt).cuda() D_gt_v = Variable(one_hot(labels_gt)).cuda() ignore_mask_gt = (labels_gt.numpy() == 255) lb = D_gt_v.detach() pred_re3 = D_gt_v.repeat(1, 3, 1, 1) indices_1 = torch.index_select( img_gt, 1, Variable(torch.LongTensor([0])).cuda()) indices_2 = torch.index_select( img_gt, 1, Variable(torch.LongTensor([1])).cuda()) indices_3 = torch.index_select( img_gt, 1, Variable(torch.LongTensor([2])).cuda()) img_re3 = torch.cat([ indices_1.repeat(1, 21, 1, 1), indices_2.repeat(1, 21, 1, 1), indices_3.repeat(1, 21, 1, 1), ], 1) #mul_img3 = img_re3 mul_img3 = pred_re3 * img_re3 D_out_2 = model_D2(mul_img3) loss_adv_pred_ = 0 for i_l in range(labels_gt.shape[0]): label_set = np.unique(labels_gt[i_l]).tolist() for ls in label_set: if ls != 0 and ls != 255: ls = int(ls) img_p = torch.cat([ mul_img3[i_l][ls].unsqueeze(0).unsqueeze(0), mul_img3[i_l][ls + 21].unsqueeze(0).unsqueeze(0), mul_img3[i_l][ls + 21 + 21].unsqueeze(0).unsqueeze(0) ], 1) # print 1,img_p.size()#(1L, 3L, 321L, 321L) imgs = img_p imgs1 = imgs[:, :, 0:107, 0:107] imgs2 = imgs[:, :, 0:107, 107:214] imgs3 = imgs[:, :, 0:107, 214:321] imgs4 = imgs[:, :, 107:214, 0:107] imgs5 = imgs[:, :, 107:214, 107:214] imgs6 = imgs[:, :, 107:214, 214:321] imgs7 = imgs[:, :, 214:321, 0:107] imgs8 = imgs[:, :, 214:321, 107:214] imgs9 = imgs[:, :, 214:321, 214:321] # print 2, imgs1.size()#(1L, 3L, 107L, 107L) img_ps = torch.cat([ imgs1, imgs2, imgs3, imgs4, imgs5, imgs6, imgs7, imgs8, imgs9 ], 0) # print 3, img_ps.size()#(9L, 3L, 107L, 107L) D_out = model_DS[ls - 1](img_ps) loss_adv_pred_ = loss_adv_pred_ + bce_loss( D_out, make_D_label(gt_label, D_out)) ''' if tag == 0: # print lb[0].size() # lb1=lb[0][0] # lb2 = lb[0][1] # lb3 = lb[0][2] # lb4 = lb[0][3] # lb5 = lb[0][4] # lb6 = lb[0][5] # lb7 = lb[0][0] # lb8 = lb[0][0] # lb9 = lb[0][0] # lb10 = lb[0][0] print label_set, name[0] print ls imgs = imgs.squeeze() imgs = imgs.transpose(0, 1) imgs = imgs.transpose(1, 2) imgs1 = imgs1.squeeze() imgs1 = imgs1.transpose(0, 1) imgs1 = imgs1.transpose(1, 2) imgs2 = imgs2.squeeze() imgs2 = imgs2.transpose(0, 1) imgs2 = imgs2.transpose(1, 2) imgs3 = imgs3.squeeze() imgs3 = imgs3.transpose(0, 1) imgs3 = imgs3.transpose(1, 2) imgs4 = imgs4.squeeze() imgs4 = imgs4.transpose(0, 1) imgs4 = imgs4.transpose(1, 2) imgs5 = imgs5.squeeze() imgs5 = imgs5.transpose(0, 1) imgs5 = imgs5.transpose(1, 2) imgs6 = imgs6.squeeze() imgs6 = imgs6.transpose(0, 1) imgs6 = imgs6.transpose(1, 2) imgs7 = imgs7.squeeze() imgs7 = imgs7.transpose(0, 1) imgs7 = imgs7.transpose(1, 2) imgs8 = imgs8.squeeze() imgs8 = imgs8.transpose(0, 1) imgs8 = imgs8.transpose(1, 2) imgs9 = imgs9.squeeze() imgs9 = imgs9.transpose(0, 1) imgs9 = imgs9.transpose(1, 2) imgs = imgs.data.cpu().numpy() imgs1 = imgs1.data.cpu().numpy() imgs2 = imgs2.data.cpu().numpy() imgs3 = imgs3.data.cpu().numpy() imgs4 = imgs4.data.cpu().numpy() imgs5 = imgs5.data.cpu().numpy() imgs6 = imgs6.data.cpu().numpy() imgs7 = imgs7.data.cpu().numpy() imgs8 = imgs8.data.cpu().numpy() imgs9 = imgs9.data.cpu().numpy() cv2.imwrite('/data1/wyc/1.png', imgs1) cv2.imwrite('/data1/wyc/2.png', imgs2) cv2.imwrite('/data1/wyc/3.png', imgs3) cv2.imwrite('/data1/wyc/4.png', imgs4) cv2.imwrite('/data1/wyc/5.png', imgs5) cv2.imwrite('/data1/wyc/6.png', imgs6) cv2.imwrite('/data1/wyc/7.png', imgs7) cv2.imwrite('/data1/wyc/8.png', imgs8) cv2.imwrite('/data1/wyc/9.png', imgs9) cv2.imwrite('/data1/wyc/img.png', imgs) tag = 1 ''' loss_D = loss_adv_pred_ * 0.5 + bce_loss( D_out_2, make_D_label(gt_label, D_out_2)) loss_D = loss_D / args.iter_size / 2 loss_D.backward() loss_D_value += loss_D.data.cpu().numpy()[0] optimizer.step() for optimizer_D in optimizer_DS: optimizer_D.step() optimizer_D2.step() print('exp = {}'.format(args.snapshot_dir)) print( 'iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.3f}, loss_semi = {5:.3f}, loss_semi_adv = {6:.3f}' .format(i_iter, args.num_steps, loss_seg_value, loss_adv_pred_value, loss_D_value, loss_semi_value, loss_semi_adv_value)) if i_iter >= args.num_steps - 1: print('save model ...') torch.save( model.state_dict(), osp.join( args.snapshot_dir, 'VOC_' + os.path.abspath(__file__).split('/')[-1].split('.')[0] + '_' + str(args.num_steps) + '.pth')) #torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+os.path.abspath(__file__).split('/')[-1].split('.')[0]+'_'+str(args.num_steps)+'_D.pth')) break if i_iter % args.save_pred_every == 0 and i_iter != 0: print('taking snapshot ...') torch.save( model.state_dict(), osp.join( args.snapshot_dir, 'VOC_' + os.path.abspath(__file__).split('/')[-1].split('.')[0] + '_' + str(i_iter) + '.pth')) #torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+os.path.abspath(__file__).split('/')[-1].split('.')[0]+'_'+str(i_iter)+'_D.pth')) end = timeit.default_timer() print(end - start, 'seconds')
def main(): h, w = map(int, args.input_size.split(',')) input_size = (h, w) cudnn.enabled = True # create network model = Res_Deeplab(num_classes=args.num_classes) # load pretrained parameters if args.restore_from[:4] == 'http': saved_state_dict = model_zoo.load_url(args.restore_from) else: saved_state_dict = torch.load(args.restore_from) # only copy the params that exist in current model (caffe-like) new_params = model.state_dict().copy() for name, param in new_params.items(): print(name) if name in saved_state_dict and param.size( ) == saved_state_dict[name].size(): new_params[name].copy_(saved_state_dict[name]) print('copy {}'.format(name)) model.load_state_dict(new_params) # only copy the params that exist in current model (caffe-like) # state_dict = torch.load( # '/data1/wyc/AdvSemiSeg/snapshots/VOC_t_baseline_1adv_mul_20000.pth') # baseline707 adv 709 nadv 705()*2 # from collections import OrderedDict # new_state_dict = OrderedDict() # for k, v in state_dict.items(): # name = k[7:] # remove `module.` # new_state_dict[name] = v # # load params # # new_params = model.state_dict().copy() # for name, param in new_params.items(): # print (name) # if name in new_state_dict and param.size() == new_state_dict[name].size(): # new_params[name].copy_(new_state_dict[name]) # print('copy {}'.format(name)) # # model.load_state_dict(new_params) model.train() model = nn.DataParallel(model) model.cuda() cudnn.benchmark = True # init D model_D = Discriminator2(num_classes=args.num_classes) if args.restore_from_D is not None: model_D.load_state_dict(torch.load(args.restore_from_D)) model_D = nn.DataParallel(model_D) model_D.train() model_D.cuda() if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) train_dataset = VOCDataSet(args.data_dir, args.data_list, crop_size=input_size, scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN) train_dataset_size = len(train_dataset) train_gt_dataset = VOCGTDataSet(args.data_dir, args.data_list, crop_size=input_size, scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN) if args.partial_data == 0: trainloader = data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True) trainloader_gt = data.DataLoader(train_gt_dataset, batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True) else: #sample partial data partial_size = int(args.partial_data * train_dataset_size) trainloader_iter = enumerate(trainloader) trainloader_gt_iter = enumerate(trainloader_gt) # implement model.optim_parameters(args) to handle different models' lr setting # optimizer for segmentation network optimizer = optim.SGD(model.module.optim_parameters(args), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) optimizer.zero_grad() # optimizer for discriminator network optimizer_D = optim.Adam(model_D.parameters(), lr=args.learning_rate_D, betas=(0.9, 0.99)) optimizer_D.zero_grad() # loss/ bilinear upsampling bce_loss = torch.nn.BCELoss() interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear') if version.parse(torch.__version__) >= version.parse('0.4.0'): interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear', align_corners=True) else: interp = nn.Upsample(size=(input_size[1], input_size[0]), mode='bilinear') # labels for adversarial training pred_label = 0 gt_label = 1 for i_iter in range(args.num_steps): loss_seg_value = 0 loss_adv_pred_value = 0 loss_D_value = 0 loss_semi_value = 0 loss_semi_adv_value = 0 optimizer.zero_grad() adjust_learning_rate(optimizer, i_iter) optimizer_D.zero_grad() adjust_learning_rate_D(optimizer_D, i_iter) tw = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ] for sub_i in range(args.iter_size): # train G # don't accumulate grads in D for param in model_D.parameters(): param.requires_grad = False # train with source try: _, batch = trainloader_iter.next() except: trainloader_iter = enumerate(trainloader) _, batch = trainloader_iter.next() images, labels, _, _ = batch images = Variable(images).cuda() ignore_mask = (labels.numpy() == 255) pred = interp(model(images)) loss_seg = loss_calc(pred, labels) pred_0 = F.softmax(pred, dim=1) #pred_0 = 1 / (math.e ** (((pred_01 - 0.33) * 30) * (-1)) + 1) labels0 = Variable(one_hot(labels)).cuda() one_s = Variable(torch.ones(labels0.size())).cuda() labels0 = one_s - labels0 labels0 = torch.index_select( labels0, 1, Variable( torch.LongTensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ])).cuda()) pred0 = torch.index_select( pred_0, 1, Variable( torch.LongTensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ])).cuda()) pred_label0 = labels0 * pred0 pred_max = torch.max(pred_0, dim=1)[1] pred_max = Variable(one_hot(pred_max.cpu().data)).cuda() pred_max = torch.index_select( pred_max, 1, Variable( torch.LongTensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ])).cuda()) pred_c = pred_label0 * (pred_max) one_s = Variable(torch.ones(pred_max.size())).cuda() pred_m = pred_label0 * (one_s - pred_max) c3 = 0 c4 = 0 c5 = 0 c6 = 0 c7 = 0 c8 = 0 c9 = 0 c10 = 0 c0 = 0 pred_min_c_list = pred_c.cpu().data.numpy().flatten().tolist() pred_min_c_l = len(pred_min_c_list) for n in pred_min_c_list: if n < 0.00000001: c0 = c0 + 1 elif n < 0.1: c3 = c3 + 1 elif n < 0.2: c4 = c4 + 1 elif n < 0.3: c5 = c5 + 1 elif n < 0.4: c6 = c6 + 1 elif n < 0.5: c7 = c7 + 1 elif n < 0.6: c8 = c8 + 1 elif n < 0.7: c9 = c9 + 1 elif n <= 1: c10 = c10 + 1 else: print n if pred_min_c_l - c0 == 0: print pred_min_c_l else: pred_min_c_l = (pred_min_c_l - c0) * 1.00000 print "correct", 3, ":", c3 / pred_min_c_l, 4, ":", c4 / pred_min_c_l, 5, ":", c5 / pred_min_c_l, 6, ":", c6 / pred_min_c_l, 7, ":", c7 / pred_min_c_l, 8, ":", c8 / pred_min_c_l, 9, ":", c9 / pred_min_c_l, 10, ":", c10 / pred_min_c_l c3 = 0 c4 = 0 c5 = 0 c6 = 0 c7 = 0 c8 = 0 c9 = 0 c10 = 0 c0 = 0 pred_min_m_list = pred_m.cpu().data.numpy().flatten().tolist() pred_min_c_l = len(pred_min_m_list) for n in pred_min_m_list: if n < 0.0000001: c0 = c0 + 1 elif n < 0.005: c3 = c3 + 1 elif n < 0.05: c4 = c4 + 1 elif n < 0.3: c5 = c5 + 1 elif n < 0.4: c6 = c6 + 1 elif n < 0.5: c7 = c7 + 1 else: print n if pred_min_c_l - c0 == 0: print pred_min_c_l else: pred_min_c_l = (pred_min_c_l - c0) * 1.00000 print "mistake", 1, ":", c3 / pred_min_c_l, 2, ":", c4 / pred_min_c_l, 3, ":", c5 / pred_min_c_l, 4, ":", c6 / pred_min_c_l, 5, ":", c7 / pred_min_c_l ''' images, labels, _, _ = batch images = Variable(images).cuda() ignore_mask = (labels.numpy() == 255) pred = interp(model(images)) loss_seg = loss_calc(pred, labels) pred_0 = F.softmax(pred, dim=1) labels0 = Variable(one_hot(labels)).cuda() labels0=torch.index_select(labels0, 1, Variable(torch.LongTensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])).cuda()) pred0 = torch.index_select(pred_0, 1, Variable(torch.LongTensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])).cuda()) pred_label0=labels0*pred0 pred_max = torch.max(pred_0, dim=1)[1] pred_max = Variable(one_hot(pred_max.cpu().data)).cuda() pred_max = torch.index_select(pred_max, 1, Variable( torch.LongTensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])).cuda()) pred_c=pred_label0*(pred_max) one_s = Variable(torch.ones(pred_max.size())).cuda() pred_m = pred_label0 * (one_s - pred_max) c3 = 0 c4 = 0 c5 = 0 c6 = 0 c7 = 0 c8 = 0 c9 = 0 c10 = 0 c0 = 0 pred_min_c_list = pred_c.cpu().data.numpy().flatten().tolist() pred_min_c_l = len(pred_min_c_list) for n in pred_min_c_list: if n < 0.00000001: c0 = c0 + 1 elif n < 0.3: c3 = c3 + 1 elif n < 0.4: c4 = c4 + 1 elif n < 0.5: c5 = c5 + 1 elif n < 0.6: c6 = c6 + 1 elif n < 0.7: c7 = c7 + 1 elif n < 0.8: c8 = c8 + 1 elif n < 0.9: c9 = c9 + 1 elif n <= 1: c10 = c10 + 1 else: print n if pred_min_c_l - c0 == 0: print pred_min_c_l else: pred_min_c_l = (pred_min_c_l - c0) * 1.00000 print "correct", 3, ":", c3 / pred_min_c_l, 4, ":", c4 / pred_min_c_l, 5, ":", c5 / pred_min_c_l, 6, ":", c6 / pred_min_c_l, 7, ":", c7 / pred_min_c_l, 8, ":", c8 / pred_min_c_l, 9, ":", c9 / pred_min_c_l, 10, ":", c10 / pred_min_c_l c3 = 0 c4 = 0 c5 = 0 c6 = 0 c7 = 0 c8 = 0 c9 = 0 c10 = 0 c0 = 0 pred_min_m_list = pred_m.cpu().data.numpy().flatten().tolist() pred_min_c_l = len(pred_min_m_list) for n in pred_min_m_list: if n < 0.0000001: c0 = c0 + 1 elif n < 0.1: c3 = c3 + 1 elif n < 0.2: c4 = c4 + 1 elif n < 0.3: c5 = c5 + 1 elif n < 0.4: c6 = c6 + 1 elif n < 0.5: c7 = c7 + 1 else: print n if pred_min_c_l - c0 == 0: print pred_min_c_l else: pred_min_c_l = (pred_min_c_l - c0) * 1.00000 print "mistake", 1, ":", c3 / pred_min_c_l, 2, ":", c4 / pred_min_c_l, 3, ":", c5 / pred_min_c_l, 4, ":", c6 / pred_min_c_l, 5, ":", c7 / pred_min_c_l ''' # c3=0 # c4=0 # c5=0 # c6=0 # c7=0 # c8=0 # c9=0 # c10=0 # c0=0 # # pred_min_c_list=pred_c.cpu().data.numpy().flatten().tolist() # # pred_min_c=set(pred_c.cpu().data.numpy().flatten().tolist()) # pred_min_c_l=len(pred_min_c_list) # if len(pred_min_c) >1: # pred_min_c.discard(0.0) # pred_min_c=list(pred_min_c) # pred_min_c2 = min(pred_min_c) # pred_max_c2 = max(pred_min_c) # else: # pred_min_c2 = 999 # pred_max_c2 = 999 # for n in pred_min_c_list: # if n<0.00000001: # c0=c0+1 # elif n<0.3: # c3=c3+1 # elif n<0.4: # c4=c4+1 # elif n<0.5: # c5=c5+1 # elif n<0.6: # c6=c6+1 # elif n<0.7: # c7=c7+1 # elif n<0.8: # c8=c8+1 # elif n<0.9: # c9=c9+1 # elif n<=1: # c10=c10+1 # else: # print n # # if pred_min_c_l-c0==0: # print pred_min_c_l # else: # pred_min_c_l=(pred_min_c_l-c0)*1.00000 # # #print c0 + c3 + c4 + c5 + c6 + c7+c8+c9+c10 # # print "correct",3,":",c3/pred_min_c_l,4,":",c4/pred_min_c_l,5,":",c5/pred_min_c_l,6,":",c6/pred_min_c_l,7,":",c7/pred_min_c_l,8,":",c8/pred_min_c_l,9,":",c9/pred_min_c_l,10,":",c10/pred_min_c_l # # c3 = 0 # c4 = 0 # c5 = 0 # c6 = 0 # c7 = 0 # c8 = 0 # c9 = 0 # c10 = 0 # c0 = 0 # # # # # pred_min_m_list = pred_m.cpu().data.numpy().flatten().tolist() # pred_min_m = set(pred_m.cpu().data.numpy().flatten().tolist()) # pred_min_c_l = len(pred_min_m_list) # if len(pred_min_m) >1: # pred_min_m.discard(0.0) # pred_min_m=list(pred_min_m) # pred_min_m2 = min(pred_min_m) # pred_max_m2 = max(pred_min_m) # else: # pred_min_m2 = 999 # pred_max_m2 = 999 # # for n in pred_min_m_list: # if n<0.0000001: # c0=c0+1 # elif n<0.1: # c3=c3+1 # elif n<0.2: # c4=c4+1 # elif n<0.3: # c5=c5+1 # elif n<0.4: # c6=c6+1 # elif n<0.5: # c7=c7+1 # else: # print n # if pred_min_c_l-c0==0: # print pred_min_c_l # else: # pred_min_c_l=(pred_min_c_l-c0)*1.00000 # print "mistake",1,":",c3/pred_min_c_l,2,":",c4/pred_min_c_l,3,":",c5/pred_min_c_l,4,":",c6/pred_min_c_l,5,":",c7/pred_min_c_l # # # # print('max c {} min c {} max m {} min m {}'.format( # pred_max_c2,pred_min_c2, pred_max_m2,pred_min_m2)) '''20000 correct 3 : 6.60318801918e-05 4 : 0.00186540061542 5 : 0.00659328323715 6 : 0.0196708971091 7 : 0.0234446190621 8 : 0.0315071116335 9 : 0.0565364958202 10 : 0.860316160642 mistake 1 : 0.326503117461 2 : 0.211204060532 3 : 0.199110192061 4 : 0.15803490303 5 : 0.105147726917 max c 1.0 min c 0.206159025431 max m 0.499729216099 min m 3.0866687678e-11 iter = 0/ 20000, loss_seg = 0.164, loss_adv_p = 0.688, loss_D = 0.687, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 1.03566126972e-05 4 : 0.000749128318431 5 : 0.00340042116892 6 : 0.0126937549625 7 : 0.0161735768288 8 : 0.0261400904478 9 : 0.0492767632133 10 : 0.891555908448 mistake 1 : 0.398261661669 2 : 0.20677876039 3 : 0.167001935704 4 : 0.129388545185 5 : 0.0985690970509 max c 1.0 min c 0.295039653778 max m 0.499661713839 min m 1.87631424287e-10 iter = 1/ 20000, loss_seg = 0.114, loss_adv_p = 0.621, loss_D = 0.666, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.000170320224732 4 : 0.00122630561807 5 : 0.00573184329631 6 : 0.0155854360311 7 : 0.0216533779042 8 : 0.0339187050213 9 : 0.0683937894433 10 : 0.853320222461 mistake 1 : 0.370818679971 2 : 0.185940950356 3 : 0.165003680379 4 : 0.165167252801 5 : 0.113069436493 max c 1.0 min c 0.205323472619 max m 0.499007672071 min m 2.63143761003e-07 iter = 2/ 20000, loss_seg = 0.136, loss_adv_p = 6.856, loss_D = 2.909, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 5.57311529183e-05 4 : 0.00162151116348 5 : 0.00529976725609 6 : 0.0104801106131 7 : 0.0125395094066 8 : 0.0183382031746 9 : 0.032151567505 10 : 0.919513599728 mistake 1 : 0.599129542479 2 : 0.138565514313 3 : 0.114044089027 4 : 0.0929903400446 5 : 0.0552705141361 max c 1.0 min c 0.251725673676 max m 0.499345749617 min m 2.17372370104e-11 iter = 3/ 20000, loss_seg = 0.173, loss_adv_p = 0.211, loss_D = 1.186, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.0 4 : 0.000408403449911 5 : 0.00314207170335 6 : 0.00972922412127 7 : 0.0128537300848 8 : 0.0230989478122 9 : 0.0531056227933 10 : 0.897662000035 mistake 1 : 0.376961004034 2 : 0.197477108279 3 : 0.160338093104 4 : 0.144009732983 5 : 0.1212140616 max c 1.0 min c 0.303397655487 max m 0.49908259511 min m 2.31815082538e-13 ''' '''0000 mistake 1 : 1.0 2 : 0.0 3 : 0.0 4 : 0.0 5 : 0.0 iter = 0/ 20000, loss_seg = 3.045, loss_adv_p = 0.677, loss_D = 0.689, loss_semi = 0.000, loss_semi_adv = 0.000 20608200 mistake 1 : 1.0 2 : 0.0 3 : 0.0 4 : 0.0 5 : 0.0 iter = 1/ 20000, loss_seg = 2.311, loss_adv_p = 0.001, loss_D = 4.009, loss_semi = 0.000, loss_semi_adv = 0.000 20608200 mistake 1 : 1.0 2 : 0.0 3 : 0.0 4 : 0.0 5 : 0.0 iter = 2/ 20000, loss_seg = 2.695, loss_adv_p = 1.304, loss_D = 0.996, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.215316600114 4 : 0.28849591177 5 : 0.159402928313 6 : 0.113015782468 7 : 0.102595550485 8 : 0.0921563034797 9 : 0.0290169233695 10 : 0.0 mistake 1 : 0.80735288413 2 : 0.095622890725 3 : 0.0764600062066 4 : 0.0203387447147 5 : 0.000225474223205 iter = 3/ 20000, loss_seg = 2.103, loss_adv_p = 0.936, loss_D = 0.720, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.0 4 : 0.0106591946386 5 : 0.0159743486048 6 : 0.0144144664625 7 : 0.0482119128777 8 : 0.1030099948 9 : 0.149690912242 10 : 0.658039170374 mistake 1 : 0.997786787186 2 : 0.00220988967167 3 : 0.0 4 : 3.32314236342e-06 5 : 0.0 iter = 4/ 20000, loss_seg = 3.231, loss_adv_p = 0.352, loss_D = 0.740, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.0547200197126 4 : 0.0824408402489 5 : 0.105990337314 6 : 0.0824672410303 7 : 0.0818248220147 8 : 0.106500752422 9 : 0.12377566376 10 : 0.362280323498 mistake 1 : 0.89707796374 2 : 0.0776956426097 3 : 0.0212782533776 4 : 0.0038358600209 5 : 0.000112280251508 iter = 5/ 20000, loss_seg = 2.440, loss_adv_p = 0.285, loss_D = 0.796, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.0645113648539 4 : 0.11994706344 5 : 0.133270975533 6 : 0.130346143711 7 : 0.130461978634 8 : 0.155641595163 9 : 0.129387609717 10 : 0.136433268948 mistake 1 : 0.687583743536 2 : 0.172921294404 3 : 0.108947452597 4 : 0.027046718675 5 : 0.00350079078777 iter = 6/ 20000, loss_seg = 1.562, loss_adv_p = 0.471, loss_D = 0.700, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.0517260346307 4 : 0.0852126465864 5 : 0.0921211854525 6 : 0.0708675276672 7 : 0.0477657257266 8 : 0.0341796660139 9 : 0.0336846274009 10 : 0.584442586522 mistake 1 : 0.896840471376 2 : 0.0747503216715 3 : 0.0228403760663 4 : 0.00484719754372 5 : 0.000721633342184 iter = 7/ 20000, loss_seg = 1.521, loss_adv_p = 1.028, loss_D = 0.781, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.0354795814142 4 : 0.146293048623 5 : 0.182080980555 6 : 0.160111006186 7 : 0.0642910828885 8 : 0.0516294397657 9 : 0.0560234346393 10 : 0.304091425928 mistake 1 : 0.927571328438 2 : 0.0370632102681 3 : 0.0252651475979 4 : 0.00991933537868 5 : 0.000180978317074 iter = 8/ 20000, loss_seg = 2.240, loss_adv_p = 1.128, loss_D = 1.030, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.013791534851 4 : 0.0218762276947 5 : 0.0420707290008 6 : 0.0509204695049 7 : 0.0551454624403 8 : 0.0738167607469 9 : 0.109429384722 10 : 0.632949431039 mistake 1 : 0.82698518928 2 : 0.0871808088324 3 : 0.056324796628 4 : 0.0222555690883 5 : 0.00725363617091 iter = 9/ 20000, loss_seg = 1.620, loss_adv_p = 0.856, loss_D = 0.680, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.0111066673332 4 : 0.0219300438268 5 : 0.039156626506 6 : 0.0714017897315 7 : 0.0741513772934 8 : 0.0834458164609 9 : 0.100755719975 10 : 0.598051958873 mistake 1 : 0.666796397198 2 : 0.104720338041 3 : 0.101412209496 4 : 0.0761078060714 5 : 0.0509632491938 iter = 10/ 20000, loss_seg = 1.065, loss_adv_p = 0.474, loss_D = 0.706, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.0158021057795 4 : 0.0165904591721 5 : 0.0267981756919 6 : 0.0441302710184 7 : 0.0592082596077 8 : 0.0964185397359 9 : 0.156169887236 10 : 0.584882301758 mistake 1 : 0.693582996679 2 : 0.111521356046 3 : 0.114913868543 4 : 0.0540284587444 5 : 0.0259533199871 iter = 11/ 20000, loss_seg = 1.008, loss_adv_p = 0.442, loss_D = 0.724, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.00525433110547 4 : 0.0132143122692 5 : 0.0181547053526 6 : 0.0353758581661 7 : 0.0438108771263 8 : 0.057140850772 9 : 0.0862049023901 10 : 0.740844162818 mistake 1 : 0.698567424322 2 : 0.152478802192 3 : 0.0874738631406 4 : 0.0430223987244 5 : 0.0184575116206 iter = 12/ 20000, loss_seg = 0.957, loss_adv_p = 0.442, loss_D = 0.743, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.00325696566801 4 : 0.0222856760435 5 : 0.029201151092 6 : 0.0513157992579 7 : 0.0617187558094 8 : 0.0804648983871 9 : 0.10184338308 10 : 0.649913370662 mistake 1 : 0.910824450383 2 : 0.0481368156486 3 : 0.0238175658895 4 : 0.0128053565929 5 : 0.00441581148608 iter = 13/ 20000, loss_seg = 1.422, loss_adv_p = 0.830, loss_D = 0.618, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.0149639294303 4 : 0.0338563367539 5 : 0.0443977524345 6 : 0.0406656984358 7 : 0.0549094069189 8 : 0.0846765553201 9 : 0.131008785505 10 : 0.595521535202 mistake 1 : 0.672923967008 2 : 0.177251807277 3 : 0.079961731589 4 : 0.0552797386879 5 : 0.0145827554388 iter = 14/ 20000, loss_seg = 0.997, loss_adv_p = 1.154, loss_D = 0.837, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.0193227170348 4 : 0.0525052357055 5 : 0.0709388706682 6 : 0.0720057691548 7 : 0.0699806377682 8 : 0.0911210337061 9 : 0.15581657249 10 : 0.468309163473 mistake 1 : 0.815034514788 2 : 0.1099266077 3 : 0.0481236762295 4 : 0.0204414796676 5 : 0.0064737216159 iter = 15/ 20000, loss_seg = 0.938, loss_adv_p = 1.266, loss_D = 0.830, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.0138818759925 4 : 0.0214850753368 5 : 0.0245366000015 6 : 0.0524393902805 7 : 0.0717583953517 8 : 0.0829619547321 9 : 0.127629836154 10 : 0.605306872151 mistake 1 : 0.845186224931 2 : 0.0863806795239 3 : 0.037294979522 4 : 0.0189205299287 5 : 0.0122175860942 iter = 16/ 20000, loss_seg = 1.872, loss_adv_p = 0.826, loss_D = 0.847, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.00228016623147 4 : 0.0089505718804 5 : 0.0161634364312 6 : 0.0323728439557 7 : 0.0323958295024 8 : 0.0427347284028 9 : 0.0699726012283 10 : 0.795129822368 mistake 1 : 0.815070892754 2 : 0.0785075426593 3 : 0.0488263539692 4 : 0.0359976506471 5 : 0.0215975599703 iter = 17/ 20000, loss_seg = 1.717, loss_adv_p = 0.603, loss_D = 0.620, loss_semi = 0.000, loss_semi_adv = 0.000 correct 3 : 0.00200898622728 4 : 0.00781591308424 5 : 0.0269459263818 6 : 0.0502692998205 7 : 0.0554862862773 8 : 0.072763567832 9 : 0.10771673932 10 : 0.676993281057 ''' pred_re = F.softmax(pred, dim=1).repeat(1, 3, 1, 1) indices_1 = torch.index_select( images, 1, Variable(torch.LongTensor([0])).cuda()) indices_2 = torch.index_select( images, 1, Variable(torch.LongTensor([1])).cuda()) indices_3 = torch.index_select( images, 1, Variable(torch.LongTensor([2])).cuda()) img_re = torch.cat([ indices_1.repeat(1, 21, 1, 1), indices_2.repeat(1, 21, 1, 1), indices_3.repeat(1, 21, 1, 1), ], 1) mul_img = pred_re * img_re D_out = model_D(mul_img) loss_adv_pred = bce_loss(D_out, make_D_label(gt_label, D_out)) loss = loss_seg + args.lambda_adv_pred * loss_adv_pred # proper normalization loss = loss / args.iter_size loss.backward() loss_seg_value += loss_seg.data.cpu().numpy()[0] / args.iter_size loss_adv_pred_value += loss_adv_pred.data.cpu().numpy( )[0] / args.iter_size # train D # bring back requires_grad for param in model_D.parameters(): param.requires_grad = True # train with pred pred = pred.detach() pred_re2 = F.softmax(pred, dim=1).repeat(1, 3, 1, 1) mul_img2 = pred_re2 * img_re D_out = model_D(mul_img2) loss_D = bce_loss(D_out, make_D_label(pred_label, D_out)) loss_D = loss_D / args.iter_size / 2 loss_D.backward() loss_D_value += loss_D.data.cpu().numpy()[0] # train with gt # get gt labels try: _, batch = trainloader_gt_iter.next() except: trainloader_gt_iter = enumerate(trainloader_gt) _, batch = trainloader_gt_iter.next() img_gt, labels_gt, _, _ = batch img_gt = Variable(img_gt).cuda() D_gt_v = Variable(one_hot(labels_gt)).cuda() ignore_mask_gt = (labels_gt.numpy() == 255) pred_re3 = D_gt_v.repeat(1, 3, 1, 1) indices_1 = torch.index_select( img_gt, 1, Variable(torch.LongTensor([0])).cuda()) indices_2 = torch.index_select( img_gt, 1, Variable(torch.LongTensor([1])).cuda()) indices_3 = torch.index_select( img_gt, 1, Variable(torch.LongTensor([2])).cuda()) img_re3 = torch.cat([ indices_1.repeat(1, 21, 1, 1), indices_2.repeat(1, 21, 1, 1), indices_3.repeat(1, 21, 1, 1), ], 1) mul_img3 = pred_re3 * img_re3 D_out = model_D(mul_img3) loss_D = bce_loss(D_out, make_D_label(gt_label, D_out)) loss_D = loss_D / args.iter_size / 2 loss_D.backward() loss_D_value += loss_D.data.cpu().numpy()[0] optimizer.step() optimizer_D.step() #print('exp = {}'.format(args.snapshot_dir)) print( 'iter = {0:8d}/{1:8d}, loss_seg = {2:.3f}, loss_adv_p = {3:.3f}, loss_D = {4:.3f}, loss_semi = {5:.3f}, loss_semi_adv = {6:.3f}' .format(i_iter, args.num_steps, loss_seg_value, loss_adv_pred_value, loss_D_value, loss_semi_value, loss_semi_adv_value)) if i_iter >= args.num_steps - 1: print('save model ...') torch.save( model.state_dict(), osp.join( args.snapshot_dir, 'VOC_' + os.path.abspath(__file__).split('/')[-1].split('.')[0] + '_' + str(args.num_steps) + '.pth')) #torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+os.path.abspath(__file__).split('/')[-1].split('.')[0]+'_'+str(args.num_steps)+'_D.pth')) break if i_iter % args.save_pred_every == 0 and i_iter != 0: print('taking snapshot ...') torch.save( model.state_dict(), osp.join( args.snapshot_dir, 'VOC_' + os.path.abspath(__file__).split('/')[-1].split('.')[0] + '_' + str(i_iter) + '.pth')) #torch.save(model_D.state_dict(),osp.join(args.snapshot_dir, 'VOC_'+os.path.abspath(__file__).split('/')[-1].split('.')[0]+'_'+str(i_iter)+'_D.pth')) end = timeit.default_timer() print(end - start, 'seconds')