コード例 #1
0
ファイル: resnet.py プロジェクト: Spratumn/LaneSegment
 def __init__(self,
              inchannel,
              channel,
              stride=1,
              downsample=None,
              normal='bn'):
     super(Bottleneck, self).__init__()
     self.downsample = downsample
     self.conv1 = conv1x1(inchannel, channel, stride=stride, normal=normal)
     self.conv2 = conv3x3(channel, channel, padding=1, normal=normal)
     self.conv3 = conv1x1(channel,
                          channel * self.expansion,
                          normal=None,
                          rl=False)
     if normal == 'bn':
         self.normal = nn.BatchNorm2d(channel * self.expansion)
     elif normal == 'gn':
         self.normal = nn.GroupNorm(group_num, channel * self.expansion)
     self.relu = nn.ReLU(inplace=True)
コード例 #2
0
ファイル: unet.py プロジェクト: Spratumn/LaneSegment
 def __init__(self, in_channel=3, class_num=2):
     super(UNet, self).__init__()
     self.conv_1 = nn.Sequential(conv3x3(in_channel, 64), conv3x3(64, 64))
     self.conv_2 = nn.Sequential(conv3x3(64, 128), conv3x3(128,  128))
     self.conv_3 = nn.Sequential(conv3x3(128, 256), conv3x3(256, 256))
     self.conv_4 = nn.Sequential(conv3x3(256, 512), conv3x3(512, 512))
     self.conv_5 = nn.Sequential(conv3x3(512, 1024), conv3x3(1024, 1024))
     self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
     self.up_conv_4 = nn.Sequential(up_conv2x2(1024, 512))
     self.conv_6 = nn.Sequential(conv3x3(1024, 512), conv3x3(512, 512))
     self.up_conv_3 = nn.Sequential(up_conv2x2(512, 256))
     self.conv_7 = nn.Sequential(conv3x3(512, 256), conv3x3(256, 256))
     self.up_conv_2 = nn.Sequential(up_conv2x2(256, 128))
     self.conv_8 = nn.Sequential(conv3x3(256, 128), conv3x3(128, 128))
     self.up_conv_1 = nn.Sequential(up_conv2x2(128, 64))
     self.conv_9 = nn.Sequential(conv3x3(128, 64), conv3x3(64, 64))
     self.result = conv1x1(64, class_num)
コード例 #3
0
ファイル: resnet.py プロジェクト: Spratumn/LaneSegment
 def _make_layer(self,
                 block,
                 channel_num,
                 block_num,
                 change_size=False,
                 normal='bn'):
     # change_size=True means the first block need change input size
     if change_size:
         stride = 2
     else:
         stride = 1
     if block is BasicBlock:
         if change_size:
             downsample = conv3x3(self.inchannel_num,
                                  channel_num * block.expansion,
                                  padding=1,
                                  stride=stride,
                                  normal=normal)
         else:
             downsample = None
     elif block is Bottleneck:
         downsample = conv1x1(self.inchannel_num,
                              channel_num * block.expansion,
                              stride=stride,
                              normal=normal)
     else:
         raise ValueError('"block" should be "BasicBlock" or "Bottleneck"')
     layers = list()
     layers.append(
         block(self.inchannel_num,
               channel_num,
               stride=stride,
               downsample=downsample,
               normal=normal))
     for _ in range(1, block_num):
         layers.append(
             block(channel_num * block.expansion,
                   channel_num,
                   normal=normal))
     self.inchannel_num = channel_num * block.expansion
     return nn.Sequential(*layers)
コード例 #4
0
ファイル: unet.py プロジェクト: Spratumn/LaneSegment
    def __init__(self, in_channel=3, class_num=2, normal='bn'):
        super(UNetv1, self).__init__()

        # down sample stage
        self.conv_1 = nn.Sequential(conv3x3(in_channel, 64, padding=1, normal=normal),
                                    conv3x3(64, 64, padding=1, normal=normal))
        self.conv_2 = nn.Sequential(conv3x3(64, 128, padding=1, normal=normal),
                                    conv3x3(128, 128, padding=1, normal=normal))
        self.conv_3 = nn.Sequential(conv3x3(128, 256, padding=1, normal=normal),
                                    conv3x3(256, 256, padding=1, normal=normal))
        self.conv_4 = nn.Sequential(conv3x3(256, 512, padding=1, normal=normal),
                                    conv3x3(512, 512, padding=1, normal=normal))
        self.conv_5 = nn.Sequential(conv3x3(512, 1024, padding=1, normal=normal),
                                    conv3x3(1024, 1024, padding=1, normal=normal))
        self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
        
        # upsample stage
        # up_conv_4 corresponds conv_4
        self.up_conv_4 = nn.Sequential(up_conv2x2(1024, 512))
        # conv the cat(stage_4,up_conv_4) from 1024 to 512
        self.conv_6 = nn.Sequential(conv3x3(1024, 512, padding=1, normal=normal),
                                    conv3x3(512, 512, padding=1, normal=normal))
        # up_conv_3 corresponds conv_3
        self.up_conv_3 = nn.Sequential(up_conv2x2(512, 256))
        # conv the cat(stage_3,up_conv_3) from 512 to 256
        self.conv_7 = nn.Sequential(conv3x3(512, 256, padding=1, normal=normal),
                                    conv3x3(256, 256, padding=1, normal=normal))
        # up_conv_2 corresponds conv_2
        self.up_conv_2 = nn.Sequential(up_conv2x2(256,128))
        # conv the cat(stage_2,up_conv_2) from 256 to 128
        self.conv_8 = nn.Sequential(conv3x3(256, 128, padding=1, normal=normal),
                                    conv3x3(128, 128, padding=1, normal=normal))
        # up_conv_1 corresponds conv_1
        self.up_conv_1 = nn.Sequential(up_conv2x2(128, 64))
        # conv the cat(stage_1,up_conv_1) from 128 to 64
        self.conv_9 = nn.Sequential(conv3x3(128, 64, padding=1, normal=normal),
                                    conv3x3(64, 64, padding=1, normal=normal))
        # output
        self.result = conv1x1(64, class_num, normal=normal)