コード例 #1
0
ファイル: Run.py プロジェクト: yaselh/NN
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)

    myPerceptronClassifier = Perceptron(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.01,
                                        epochs=10)

    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nTraining the Perceptron..")
    myPerceptronClassifier.train()
    print("Done..")


    # Do the recognizer
    perceptronPred = myPerceptronClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("\nResult of the Perceptron recognizer:")
    #evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, perceptronPred)
コード例 #2
0
ファイル: Run.py プロジェクト: MartinThoma/NNPraktikum
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
    myStupidClassifier = StupidRecognizer(data.trainingSet,
                                          data.validationSet,
                                          data.testSet)
    myPerceptronClassifier = Perceptron(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        epochs=10)

    # Train the classifiers
    print("=========================")
    print("Training..")
    myStupidClassifier.train()
    myPerceptronClassifier.train()

    # Do the recognizer
    stupidPred = myStupidClassifier.evaluate()
    perceptronPred = myPerceptronClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    #evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.testSet, stupidPred)

    print("\nResult of the perceptron recognizer:")
    #evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, perceptronPred)
コード例 #3
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)

    myPerceptronClassifier = Perceptron(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.01,
                                        epochs=10)

    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nTraining the Perceptron..")
    myPerceptronClassifier.train()
    print("Done..")

    # Do the recognizer
    perceptronPred = myPerceptronClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("\nResult of the Perceptron recognizer:")
    #evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, perceptronPred)
コード例 #4
0
ファイル: Run.py プロジェクト: MikhailAristov/NNPraktikum
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
    myStupidClassifier = StupidRecognizer(data.trainingSet,
                                          data.validationSet,
                                          data.testSet)
    myPerceptronClassifier = Perceptron(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.005,
                                        epochs=30)
    myLRClassifier = LogisticRegression(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.005,
                                        epochs=30)

    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nStupid Classifier has been training..")
    myStupidClassifier.train()
    print("Done..")

    print("\nPerceptron has been training..")
    myPerceptronClassifier.train()
    print("Done..")

    print("\nLogistic Regression has been training..")
    myLRClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    stupidPred = myStupidClassifier.evaluate()
    perceptronPred = myPerceptronClassifier.evaluate()
    lrPred = myLRClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.testSet, stupidPred)

    print("\nResult of the Perceptron recognizer:")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, perceptronPred)
    
    print("\nResult of the Logistic Regression recognizer:")
    # evaluator.printComparison(data.testSet, perceptronPred)    
    evaluator.printAccuracy(data.testSet, lrPred)
コード例 #5
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, oneHot=True)
    myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet,
                                          data.testSet)
    myPerceptronClassifier = Perceptron(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.005,
                                        epochs=30)

    myLRClassifier = LogisticRegression(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.005,
                                        epochs=30)

    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nStupid Classifier has been training..")
    myStupidClassifier.train()
    print("Done..")

    print("\nPerceptron has been training..")
    myPerceptronClassifier.train()
    print("Done..")

    print("\nLogistic Regression has been training..")
    myLRClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    stupidPred = myStupidClassifier.evaluate()
    perceptronPred = myPerceptronClassifier.evaluate()
    lrPred = myLRClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.testSet, stupidPred)

    print("\nResult of the Perceptron recognizer:")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, perceptronPred)

    print("\nResult of the Logistic Regression recognizer:")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.testSet, lrPred)
コード例 #6
0
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
    myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet,
                                          data.testSet)
    # Uncomment this to make your Perceptron evaluated
    myPerceptronClassifier = Perceptron(
        data.trainingSet,
        data.validationSet,
        data.testSet,
        learningRate=1.0,  #0.005,
        epochs=1  #30
    )

    # Train the classifiers
    print("=========================")
    print("Training..")

    print("\nStupid Classifier has been training..")
    myStupidClassifier.train()
    print("Done..")

    print("\nPerceptron has been training..")
    myPerceptronClassifier.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    stupidPred = myStupidClassifier.evaluate()
    # Uncomment this to make your Perceptron evaluated
    perceptronPred = myPerceptronClassifier.evaluate()

    # Report the result
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    #evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.testSet, stupidPred)

    print("\nResult of the Perceptron recognizer:")
    #evaluator.printComparison(data.testSet, perceptronPred)
    # Uncomment this to make your Perceptron evaluated
    evaluator.printAccuracy(data.testSet, perceptronPred)

    evaluator.printConfusionMatrix(data.testSet, perceptronPred)
    evaluator.printClassificationResult(data.testSet, perceptronPred,
                                        ['class 0', 'class 1'])  #target_names)
コード例 #7
0
ファイル: iris_model.py プロジェクト: Sohottoday/sba-3-api
    def __init__(self):
        self.iris = pd.read_csv('https://archive.ics.uci.edu/ml/'
        'machine-learning-databases/iris/iris.data', header=None)
        print(self.iris.head())
        print('----------------------')
        print(self.iris.tail)
        print('----------------------')
        print(self.iris.columns)
        '''
        [150 rows x 5 columns]>
        ----------------------
        Int64Index([0, 1, 2, 3, 4], dtype='int64')
        '''

        # Iris-setosa 와 versicolor 선택 (MCP 는 이진분류만 할 수 있다)
        t = self.iris.iloc[0:100,4].values
        self.y = np.where(t == 'Iris-setosa', -1, 1)
        # 꽃받침 길이, 꽃잎 추출
        self.X = self.iris.iloc[0:100, [0,2]].values
        self.clf = Perceptron(eta = 0.1, n_iter=10)
コード例 #8
0
class IrisModel:
    def __init__(self):
        self.iris = pd.read_csv(
            'https://archive.ics.uci.edu/ml/'
            'machine-learning-databases/iris/iris.data',
            header=None)
        print(self.iris.head())
        print('----------------------')
        print(self.iris.tail)
        print('----------------------')
        print(self.iris.columns)
        '''
        [150 rows x 5 columns]>
        ----------------------
        Int64Index([0, 1, 2, 3, 4], dtype='int64')
        '''

        # Iris-setosa 와 versicolor 선택 (MCP 는 이진분류만 할 수 있다)
        t = self.iris.iloc[0:100, 4].values
        self.y = np.where(t == 'Iris-setosa', -1, 1)
        # 꽃받침 길이, 꽃잎 추출
        self.X = self.iris.iloc[0:100, [0, 2]].values
        self.clf = Perceptron(eta=0.1, n_iter=10)

    def get_iris(self):
        return self.iris

    def get_X(self):
        return self.X

    def get_y(self):
        return self.y

    def draw_scatter(self):
        X = self.X
        plt.scatter(X[:50, 0],
                    X[:50, 1],
                    color='red',
                    marker='o',
                    label='setosa')
        plt.scatter(X[50:100, 0],
                    X[50:100, 1],
                    color='blue',
                    marker='x',
                    label='versicolor')
        plt.xlabel('sepal length[cm]')
        plt.ylabel('petal length[cm]')
        plt.legend(loc='upper left')
        plt.show()

    def draw_errors(self):
        X = self.X
        y = self.y
        self.clf.fit(X, y)
        plt.plot(range(1,
                       len(self.clf.errors_) + 1),
                 self.clf.errors_,
                 marker='o')
        plt.xlabel('Epoch')
        plt.ylabel('Number of Errors')
        plt.show()

    def plot_decision_regions(self, X, y, classifier, resolution=0.02):

        # 마커와 컬러맵을 설정합니다
        markers = ('s', 'x', 'o', '^', 'v')
        colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
        cmap = ListedColormap(colors[:len(np.unique(y))])

        # 결정 경계를 그립니다
        x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
        x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
        """
        numpy 모듈의 arrange 함수는 반열린구간 [start, stop) 에서
        step 의 크기만큼 일정하게 떨어져 있는 숫자들을
        array 형태로 반환하는 함수

        meshgrid 함수는 사각형 영역을 구성하는
        가로축의 점들과 세로축의 점을
        나타내는 두 벡터를 인수로 받아서
        이 사각형 영역을 이루는 조합을 출력한다.
        결과는 그리드 포인트의 x 값만을 표시하는 행렬과
        y 값만을 표시하는 행렬 두 개로 분리하여 출력한다
        """
        xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                               np.arange(x2_min, x2_max, resolution))
        Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
        Z = Z.reshape(xx1.shape)
        plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)
        plt.xlim(xx1.min(), xx1.max())
        plt.ylim(xx2.min(), xx2.max())

        # 샘플의 산점도를 그립니다
        for idx, cl in enumerate(np.unique(y)):
            plt.scatter(x=X[y == cl, 0],
                        y=X[y == cl, 1],
                        alpha=0.8,
                        c=colors[idx],
                        marker=markers[idx],
                        label=cl,
                        edgecolor='black')

        plot_decision_regions(X, y, classifier=self.clf)
        plt.xlabel('sepal length [cm]')
        plt.ylabel('petal length [cm]')
        plt.legend(loc='upper left')

        plt.show()

    def draw_adaline_graph(self):
        X = self.X
        y = self.y
        fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))

        ada1 = AdalineGD(n_iter=10, eta=0.01).fit(X, y)
        ax[0].plot(range(1,
                         len(ada1.cost_) + 1),
                   np.log10(ada1.cost_),
                   marker='o')
        ax[0].set_xlabel('Epochs')
        ax[0].set_ylabel('log(Sum-squared-error)')
        ax[0].set_title('Adaline - Learning rate 0.01')

        ada2 = AdalineGD(n_iter=10, eta=0.0001).fit(X, y)
        ax[1].plot(range(1, len(ada2.cost_) + 1), ada2.cost_, marker='o')
        ax[1].set_xlabel('Epochs')
        ax[1].set_ylabel('Sum-squared-error')
        ax[1].set_title('Adaline - Learning rate 0.0001')

        plt.show()

    def draw_adaline_gd_graph(self):
        # 특성을 표준화합니다.
        X = self.X
        y = self.y
        X_std = np.copy(X)
        X_std[:, 0] = (X[:, 0] - X[:, 0].mean()) / X[:, 0].std()
        X_std[:, 1] = (X[:, 1] - X[:, 1].mean()) / X[:, 1].std()

        ada = AdalineGD(n_iter=15, eta=0.01)
        ada.fit(X_std, y)

        plot_decision_regions(X_std, y, classifier=ada)
        plt.title('Adaline - Gradient Descent')
        plt.xlabel('sepal length [standardized]')
        plt.ylabel('petal length [standardized]')
        plt.legend(loc='upper left')
        plt.tight_layout()
        plt.show()

        plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
        plt.xlabel('Epochs')
        plt.ylabel('Sum-squared-error')

        plt.tight_layout()
        plt.show()
コード例 #9
0
ファイル: Run.py プロジェクト: DominikSauter/NNPraktikum02
def main():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000)
    myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet,
                                          data.testSet)

    # parameters
    learnRate = 0.005
    maxEpochs = 20
    #epochNumber = 30

    xEpochs = []
    yAccuracyPerceptron = []
    yAccuracyLogistic = []
    # loop for gathering data for graph plotting
    for epochNumber in xrange(1, maxEpochs + 1):

        myPerceptronClassifier = Perceptron(
            data.trainingSet,
            data.validationSet,
            data.testSet,
            learningRate=learnRate,  #0.005,
            epochs=epochNumber)
        # Uncomment this to run Logistic Neuron Layer
        myLRClassifier = LogisticRegression(
            data.trainingSet,
            data.validationSet,
            data.testSet,
            learningRate=learnRate,  #0.005,
            epochs=epochNumber  #30
        )

        # Train the classifiers
        print("=========================")
        print("Training..")

        print("\nStupid Classifier has been training..")
        myStupidClassifier.train()
        print("Done..")

        print("\nPerceptron has been training..")
        myPerceptronClassifier.train()
        print("Done..")

        print("\nLogistic Regression has been training..")
        myLRClassifier.train()
        print("Done..")

        # Do the recognizer
        # Explicitly specify the test set to be evaluated
        stupidPred = myStupidClassifier.evaluate()
        perceptronPred = myPerceptronClassifier.evaluate()
        lrPred = myLRClassifier.evaluate()

        # Report the result
        print("=========================")
        evaluator = Evaluator()

        print("Result of the stupid recognizer:")
        #evaluator.printComparison(data.testSet, stupidPred)
        evaluator.printAccuracy(data.testSet, stupidPred)

        print("\nResult of the Perceptron recognizer:")
        #evaluator.printComparison(data.testSet, perceptronPred)
        evaluator.printAccuracy(data.testSet, perceptronPred)

        print("\nResult of the Logistic Regression recognizer:")
        #evaluator.printComparison(data.testSet, lrPred)
        evaluator.printAccuracy(data.testSet, lrPred)

        # accumulate plotting data
        xEpochs.append(epochNumber)
        yAccuracyPerceptron.append(
            accuracy_score(data.testSet.label, perceptronPred) * 100)
        yAccuracyLogistic.append(
            accuracy_score(data.testSet.label, lrPred) * 100)

        # === end of for loop ===

    # plot the graph
    plt.plot(xEpochs, yAccuracyPerceptron, marker='o', label='Perceptron')
    plt.plot(xEpochs,
             yAccuracyLogistic,
             marker='o',
             color='r',
             label='Logistic Neuron')
    plt.xlabel('Number of epochs')
    plt.ylabel('Accuracy [%]')
    plt.title(
        'Performance on different epochs\n(using: testSet | learningRate: ' +
        str(learnRate) + ')')
    #plt.legend()
    plt.legend(loc=4)
    #plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.)
    #plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
    plt.show()
コード例 #10
0
ファイル: Run.py プロジェクト: hutec/NNPraktikum
def classify_one():
    data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
                      one_hot=True, target_digit='7')

    # NOTE:
    # Comment out the MNISTSeven instantiation above and
    # uncomment the following to work with full MNIST task
    # data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
    #                   one_hot=False)

    # NOTE:
    # Other 1-digit classifiers do not make sense now for comparison purpose
    # So you should comment them out, let alone the MLP training and evaluation

    # Train the classifiers #
    print("=========================")
    print("Training..")

    # Stupid Classifier
    myStupidClassifier = StupidRecognizer(data.training_set,
                                          data.validation_set,
                                          data.test_set)

    print("\nStupid Classifier has been training..")
    myStupidClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    stupidPred = myStupidClassifier.evaluate()

    # Perceptron
    myPerceptronClassifier = Perceptron(data.training_set,
                                        data.validation_set,
                                        data.test_set,
                                        learning_rate=0.005,
                                        epochs=10)

    print("\nPerceptron has been training..")
    myPerceptronClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    perceptronPred = myPerceptronClassifier.evaluate()

    # Logistic Regression
    myLRClassifier = LogisticRegression(data.training_set,
                                        data.validation_set,
                                        data.test_set,
                                        learning_rate=0.20,
                                        epochs=30)

    print("\nLogistic Regression has been training..")
    myLRClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    lrPred = myLRClassifier.evaluate()

    # Logistic Regression
    myMLPClassifier = MultilayerPerceptron(data.training_set,
                                           data.validation_set,
                                           data.test_set,
                                           learning_rate=0.30,
                                           epochs=50)

    print("\nMultilayer Perceptron has been training..")
    myMLPClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    mlpPred = myMLPClassifier.evaluate()

    # Report the result #
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.test_set, stupidPred)

    print("\nResult of the Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, perceptronPred)

    print("\nResult of the Logistic Regression recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, lrPred)

    print("\nResult of the Multi-layer Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, mlpPred)


    # Draw
    plot = PerformancePlot("Logistic Regression")
    plot.draw_performance_epoch(myLRClassifier.performances,
                                myLRClassifier.epochs)
コード例 #11
0
ファイル: Run.py プロジェクト: anhcoi123/neuron_network
def main():
    data = MNISTSeven("data/mnist_seven.csv", 3000, 1000, 1000, oneHot=True)
    myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet,
                                          data.testSet)

    myPerceptronClassifier = Perceptron(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.005,
                                        epochs=30)

    myLRClassifier = LogisticRegression(data.trainingSet,
                                        data.validationSet,
                                        data.testSet,
                                        learningRate=0.005,
                                        epochs=30)

    # Report the result #
    print("=========================")
    evaluator = Evaluator()

    # Train the classifiers
    print("=========================")
    print("Training..")

    # print("\nStupid Classifier has been training..")
    # myStupidClassifier.train()
    # print("Done..")

    # print("\nPerceptron has been training..")
    # myPerceptronClassifier.train()
    # print("Done..")

    # print("\nLogistic Regression has been training..")
    # myLRClassifier.train()
    # print("Done..")

    myMLP = MultilayerPerceptron(data.trainingSet,
                                 data.validationSet,
                                 data.testSet,
                                 learningRate=0.01,
                                 epochs=30,
                                 loss="ce",
                                 outputActivation="softmax",
                                 weight_decay=0.1)

    print("\nMLP has been training..")
    myMLP.train()
    print("Done..")

    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    # stupidPred = myStupidClassifier.evaluate()
    # perceptronPred = myPerceptronClassifier.evaluate()
    # lrPred = myLRClassifier.evaluate()
    mlpPred = myMLP.evaluate(data.validationSet)

    # # Report the result
    # print("=========================")
    # evaluator = Evaluator()

    # print("Result of the stupid recognizer:")
    # #evaluator.printComparison(data.testSet, stupidPred)
    # evaluator.printAccuracy(data.testSet, stupidPred)

    # print("\nResult of the Perceptron recognizer:")
    # #evaluator.printComparison(data.testSet, perceptronPred)
    # evaluator.printAccuracy(data.testSet, perceptronPred)

    # print("\nResult of the Logistic Regression recognizer:")
    # #evaluator.printComparison(data.testSet, lrPred)
    # evaluator.printAccuracy(data.testSet, lrPred)

    print("\nResult of the Multilayer Perceptron recognizer:")
    #evaluator.printComparison(data.testSet, lrPred)
    # evaluator.printAccuracy(data.testSet, mlpPred)

    plot = PerformancePlot("MLP validation")
    plot.draw_performance_epoch(myMLP.performances, myMLP.epochs)
コード例 #12
0
ファイル: Run.py プロジェクト: hutec/NNPraktikum
def classify_one():
    data = MNISTSeven("../data/mnist_seven.csv",
                      3000,
                      1000,
                      1000,
                      one_hot=True,
                      target_digit='7')

    # NOTE:
    # Comment out the MNISTSeven instantiation above and
    # uncomment the following to work with full MNIST task
    # data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000,
    #                   one_hot=False)

    # NOTE:
    # Other 1-digit classifiers do not make sense now for comparison purpose
    # So you should comment them out, let alone the MLP training and evaluation

    # Train the classifiers #
    print("=========================")
    print("Training..")

    # Stupid Classifier
    myStupidClassifier = StupidRecognizer(data.training_set,
                                          data.validation_set, data.test_set)

    print("\nStupid Classifier has been training..")
    myStupidClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    stupidPred = myStupidClassifier.evaluate()

    # Perceptron
    myPerceptronClassifier = Perceptron(data.training_set,
                                        data.validation_set,
                                        data.test_set,
                                        learning_rate=0.005,
                                        epochs=10)

    print("\nPerceptron has been training..")
    myPerceptronClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    perceptronPred = myPerceptronClassifier.evaluate()

    # Logistic Regression
    myLRClassifier = LogisticRegression(data.training_set,
                                        data.validation_set,
                                        data.test_set,
                                        learning_rate=0.20,
                                        epochs=30)

    print("\nLogistic Regression has been training..")
    myLRClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    lrPred = myLRClassifier.evaluate()

    # Logistic Regression
    myMLPClassifier = MultilayerPerceptron(data.training_set,
                                           data.validation_set,
                                           data.test_set,
                                           learning_rate=0.30,
                                           epochs=50)

    print("\nMultilayer Perceptron has been training..")
    myMLPClassifier.train()
    print("Done..")
    # Do the recognizer
    # Explicitly specify the test set to be evaluated
    mlpPred = myMLPClassifier.evaluate()

    # Report the result #
    print("=========================")
    evaluator = Evaluator()

    print("Result of the stupid recognizer:")
    # evaluator.printComparison(data.testSet, stupidPred)
    evaluator.printAccuracy(data.test_set, stupidPred)

    print("\nResult of the Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, perceptronPred)

    print("\nResult of the Logistic Regression recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, lrPred)

    print("\nResult of the Multi-layer Perceptron recognizer (on test set):")
    # evaluator.printComparison(data.testSet, perceptronPred)
    evaluator.printAccuracy(data.test_set, mlpPred)

    # Draw
    plot = PerformancePlot("Logistic Regression")
    plot.draw_performance_epoch(myLRClassifier.performances,
                                myLRClassifier.epochs)
コード例 #13
0
X = pd.DataFrame(iris.data, columns=iris.feature_names).iloc[0:100, [0,2]].values
y = iris.target[0:100]
y = np.where(y == 0, 1, -1)

plt.scatter(df.iloc[:49, 0], df.iloc[:49, 2],
            color='red', marker='o', label='setosa')
plt.scatter(df.iloc[50:101,0], df.iloc[50:101, 2],
            color='blue', marker='x', label='versicolor')
plt.scatter(df.iloc[102:,0], df.iloc[102:, 2],
            color='green', marker='^', label='virginica')
plt.xlabel('sepal length[cm]')
plt.ylabel('petal length[cm]')
plt.legend(loc='upper left')
plt.show()

ppn = Perceptron(eta=0.01, n_iter=10)
ppn.fit(X,y)
plt.plot(range(1, len(ppn.errors_) + 1),
        ppn.errors_, marker='o')
plt.xlabel('Epoch')
plt.ylabel('Number of errors')
plt.show()

from model.plot import plot_decision_regions

plot_decision_regions(X, y, classifier=ppn)
plt.xlabel('sepal length [cm]')
plt.ylabel('petal length [cm]')
plt.legend(loc='upper left')