with tf.name_scope('input'): x = tf.placeholder(dtype=tf.float32, shape=[ FLAGS.batch_size, FLAGS.crop_height, FLAGS.crop_width, FLAGS.channels ], name='x_input') y = tf.placeholder( dtype=tf.int32, shape=[FLAGS.batch_size, FLAGS.crop_height, FLAGS.crop_width], name='ground_truth') auxi_logits, logits = pspnet.PSPNet( x, is_training=True, output_stride=FLAGS.output_stride, pre_trained_model=FLAGS.pretrained_model_path, classes=FLAGS.classes) with tf.name_scope('regularization'): train_var_list = [ v for v in tf.trainable_variables() if 'beta' not in v.name and 'gamma' not in v.name ] # Add weight decay to the loss. with tf.variable_scope("total_loss"): l2_loss = FLAGS.weight_decay * tf.add_n( [tf.nn.l2_loss(v) for v in train_var_list]) with tf.name_scope('loss'): #reshaped_logits = tf.reshape(logits, [BATCH_SIZE, -1])
crop_width=FLAGS.crop_width, classes=FLAGS.classes, ignore_label=FLAGS.ignore_label, scales=FLAGS.scales) with tf.name_scope("input"): x = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.height, FLAGS.width, 3], name='x_input') y = tf.placeholder(tf.int32, [FLAGS.batch_size, FLAGS.height, FLAGS.width], name='ground_truth') _, logits = PSPNet.PSPNet(x, is_training=False, output_stride=FLAGS.output_stride, pre_trained_model=FLAGS.pretrained_model_path, classes=FLAGS.classes) with tf.name_scope('prediction_and_miou'): prediction = tf.argmax(logits, axis=-1, name='predictions') def get_val_predictions(): with tf.Session() as sess: sess.run(tf.local_variables_initializer()) sess.run(tf.global_variables_initializer()) saver = tf.train.Saver()
for i in range(height): for j in range(width): return_img[i, j, :] = cmap[image[i, j]] return return_img image_batch_0, image_batch, anno_batch, filename = input_data.read_batch(BATCH_SIZE, type=prediction_on) with tf.name_scope("input"): x = tf.placeholder(tf.float32, [BATCH_SIZE, HEIGHT, WIDTH, 3], name='x_input') y = tf.placeholder(tf.int32, [BATCH_SIZE, HEIGHT, WIDTH], name='ground_truth') _, logits = PSPNet.PSPNet(x, is_training=False, output_stride=8, pre_trained_model=PRETRAINED_MODEL_PATH) with tf.name_scope('prediction_and_miou'): prediction = tf.argmax(logits, axis=-1, name='predictions') with tf.Session() as sess: sess.run(tf.local_variables_initializer()) sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() #saver.restore(sess, './checkpoint/pspnet.model-2000')