コード例 #1
0
 def answer_question(self, question_str):
     question = Question()
     question.set_question(question_str)
     question = self.__question_classifier.classify(question)
     logging.info('开始处理Question:' + question.get_question() + '问题类型:' +
                  str(question.get_question_type()))
     if question.get_question_type() == QuestionType.Open:
         return self.tl_chat(question_str)
     if question.get_question_type() != QuestionType.Solution:
         question = self.kb_based_answer_question(question)
     else:
         question = self.ir_based_answer_question(question)
     logging.info('候选答案: ' + question.get_expect_answer())
     return question.get_expect_answer()
コード例 #2
0
 def answer_question(self, question_str):
     question = Question()
     question.set_question(question_str)
     question = self.__question_classifier.classify(question)
     logging.info('开始处理Question:' + question.question_string +
                  question.question_type.value)
     logging.info(question.body + question.medicine + question.disease)
     if question.question_type == QuestionType.Medicine:
         answer = self.kb_based_answer_question(question)
         if not answer:
             answer = self.ir_based_answer_question(question)
     elif question.question_type == QuestionType.Definition \
             and len(question.body+question.medicine+question.disease) == 1:
         answer = self.baike_based_answer_question(
             (question.body + question.medicine + question.disease)[0])
         if not answer:
             answer = self.ir_based_answer_question(question)
     else:
         answer = self.ir_based_answer_question(question)
     del question
     logging.info('候选答案: ' + answer)
     return answer
コード例 #3
0
    :param question_a: 问题类
    """
    logging.info('问句相似度开始')
    question1 = question_a.word_list
    question2 = question_b.word_list
    class_score = class_sim(question_a.question_type, question_b.question_type)
    key_score = key_sim(question_a, question_b)
    wmd_score = wmd_sim(question1, question2)
    # semantic_score = semantic_sim(question1, question2)
    word_score = word_sim(question1, question2)
    order_score = order_sim(question1, question2)
    char_tfidf_score = char_tfidf_sim(question_a.question_string,
                                      question_b.question_string)
    score = weights['class_weight']*class_score + weights['key_weight']*key_score + weights['wmd_weight']*wmd_score + \
            weights['word_weight']*word_score + weights['order_weight']*order_score + \
            weights['char_tfidf_weight']*char_tfidf_score
    logging.info('问句相似度结束,得分为{}\n\n'.format(score))
    return score


if __name__ == '__main__':
    q = Question()
    q.set_question('感冒了怎么办')
    que = input()
    while que != 'end':
        q2 = Question()
        q2.set_question(que)
        # q.set_question_type(QuestionType.Doctor)
        combination_sim()
        que = input()