BaseTransform(ssd_dim, dataset_mean), AnnotationTransform(dataset_name=args.dataset_name), dataset_name=args.dataset_name, set_file_name=args.set_file_name) elif args.dataset_name == 'UW': dataset = VOCDetection( UWroot, [(args.year, set_type)], BaseTransform(ssd_dim, dataset_mean), AnnotationTransform(dataset_name=args.dataset_name), dataset_name=args.dataset_name, set_file_name=args.set_file_name) if args.detection: if 'RFB' in args.backbone: from model.rfbnet_vgg import build_net net = build_net('test', ssd_dim, num_classes, bn=args.bn) elif 'RefineDet' in args.backbone: if args.deform: from model.dualrefinedet_vggbn import build_net net = build_net('test', size=ssd_dim, num_classes=num_classes, c7_channel=args.c7_channel, def_groups=args.deform, multihead=args.multihead, bn=args.bn) else: from model.refinedet_vgg import build_net net = build_net('test', size=ssd_dim, num_classes=num_classes,
if args.dataset_name == 'VOC0712': dataset = VOCDetection(VOCroot, [('2007', set_type)], BaseTransform(ssd_dim, dataset_mean), AnnotationTransform(dataset_name=args.dataset_name), dataset_name=args.dataset_name ) elif args.dataset_name == 'VID2017': dataset = VOCDetection(VIDroot, set_type, BaseTransform(ssd_dim, dataset_mean), AnnotationTransform(dataset_name=args.dataset_name), dataset_name=args.dataset_name, set_file_name=args.set_file_name) elif args.dataset_name == 'UW': dataset = VOCDetection(UWroot, set_type, BaseTransform(ssd_dim, dataset_mean), AnnotationTransform(dataset_name=args.dataset_name), dataset_name=args.dataset_name, set_file_name=args.set_file_name) if args.detection: if args.backbone in ['RFB_VGG']: from model.rfbnet_vgg import build_net net = build_net('test', ssd_dim, num_classes) elif args.backbone in ['RefineDet_VGG']: from model.refinedet_vgg import build_net net = build_net('test', size=ssd_dim, num_classes=num_classes, use_refine=args.refine) elif args.backbone[:6] == 'ResNet': from model.ssd_resnet import build_net net = build_net('test', backbone=args.backbone, prior=prior,size=ssd_dim, num_classes=num_classes, pm=args.pm) else: from model.ssd import build_net net = build_net('test', ssd_dim, num_classes, tssd=args.tssd, prior=prior, top_k=args.top_k, thresh=args.confidence_threshold, nms_thresh=args.nms_threshold, attention=args.attention, #o_ratio=args.oa_ratio[0], a_ratio=args.oa_ratio[1], bn=args.bn,