コード例 #1
0
ファイル: train.py プロジェクト: wfranus/pytorch_RVAE
            cross_entropy = cross_entropy.data.cpu().numpy()
            kld = kld.data.cpu().numpy()

            print('\n')
            print('------------VALID-------------')
            print('--------CROSS-ENTROPY---------')
            print(cross_entropy)
            print('-------------KLD--------------')
            print(kld)
            print('------------------------------')

            ce_result += [cross_entropy]
            kld_result += [kld]

        if iteration % 20 == 0:
            seed = np.random.normal(size=[1, parameters.latent_variable_size])

            sample = rvae.sample(batch_loader, 50, seed, args.use_cuda)

            print('\n')
            print('------------SAMPLE------------')
            print('------------------------------')
            print(sample)
            print('------------------------------')

    t.save(rvae.state_dict(), 'trained_RVAE')

    np.save('ce_result_{}.npy'.format(args.ce_result), np.array(ce_result))
    np.save('kld_result_npy_{}'.format(args.kld_result), np.array(kld_result))
コード例 #2
0
            print('dropout = ', args.dropout)
            for i in range(3):
                target_sentence, predicted_sentence = validation_sample(
                    args.use_cuda)
                print(' target : ', target_sentence)
                print('sample : ', predicted_sentence)
                print('------------------------------')

            ce_result += [cross_entropy]
            kld_result += [kld]

        # generate sample
        if iteration % 300 == 0:
            source = 'she should control the speed of her car'
            result = rvae.conditioned_sample(source, batch_loader, args)
            print('\n')
            print('------------SAMPLE------------')
            print('------------------------------')
            print('source : ', source)
            print('sample : ', result)
            print('------------------------------')

        # save model
        if iteration % 1000 == 0 or iteration == (args.num_iterations - 1):
            t.save(rvae.state_dict(),
                   'saved_models/trained_RVAE_' + args.model_name)
            np.save('saved_models/ce_result_{}.npy'.format(args.model_name),
                    np.array(ce_result))
            np.save('saved_models/kld_result_npy_{}'.format(args.model_name),
                    np.array(kld_result))
コード例 #3
0
            print('-------------KLD--------------')
            print(kld)
            print('------------------------------')

            ce_result += [cross_entropy]
            kld_result += [kld]

        if iteration % 20 == 0:
            seed = np.random.normal(size=[1, parameters.latent_variable_size])

            sample = rvae.sample(batch_loader, 50, seed, args.use_cuda)

            print('\n')
            print('------------SAMPLE------------')
            print('------------------------------')
            print(sample)
            print('------------------------------')

        if iteration % 25000 == 0:
            t.save(
                rvae.state_dict(),
                './trained_model/{}_trained_{}'.format(args.train_data,
                                                       iteration))
            t.save(
                optimizer.state_dict(),
                './trained_model/{}_trained_optimizer_{}'.format(
                    args.train_data, iteration))

    # np.save('ce_result_{}.npy'.format(args.ce_result), np.array(ce_result))
    # np.save('kld_result_npy_{}'.format(args.kld_result), np.array(kld_result))
コード例 #4
0
                print('------------SAMPLE------------')
                print('------------------------------')
                print(f'original: {sentence.encode("utf-8")}')
                print(f'reference: {reference.encode("utf-8")}')
                print(f'generated: {result.encode("utf-8")}')
                print('------------------------------')
        bar.finish()

        if iteration % 10 == 0:
            print('\n')
            print('------------TRAIN-------------')
            print('----------ITERATION-----------')
            print(iteration)
            print('--------CROSS-ENTROPY---------')
            print(cross_entropy.data.cpu().numpy())
            print('-------------KLD--------------')
            print(kld.data.cpu().numpy())
            print('-----------KLD-coef-----------')
            print(coef)
            print('------------------------------')

        print("--------------------saving checkpoint-----------------------")
        t.save(rvae.state_dict(), 'trained_RVAE_checkpoint_para_out')
        print("--------------------saved checkpoint-----------------------")
        print("\n\n\n")

    t.save(rvae.state_dict(), 'trained_RVAE')

    np.save('ce_result_{}.npy'.format(args.ce_result), np.array(ce_result))
    np.save('kld_result_npy_{}'.format(args.kld_result), np.array(kld_result))