def train_siamese_bert(): # 读取配置 # conf = Config() cfg_path = "./configs/config_bert.yml" cfg = yaml.load(open(cfg_path, encoding='utf-8'), Loader=yaml.FullLoader) os.environ["CUDA_VISIBLE_DEVICES"] = "4" # vocab: 将 seq转为id, vocab = Vocabulary(meta_file='./data/vocab.txt', max_len=cfg['max_seq_len'], allow_unk=1, unk='[UNK]', pad='[PAD]') # 读取数据 data_train, data_val, data_test = data_input.get_lcqmc_bert(vocab) # data_train = data_train[:1000] print("train size:{},val size:{}, test size:{}".format( len(data_train), len(data_val), len(data_test))) model = SiamenseBert(cfg) model.fit(data_train, data_val, data_test) pass
def train_siamese_bert(): # 读取配置 # conf = Config() cfg_path = "./configs/config_bert.yml" cfg = yaml.load(open(cfg_path, encoding='utf-8'), Loader=yaml.FullLoader) # 自动调参的参数,每次会更新一组搜索空间中的参数 tuner_params = nni.get_next_parameter() cfg.update(tuner_params) # vocab: 将 seq转为id, vocab = Vocabulary(meta_file='./data/vocab.txt', max_len=cfg['max_seq_len'], allow_unk=1, unk='[UNK]', pad='[PAD]') # 读取数据 data_train, data_val, data_test = data_input.get_lcqmc_bert(vocab) # data_train = data_train[:100] print("train size:{},val size:{}, test size:{}".format( len(data_train), len(data_val), len(data_test))) model = SiamenseBert(cfg) model.fit(data_train, data_val, data_test) pass