def test_tla_per_region(): sp_land_dist_all = [ 331.702828, 181.9634517, 88.98630743, 130.15193962, 201.18287123, 933.98739798, 37.60589239, 7.02032552, 43.64118779, 88.61837725 ] index = pd.Index([ 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'Global', 'China', 'India', 'EU', 'USA' ]) land_dist = pd.DataFrame(sp_land_dist_all, columns=['All'], index=index) expected = pd.read_csv(datadir.joinpath('sp_tla.csv'), index_col=0) result = tla.tla_per_region(land_dist=land_dist) pd.testing.assert_frame_equal(expected, result)
def test_tla_per_region_sub_world_vals(): sp_land_dist_all = [ 331.702828, 181.9634517, 88.98630743, 130.15193962, 201.18287123, 933.98739798, 37.60589239, 7.02032552, 43.64118779, 88.61837725 ] index = pd.Index([ 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'Global', 'China', 'India', 'EU', 'USA' ]) land_dist = pd.DataFrame(sp_land_dist_all, columns=['All'], index=index) custom_world_vals = list(range(100, 149)) index = pd.Index(data=list(range(2012, 2061)), name='Year') custom_world_vals_df = pd.DataFrame(custom_world_vals, columns=['Source 1'], index=index) tla_per_region = tla.tla_per_region( land_dist=land_dist, custom_world_values=custom_world_vals_df) pd.testing.assert_series_equal(tla_per_region.loc[:, 'World'], custom_world_vals_df.loc[2014:, 'Source 1'], check_names=False)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla and self.ac.custom_tla_fixed_value is not None: self.c_tla = tla.CustomTLA(fixed_value=self.ac.custom_tla_fixed_value) custom_world_vals = self.c_tla.get_world_values() elif self.ac.use_custom_tla: self.c_tla = tla.CustomTLA(filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region(self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ ['param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA'], ['trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium'], ['growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE'], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = { } self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS tla_world_2050 = self.tla_per_region.loc[2050, 'World'] ad_2018 = self.ac.ref_base_adoption['World'] growth_initial = pd.DataFrame([[2018] + list(self.ac.ref_base_adoption.values())], columns=ca_pds_columns).set_index('Year') degrade_rate_high = pd.Series(0.00506640879193976, index=range(2014, 2061)) degrade_rate_low = pd.Series(0, index=range(2014, 2061)) degrade_rate_low.loc[2014:2019] = 0.00506640879193976 degrade_rate_low.loc[2020:2029] = 0.00253320439596988 degrade_rate_low.loc[2030:] = 0.0 degrade_rate_alt = pd.Series(0, index=range(2014, 2061)) degrade_rate_alt.loc[2014] = 0.00506640879193976 degrade_rate_alt.loc[2015] = 0.00464420805927811 degrade_rate_alt.loc[2016] = 0.00422200732661647 degrade_rate_alt.loc[2017] = 0.00379980659395482 degrade_rate_alt.loc[2018] = 0.00337760586129317 degrade_rate_alt.loc[2019] = 0.00295540512863153 degrade_rate_alt.loc[2020] = 0.00253320439596988 degrade_rate_alt.loc[2021] = 0.00227988395637289 degrade_rate_alt.loc[2022] = 0.00202656351677590 degrade_rate_alt.loc[2023] = 0.00177324307717892 degrade_rate_alt.loc[2024] = 0.00151992263758193 degrade_rate_alt.loc[2025] = 0.00126660219798494 degrade_rate_alt.loc[2026] = 0.00101328175838795 degrade_rate_alt.loc[2027] = 0.00075996131879096 degrade_rate_alt.loc[2028] = 0.00050664087919398 degrade_rate_alt.loc[2029] = 0.00025332043959699 degrade_rate_alt.loc[2030:] = 0.0 # In Excel, the Custom PDS Scenarios tab columns AC:AF compute a limit on adoption # based on the amount of degraded land remaining. We compute the same limit here. # This version takes the adoption into account. def constrained_tla_adoption(rate, datapoints): degrade_df = pd.DataFrame(0, index=range(2014, 2061), columns=[ 'Total undegraded land at the start of the year', 'Degraded land at the end of the year', 'Total undegraded land at the end of the year', 'Constrained TLA']) for year in range(2014, 2061): if year == 2014: # Not a typo, Excel uses the 2018 base adoption number starting in 2014. # We are bug-for-bug compatible here. undeg_start = tla_world_2050 - ad_2018 else: last = degrade_df.loc[year-1, 'Total undegraded land at the end of the year'] new = datapoints.loc[year, 'World'] - datapoints.loc[year-1, 'World'] undeg_start = last - new degrade_df.loc[year, 'Total undegraded land at the start of the year'] = undeg_start degraded_end = max(0, undeg_start * rate[year]) degrade_df.loc[year, 'Degraded land at the end of the year'] = degraded_end degrade_df.loc[year, 'Total undegraded land at the end of the year'] = ( undeg_start - degraded_end) degrade_df.loc[year, 'Constrained TLA'] = (tla_world_2050 - degrade_df['Degraded land at the end of the year'].sum()) return degrade_df def constrained_tla(rate): degrade_df = pd.DataFrame(0, index=range(2014, 2061), columns=[ 'Total undegraded land at the start of the year', 'Degraded land at the end of the year', 'Total undegraded land at the end of the year', 'Constrained TLA']) for year in range(2014, 2061): if year == 2014: # Not a typo, Excel uses the 2018 base adoption number starting in 2014. # We are bug-for-bug compatible here. undeg_start = tla_world_2050 - ad_2018 else: last = degrade_df.loc[year-1, 'Constrained TLA'] undeg_start = last - ad_2018 degrade_df.loc[year, 'Total undegraded land at the start of the year'] = undeg_start degraded_end = max(0, undeg_start * rate[year]) degrade_df.loc[year, 'Degraded land at the end of the year'] = degraded_end degrade_df.loc[year, 'Total undegraded land at the end of the year'] = ( undeg_start - degraded_end) degrade_df.loc[year, 'Constrained TLA'] = (tla_world_2050 - degrade_df['Degraded land at the end of the year'].sum()) return degrade_df # DATA SOURCE 1 # https://rsis.ramsar.org/ris-search/peatland?pagetab=2&f%5B0%5D=wetlandTypes_en_ss%3AInland%20wetlands&f%5B1%5D=wetlandTypes_en_ss%3AU%3A%20Permanent%20Non-forested%20peatlands&f%5B2%5D=wetlandTypes_en_ss%3AXp%3A%20Permanent%20Forested%20peatlands&f%5B3%5D=managementPlanAvailable_i%3A-1 ds1_growth_rate = 0.0622897686767343 # silvopasture and farmlandrestoration use a growth_rate feature of customadoption # to do something like this. However those two solutions calculate a linear growth # and then use it to call TREND() to fit a line through it. peatlands uses the raw # linear growth data as its Custom Adoption. not quite compatible with what # silvopasture and farmlandrestoration do, so we calculate it here. ds1_datapoints = pd.DataFrame(0.0, index=range(2012, 2061), columns=dd.REGIONS) ds1_datapoints.loc[2012:2018, 'World'] = ad_2018 for year in range(2019, 2061): rate = 1 + ds1_growth_rate ds1_datapoints.loc[year, 'World'] = ds1_datapoints.loc[year-1, 'World'] * rate # DATA SOURCE 2 df = constrained_tla_adoption(rate=degrade_rate_high, datapoints=ds1_datapoints) ds2_adoption_2050 = df.loc[2050, 'Constrained TLA'] ds2_adoption_2030 = 0.7 * ds2_adoption_2050 # DATA SOURCE 4 df = constrained_tla_adoption(rate=degrade_rate_alt, datapoints=ds1_datapoints) ds4_adoption_2050 = df.loc[2050, 'Constrained TLA'] ds4_adoption_2030 = 0.7 * ds4_adoption_2050 # DATA SOURCE 5 df = constrained_tla(rate=degrade_rate_high) ds5_constrained_tla = df.loc[2050, 'Constrained TLA'] # DATA SOURCE 7 ds7_constrained_tla = constrained_tla(degrade_rate_low).loc[2050, 'Constrained TLA'] # DATA SOURCE 9 ds9_growth_rate = 0.0394112383173051 # silvopasture and farmlandrestoration use a growth_rate feature of customadoption # to do something like this. However those two solutions calculate a linear growth # and then use it to call TREND() to fit a line through it. peatlands uses the raw # linear growth data as its Custom Adoption. So calculate it here. ds9_datapoints = pd.DataFrame(0.0, index=range(2012, 2061), columns=dd.REGIONS) ds9_datapoints.loc[2012:2018, 'World'] = ad_2018 for year in range(2019, 2061): rate = 1 + ds9_growth_rate ds9_datapoints.loc[year, 'World'] = ds9_datapoints.loc[year-1, 'World'] * rate df = constrained_tla_adoption(degrade_rate_high, ds9_datapoints) ds9_constrained_tla = df.loc[:, 'Constrained TLA'].min() # DATA SOURCE 10 df = constrained_tla_adoption(degrade_rate_low, ds9_datapoints) ds10_constrained_tla = df.loc[:, 'Constrained TLA'].min() ca_pds_data_sources = [ {'name': 'High adoption and conservative degradation rate', 'include': True, 'description': ( 'The Peatlands Ramsar sites with management plans evolution (1985-2015) was ' 'used to estimate the yearly increase rate of 6,23% corresponding to 1985- ' "2015 coupled with the TLA's current degradation rate of 0.51%. " ), 'datapoints': ds1_datapoints, 'maximum': 331}, {'name': 'Scenario 1 + 70% conservative degradation TLA in 2030', 'include': True, 'description': ( 'Scenario 1 with linear increase up to 70% of TLA 2050 value in 2030 and ' 'then linear increase to 100% TLA value in 2050 from then onwards ' ), 'maximum': ds2_adoption_2050, 'datapoints': pd.DataFrame([ [2014, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2030, ds2_adoption_2030, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, ds2_adoption_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year')}, {'name': 'High adoption and low degradation rate', 'include': True, 'description': ( 'The Peatlands Ramsar sites with management plans evolution (1985-2015) was ' 'used to estimate the yearly increase rate of 6,23% corresponding to 1985- ' '2015 coupled with the he New York declaration on Forests is used to ' 'estimate an alternative degradation rate which starts from 0.51% and ' 'linearly decreases to half its value in 2020 and then to zero in 2030. ' ), 'datapoints': ds1_datapoints, 'maximum': 396}, {'name': 'Scenario 3 + 70% low degradation TLA in 2030', 'include': True, 'description': ( 'Scenario 3 with linear increase up to 70% of TLA 2050 value in 2030 and ' 'then linear increase to 100% TLA value in 2050 from then onwards ' ), 'maximum': ds4_adoption_2050, 'datapoints': pd.DataFrame([ [2014, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2030, ds4_adoption_2030, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, ds4_adoption_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year')}, {'name': '100% conservative degradation TLA in 2050', 'include': True, 'description': ( '100% adoption ofconservative degradation rate TLA by 2050 ' ), 'maximum': ds5_constrained_tla, 'datapoints': pd.DataFrame([ [2014, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, ds5_constrained_tla, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year')}, {'name': '80% conservative degradation TLA in 2030', 'include': True, 'description': ( 'Linear increase up to 80% of TLA 2050 value in 2030 (calculated with the ' 'conservative degradation rate) and then linear increase to 100% TLA value ' 'in 2050 from then onwards ' ), 'maximum': ds5_constrained_tla, 'datapoints': pd.DataFrame([ [2014, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2030, 0.8 * ds5_constrained_tla, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, ds5_constrained_tla, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year')}, {'name': '100% low degradation TLA in 2050', 'include': True, 'description': ( '100% adoption of low degradation rate TLA by 2050 ' ), 'maximum': ds7_constrained_tla, 'datapoints': pd.DataFrame([ [2014, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, ds7_constrained_tla, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year')}, {'name': '80% low degradation TLA in 2030', 'include': True, 'description': ( '80% low degradation TLA in 2030 ' ), 'maximum': ds7_constrained_tla, 'datapoints': pd.DataFrame([ [2014, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2030, 0.8 * ds7_constrained_tla, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, ds7_constrained_tla, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year')}, {'name': 'Medium adoption and conservative degradation rate', 'include': True, 'description': ( 'The Peatlands Ramsar sites with management plans evolution (1985-2015) was ' 'used to estimate the yearly increase rate of 3,94% corresponding to 1990- ' "2015 coupled with the TLA's current degradation rate of 0.51%. " ), 'datapoints': ds9_datapoints, 'maximum': ds9_constrained_tla}, {'name': 'Medium adoption and low degradation rate', 'include': True, 'description': ( 'The Peatlands Ramsar sites with management plans evolution (1985-2015) was ' 'used to estimate the yearly increase rate of 3,94% corresponding to 1990- ' "2015 coupled with the TLA's low degradation rate of 0.51%. " ), 'datapoints': ds9_datapoints, 'maximum': ds10_constrained_tla}, ] self.pds_ca = customadoption.CustomAdoption(data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) for s in self.pds_ca.scenarios.values(): df = s['df'] df.loc[2014:2018, 'World'] = ad_2018 ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region() pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region() pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series( list(self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * (ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2018] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables(ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, use_first_pds_datapoint_main=True, adoption_base_year=2018, copy_pds_to_ref=True, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption(ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted=self.ua.soln_net_annual_funits_adopted() self.fc = firstcost.FirstCost(ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost(ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc.soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc.soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc.conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc.soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc.conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs(ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua.direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs(ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua.soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua.soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua.direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua.direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua.direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua.direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, tot_red_in_deg_land=self.ua.cumulative_reduction_in_total_degraded_land(), pds_protected_deg_land=self.ua.pds_cumulative_degraded_land_protected(), ref_protected_deg_land=self.ua.ref_cumulative_degraded_land_protected(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla: self.c_tla = tla.CustomTLA( filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = { 'Raw Data for ALL LAND TYPES': { 'FAO 2010': THISDIR.joinpath('ad', 'ad_FAO_2010.csv'), }, } self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS adoption_2014 = self.ac.ref_base_adoption['World'] tla_2050 = self.tla_per_region.loc[2050, 'World'] ds4_percent_adoption_2050 = 0.85 ds4_adoption_2050 = ds4_percent_adoption_2050 * tla_2050 ca_pds_data_sources = [ { 'name': 'Low growth, linear trend', 'include': True, 'datapoints_degree': 1, # This scenario projects the future adoption of bamboo based on historical regional # growth reported for the 1990-2010 period in the Global Forest Resource Assessment # 2010 report, published by the FAO. 'datapoints': pd.DataFrame([ [ 1990, np.nan, 0.0, 0.0, 15.412, 3.688, 10.399, 0.0, 0.0, 0.0, 0.0 ], [ 2000, np.nan, 0.0, 0.0, 16.311, 3.656, 10.399, 0.0, 0.0, 0.0, 0.0 ], [ 2005, np.nan, 0.0, 0.0, 16.943, 3.640, 10.399, 0.0, 0.0, 0.0, 0.0 ], [ 2010, np.nan, 0.0, 0.0, 17.360, 3.627, 10.399, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Medium growth, linear trend', 'include': True, # This scenario projects the future adoption of bamboo based on the highest # historical regional annual growth rate, based on 1990-2010 FAO data. The highest # annual growth rate was reported in the Asia region (0.0974 Mha/year). Thus, it # was assumed that bamboo plantation in other regions will grow by half of the # growth rate calculated in Asia (0.05 Mha/year), while bamboo plantation in Asia # continues to grow with the same rate. 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Medium_growth_linear_trend.csv') }, { 'name': 'High growth, linear trend', 'include': True, # This scenario projects the future adoption of bamboo based on the highest # historical regional annual growth rate, based on 1990-2010 FAO data. The highest # annual growth rate was reported in the Asia region. Thus, it was assumed that # bamboo plantation in other regions will grow at the same growth rate calculated # in Asia (0.0974 Mha/year), while bamboo plantation in Asia continues to grow at # double this rate (0.19 Mha/year). 'filename': THISDIR.joinpath('ca_pds_data', 'custom_pds_ad_High_growth_linear_trend.csv') }, { 'name': 'Max growth, linear trend', 'include': True, # Considering the limited total land available for bamboo, this scenario # projects an aggressive adoption of bamboo plantation and projects a worldwide # 85% adoption of bamboo plantation by 2050. 'datapoints': pd.DataFrame([ [ 2014, adoption_2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2050, ds4_adoption_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Song et al. 2013', 'include': True, # "Annual increase in global bamboo forests based on a global historical annual # expansion of bamboo forests of 3%, as reported in Song et al. 2013 (see p.7 # of publication). 'filename': THISDIR.joinpath('ca_pds_data', 'custom_pds_ad_Song_et_al__2013.csv') }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) # Manual adjustment made in spreadsheet for Drawdown 2020. for s in self.pds_ca.scenarios.values(): df = s['df'] df.loc[2014] = [ 32.8913636108367000, 0.0, 0.0, 18.0440250214314000, 3.9611495064729000, 10.8861890829324000, 0.0, 0.0, 0.0, 0.0 ] df.loc[2015] = [ 33.0453659423780000, 0.0, 0.0, 18.1703910504150000, 3.9772571687142000, 10.8977177232488000, 0.0, 0.0, 0.0, 0.0 ] df.loc[2016] = [ 33.2014226143695000, 0.0, 0.0, 18.2979284861039000, 3.9938159101118100, 10.9096782181539000, 0.0, 0.0, 0.0, 0.0 ] df.loc[2017] = [ 33.3595689913150000, 0.0, 0.0, 18.4266654288099000, 4.0108468526825300, 10.9220567098226000, 0.0, 0.0, 0.0, 0.0 ] df.loc[2018] = [ 33.5198404377181000, 0.0, 0.0, 18.5566299788448000, 4.0283711184431500, 10.9348393404302000, 0.0, 0.0, 0.0, 0.0 ] # Custom REF Data ca_ref_data_sources = [ { 'name': '[Type Scenario 1 Name Here (REF CASE)...]', 'include': True, 'filename': THISDIR.joinpath( 'ca_ref_data', 'custom_ref_ad_Type_Scenario_1_Name_Here_REF_CASE_.csv') }, ] self.ref_ca = customadoption.CustomAdoption( data_sources=ca_ref_data_sources, soln_adoption_custom_name=self.ac.soln_ref_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if self.ac.soln_ref_adoption_basis == 'Custom': ref_adoption_data_per_region = self.ref_ca.adoption_data_per_region( ) else: ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2018] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, ref_adoption_data_per_region=ref_adoption_data_per_region, use_first_pds_datapoint_main=False, adoption_base_year=2018, copy_pds_to_ref=False, copy_ref_datapoint=False, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla and self.ac.custom_tla_fixed_value is not None: self.c_tla = tla.CustomTLA( fixed_value=self.ac.custom_tla_fixed_value) custom_world_vals = self.c_tla.get_world_values() elif self.ac.use_custom_tla: self.c_tla = tla.CustomTLA( filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = {} self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS tla_2050 = self.tla_per_region.loc[2050, 'World'] # Page 9, Green India Mission- Mission document # http://moef.gov.in/wp-content/uploads/2017/08/GIM_Mission-Document-1.pdf i_percent = 300000 / 346713 # Guatemala # Table on page 35 of "Mesa de Restauración del Paisaje Forestal de Guatemala 2015. # Estrategia de Restauración del Paisaje Forestal: Mecanismo para el Desarrollo Rural # Sostenible de Guatemala, 58 pp." g_percent = 10132 / 26464 avg_percent = (i_percent + g_percent) / 2.0 ca_pds_data_sources = [ { 'name': 'India restoration commitment applied to TLA', 'include': True, 'description': ('The National Mission for a Green India included a commitment to restore 0.1 ' 'Mha of mangroves in 10 years (up to 2020). We assume that this commitment ' 'will be replicated in the next three decades resulting in 300,000 hectares ' 'to be restored by 2050. This would represent a restoration of 89% of ' 'mangrove restorable area in India. We apply this % to the global mangrove ' 'area. '), 'datapoints': pd.DataFrame([ [2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 2050, i_percent * tla_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2051, i_percent * tla_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'India + Guatemala restoration commitment applied to TLA', 'include': True, 'description': ("Guatemala's NDC includes the restoration of 10,000 ha of mangroves by 2045. " 'This would represent 38% of total mangrove restorable area in the country. ' 'We use the average of both India (87%) and Guatemala % and apply them to ' 'the TLA '), 'datapoints': pd.DataFrame([ [2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 2050, avg_percent * tla_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2051, avg_percent * tla_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'India restoration commitment applied to TLA with 100% adoption by 2030', 'include': True, 'description': ('Scenario 1 + 100% of adoption by 2030 '), 'datapoints': pd.DataFrame([ [2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 2030, i_percent * tla_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2031, i_percent * tla_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'India + Guatemala restoration commitment applied to TLA with 100% adoption in 2030', 'include': True, 'description': ('Scenario 2 + 100% adoption by 2030 '), 'datapoints': pd.DataFrame([ [2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 2030, avg_percent * tla_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2031, avg_percent * tla_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': '100% TLA by 2050', 'include': True, 'description': ('Linear increase to 100% TLA by 2050 '), 'datapoints': pd.DataFrame([ [2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 2050, 1.0 * tla_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2051, 1.0 * tla_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': '100% TLA by 2030', 'include': True, 'description': ('Linear increase to 100% TLA by 2030 '), 'datapoints': pd.DataFrame([ [2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 2030, 1.0 * tla_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2031, 1.0 * tla_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) for s in self.pds_ca.scenarios.values(): df = s['df'] for y in range(2014, 2019): df.loc[y, 'World'] = 0.0 ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2018] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, use_first_pds_datapoint_main=True, adoption_base_year=2018, copy_pds_to_ref=True, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla and self.ac.custom_tla_fixed_value is not None: self.c_tla = tla.CustomTLA( fixed_value=self.ac.custom_tla_fixed_value) custom_world_vals = self.c_tla.get_world_values() elif self.ac.use_custom_tla: self.c_tla = tla.CustomTLA( filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = {} self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS w_2018 = self.ac.ref_base_adoption['World'] w_2050 = self.tla_per_region.loc[2050, 'World'] ca_pds_data_sources = [ { 'name': 'International Pledges, Low Growth (Linear trend)', 'include': True, 'description': ('In the absence of accurate studies predicting future adoption of ' 'multistrata agroforests, Drawdown evaluated current pledges for the ' 'conversion of degraded land to protect land or buffer as part of the Bonn ' 'Challenge and NY deceleration. (See hidden "Adoption - Multistrata" data- ' 'sheet for a breakdown of calculation). Based on these pledges, projected ' 'low-growth adoption was set at 10%. '), 'datapoints': pd.DataFrame([ [ 2018, w_2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2050, w_2018 + (0.1 * w_2050), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Medium, linear trend', 'include': True, 'description': ('In the absence of accurate studies predicting future adoption of ' 'multistrata agroforests, Drawdown evaluated current pledges for the ' 'conversion of degraded land to protect land or buffer as part of the Bonn ' 'Challenge and NY deceleration. (See hidden "Adoption - Multistrata" data- ' 'sheet for a breakdown of calculation). Based on these pledges, projected ' 'low-growth adoption was set at 20%. '), 'datapoints': pd.DataFrame([ [ 2018, w_2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2050, w_2018 + (0.2 * w_2050), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'High, linear trend', 'include': True, 'description': ('In the absence of accurate studies predicting future adoption of ' 'multistrata agroforests, Drawdown evaluated current pledges for the ' 'conversion of degraded land to protect land or buffer as part of the Bonn ' 'Challenge and NY deceleration. (See hidden "Adoption - Multistrata" data- ' 'sheet for a breakdown of calculation). Based on these pledges, projected ' 'low-growth adoption was set at 30%. '), 'datapoints': pd.DataFrame([ [ 2018, w_2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2050, w_2018 + (0.3 * w_2050), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Low, early adoption, linear trend', 'include': True, 'description': ('This is Scenario 1 with 70% adoption by 2030 '), 'datapoints': pd.DataFrame([ [ 2018, w_2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2030, w_2018 + (0.07 * w_2050), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2050, w_2018 + (0.1 * w_2050), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Medium, early adoption, linear trend', 'include': True, 'description': ('This is Scenario 2 with 70% adoption by 2030 '), 'datapoints': pd.DataFrame([ [ 2018, w_2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2030, w_2018 + (0.14 * w_2050), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2050, w_2018 + (0.2 * w_2050), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'High, early adoption, linear trend', 'include': True, 'description': ('This is Scenario 3 with 70% adoption by 2030 '), 'datapoints': pd.DataFrame([ [ 2018, w_2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2030, w_2018 + (0.21 * w_2050), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2050, w_2018 + (0.3 * w_2050), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Max growth, linear trend', 'include': False, 'description': ('This is the Drawdown Optimum scenario, assuming 100% adoption of ' 'Multistrata Agroforestry in the allocated TLA. '), 'datapoints': pd.DataFrame([ [ 2018, w_2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2050, w_2018 + (1.0 * w_2050), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) for s in self.pds_ca.scenarios.values(): df = s['df'] for y in range(2012, 2019): df.loc[y, 'World'] = 0.0001 ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2014] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, use_first_pds_datapoint_main=False, adoption_base_year=2018, copy_pds_to_ref=False, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla: self.c_tla = tla.CustomTLA( filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = { 'Raw Data for ALL LAND TYPES': { 'Sum of regional prognostications below': THISDIR.joinpath( 'ad', 'ad_Sum_of_regional_prognostications_below.csv'), }, 'Region: Asia (Sans Japan)': { 'Raw Data for ALL LAND TYPES': { 'Dara et al. 2018; Kazakshstan recultivation': THISDIR.joinpath( 'ad', 'ad_Dara_et_al__2018_Kazakshstan_recultivation.csv'), }, }, 'Region: China': { 'Tropical-Humid Land': { 'Lin, L, et al 2018, Wenzhou province only': THISDIR.joinpath( 'ad', 'ad_Lin_L_et_al_2018_Wenzhou_province_only.csv'), }, }, 'Region: EU': { 'Tropical-Humid Land': { 'Estel et al. 2015, 2nd Poly, capped at 94.7mha': THISDIR.joinpath( 'ad', 'ad_Estel_et_al__2015_2nd_Poly_capped_at_94_7mha.csv'), }, }, } self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS growth_initial = pd.DataFrame( [[2018] + list(self.ac.ref_base_adoption.values())], columns=ca_pds_columns).set_index('Year') tla_init = self.ac.ref_base_adoption['World'] tla_grow = self.tla_per_region.loc[2050, 'World'] - tla_init ca_pds_data_sources = [ { 'name': '1.32% ann, Linear Trend', 'include': True, 'growth_rate': 0.013219212962963, # Limited information on restoration of abandoned farmland is available (see # data interpolation sheet). As abandoned farmlands area a subset of degraded # land, it is asumed that the restoration of abandoned farmland will also follow # similar trends. Refer sheet, "Adoption rates-Deg Area". 'growth_initial': growth_initial }, { 'name': '2.64% annual rate, Linear Trend', 'include': False, # This scenario projects future growth by doubling of historical annual # rate in India 'growth_rate': (2 * 0.013219212962963), 'growth_initial': growth_initial }, { 'name': '63% of TLA, Linear Trend', 'include': True, # It is assumed that by 2050, 63% of the total degraded farmlands will be restored # for cropping. This is the highest reported adoption - from rainfed cultivated # areas in India over several decades: see Adoption trends-Deg Area worksheet. 'datapoints': pd.DataFrame([ [2012] + list(self.ac.ref_base_adoption.values()), [2018] + list(self.ac.ref_base_adoption.values()), [ 2050, tla_init + (tla_grow * 0.63), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Very high: 85% of TLA, Linear Trend', 'include': False, # It is assumed that by 2050, 85% of the total abandoned farmlands will be # restored for cropping. 'datapoints': pd.DataFrame([ [2012] + list(self.ac.ref_base_adoption.values()), [2018] + list(self.ac.ref_base_adoption.values()), [ 2050, tla_init + (tla_grow * 0.85), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Maximum, Linear Trend', 'include': True, # It is assumed that by 2050, 100% of the total abandoned farmlands will be # restored for cropping. 'datapoints': pd.DataFrame([ [2012] + list(self.ac.ref_base_adoption.values()), [2018] + list(self.ac.ref_base_adoption.values()), [ 2050, tla_init + (tla_grow * 1.00), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Historical linear based on Whenzhou province China reclaimed lands', 'include': True, # Based on low interpolated linear trend from historical data on annual adoption # rate for Whenzhoue province China; Lin, Jia et al 2017 'include': True, 'growth_rate': 0.0696, 'growth_initial': growth_initial }, { 'name': 'Historical linear based on EU -Estel et al 2015', 'include': True, # Based on low interpolated linear trend from historical data on annual adoption # rate for EU, based on Estel et al 2015 'growth_rate': 0.0568, 'growth_initial': growth_initial }, { 'name': 'Historical linear trend based on Kazakstan, Dara et al 2017', 'include': True, # Based on low interpolated linear trend from historical data on annual adoption # rate for Kazahkstan, based on Dara et al 2017 'growth_rate': 0.0512, 'growth_initial': growth_initial }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) for s in self.pds_ca.scenarios.values(): df = s['df'] for year in range(2012, 2019): df.loc[year] = [ 20.029602999999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] df.sort_index(inplace=True) ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2014] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, use_first_pds_datapoint_main=True, adoption_base_year=2018, copy_pds_to_ref=False, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla: self.c_tla = tla.CustomTLA( filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = { 'Raw Data for ALL LAND TYPES': { 'Lassaletta et al 2014': THISDIR.joinpath('ad', 'ad_Lassaletta_et_al_2014.csv'), }, } self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS adoption_2014 = self.ac.ref_base_adoption['World'] tla_2050 = self.tla_per_region.loc[2050, 'World'] area_N_eff_1990_1995 = 225.049083333333 area_N_eff_1996_2000 = 89.7290333333333 area_N_eff_2001_2005 = 42.7382 area_N_eff_2006_2010 = 98.7301833333333 ds1_o90_2050 = 0.46568375652467 * self.tla_per_region.loc[2050, 'OECD90'] ds1_ee_2050 = 0.169344179047277 * self.tla_per_region.loc[ 2050, 'Eastern Europe'] ds1_asj_2050 = 0.194261406995049 * self.tla_per_region.loc[ 2050, 'Asia (Sans Japan)'] ds1_mea_2050 = 0.141859451675443 * self.tla_per_region.loc[ 2050, 'Middle East and Africa'] ds1_la_2050 = 0.712235299292505 * self.tla_per_region.loc[ 2050, 'Latin America'] ds1_world_2050 = ds1_o90_2050 + ds1_ee_2050 + ds1_asj_2050 + ds1_mea_2050 + ds1_la_2050 ds2_o90_2050 = 0.791283756524669 * self.tla_per_region.loc[2050, 'OECD90'] ds2_ee_2050 = 0.494944179047277 * self.tla_per_region.loc[ 2050, 'Eastern Europe'] ds2_asj_2050 = 0.51986140699505 * self.tla_per_region.loc[ 2050, 'Asia (Sans Japan)'] ds2_mea_2050 = 0.467459451675442 * self.tla_per_region.loc[ 2050, 'Middle East and Africa'] ds2_la_2050 = 1.03783529929251 * self.tla_per_region.loc[ 2050, 'Latin America'] ds2_world_2050 = ds2_o90_2050 + ds2_ee_2050 + ds2_asj_2050 + ds2_mea_2050 + ds2_la_2050 ds3_o90_2050 = 1.0 * self.tla_per_region.loc[2050, 'OECD90'] ds3_ee_2050 = 1.0 * self.tla_per_region.loc[2050, 'Eastern Europe'] ds3_asj_2050 = 1.0 * self.tla_per_region.loc[2050, 'Asia (Sans Japan)'] ds3_mea_2050 = 1.0 * self.tla_per_region.loc[2050, 'Middle East and Africa'] ds3_la_2050 = 1.0 * self.tla_per_region.loc[2050, 'Latin America'] ds3_world_2050 = ds3_o90_2050 + ds3_ee_2050 + ds3_asj_2050 + ds3_mea_2050 + ds3_la_2050 ds_2018 = [ self.ac.ref_base_adoption['World'], self.ac.ref_base_adoption['OECD90'], self.ac.ref_base_adoption['Eastern Europe'], self.ac.ref_base_adoption['Asia (Sans Japan)'], self.ac.ref_base_adoption['Middle East and Africa'], self.ac.ref_base_adoption['Latin America'] ] ca_pds_data_sources = [ { 'name': 'Aggressive-Low, Linear Trend', 'include': True, # The future adoption of nutrient management is build on the extent of the future # adoption of Conservation Agrculture (CA). Nutrient management is one of the # integral component of CA, thus, it is assumed that the adoption of nutrient # management will follow the similar trend of CA. This scenario projects the # future adoption of the solution based on the average annual future growth rate # of conservation agriculture. 'datapoints': pd.DataFrame([ [2018] + ds_2018 + [0.0, 0.0, 0.0, 0.0], [ 2050, ds1_world_2050, ds1_o90_2050, ds1_ee_2050, ds1_asj_2050, ds1_mea_2050, ds1_la_2050, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Aggressive-High, Linear Trend', 'include': True, # The future adoption of nutrient management is build on the extent of the future # adoption of Conservation Agrculture (CA). Nutrient management is one of the integral # component of CA, thus, it is assumed that the adoption of nutrient management will # follow the similar trend of CA. This scenario projects the future adoption of the # solution based on the high annual future growth rate of conservation agriculture. 'datapoints': pd.DataFrame([ [2018] + ds_2018 + [0.0, 0.0, 0.0, 0.0], [ 2050, ds2_world_2050, ds2_o90_2050, ds2_ee_2050, ds2_asj_2050, ds2_mea_2050, ds2_la_2050, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Aggressive-Max, Linear Trend', 'include': True, # This is an aggressive scenario assumes adoption of the solution in 100% of the TLA # by 2050 in all regions. 'datapoints': pd.DataFrame([ [2018] + ds_2018 + [0.0, 0.0, 0.0, 0.0], [ 2050, ds3_world_2050, ds3_o90_2050, ds3_ee_2050, ds3_asj_2050, ds3_mea_2050, ds3_la_2050, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Aggressive-High, high early growth', 'include': False, # This scenario is assuming 60% of the total adoption will be achieved by 2030. 'datapoints': pd.DataFrame([ [2018] + ds_2018 + [0.0, 0.0, 0.0, 0.0], [ 2030, 0.6 * ds2_world_2050, 0.6 * ds2_o90_2050, 0.6 * ds2_ee_2050, 0.6 * ds2_asj_2050, 0.6 * ds2_mea_2050, 0.6 * ds2_la_2050, 0.0, 0.0, 0.0, 0.0 ], [ 2050, ds2_world_2050, ds2_o90_2050, ds2_ee_2050, ds2_asj_2050, ds2_mea_2050, ds2_la_2050, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Aggressive-Low, high early growth', 'include': False, # "This is scenario 1, assuming 60% of the total adoption will be achieved by 2030. 'datapoints': pd.DataFrame([ [2018] + ds_2018 + [0.0, 0.0, 0.0, 0.0], [ 2030, 0.6 * ds1_world_2050, 0.6 * ds1_o90_2050, 0.6 * ds1_ee_2050, 0.6 * ds1_asj_2050, 0.6 * ds1_mea_2050, 0.6 * ds1_la_2050, 0.0, 0.0, 0.0, 0.0 ], [ 2050, ds1_world_2050, ds1_o90_2050, ds1_ee_2050, ds1_asj_2050, ds1_mea_2050, ds1_la_2050, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Lassaletta et al 2014, conservative growth', 'include': True, # Future adoption is projected based on the maximum global area reported under # Nitrogen Use Efficiency in the past by Lassaletta et al 2014. 'datapoints': pd.DataFrame([ [2018] + ds_2018 + [0.0, 0.0, 0.0, 0.0], [ 2050, area_N_eff_1990_1995, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Lassaletta et al 2014, moderate growth', 'include': True, # Future adoption is projected based on the maximum global area reported under # Nitrogen Use Efficiency in the past by Lassaletta et al 2014. 'datapoints': pd.DataFrame([ [2018] + ds_2018 + [0.0, 0.0, 0.0, 0.0], [ 2050, 2 * area_N_eff_1990_1995, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Lassaletta et al 2014, high growth', 'include': True, # Future adoption is projected based on the maximum global area reported under # Nitrogen Use Efficiency in the past by Lassaletta et al 2014. 'datapoints': pd.DataFrame([ [2018] + ds_2018 + [0.0, 0.0, 0.0, 0.0], [ 2050, 4 * area_N_eff_1990_1995, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Sutton et al 2013, linear trend', 'include': True, # Future adoption is projected based on the projected global area under # Nitrogen Use Efficiency by 2020 by Sutton et al 2013. 'datapoints': pd.DataFrame([ [2018] + ds_2018 + [0.0, 0.0, 0.0, 0.0], [ 2020, 335.92674, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) # Manual adjustment made in spreadsheet for Drawdown 2020. for s in self.pds_ca.scenarios.values(): df = s['df'] df.loc[2012:2018, 'World'] = 139.129613374975 ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2018] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, use_first_pds_datapoint_main=False, adoption_base_year=2018, copy_pds_to_ref=False, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution()) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = { 'Raw Data for ALL LAND TYPES': { 'FAOSTAT (Sum of all Regions)': THISDIR.joinpath('ad', 'ad_FAOSTAT_Sum_of_all_Regions.csv'), 'Prestele baseline and Topdown (moderate growth) projection': THISDIR.joinpath( 'ad', 'ad_Prestele_baseline_and_Topdown_moderate_growth_projection.csv' ), 'Prestele baseline and BottoUp: (maximum)': THISDIR.joinpath( 'ad', 'ad_Prestele_baseline_and_BottoUp_maximum.csv'), }, 'Region: OECD90': { 'Raw Data for ALL LAND TYPES': { 'FAOSTAT': THISDIR.joinpath('ad', 'ad_FAOSTAT.csv'), 'Prestele baseline and Topdown (moderate growth) projection': THISDIR.joinpath( 'ad', 'ad_Prestele_baseline_and_Topdown_moderate_growth_projection.csv' ), 'Prestele baseline and BottoUp: (maximum)': THISDIR.joinpath( 'ad', 'ad_Prestele_baseline_and_BottoUp_maximum.csv'), }, }, 'Region: Eastern Europe': { 'Raw Data for ALL LAND TYPES': { 'FAOSTAT': THISDIR.joinpath('ad', 'ad_FAOSTAT.csv'), 'Prestele baseline and Topdown (moderate growth) projection': THISDIR.joinpath( 'ad', 'ad_Prestele_baseline_and_Topdown_moderate_growth_projection.csv' ), 'Prestele baseline and BottoUp: (maximum)': THISDIR.joinpath( 'ad', 'ad_Prestele_baseline_and_BottoUp_maximum.csv'), }, }, 'Region: Asia (Sans Japan)': { 'Raw Data for ALL LAND TYPES': { 'FAOSTAT': THISDIR.joinpath('ad', 'ad_FAOSTAT.csv'), 'Prestele baseline and Topdown (moderate growth) projection': THISDIR.joinpath( 'ad', 'ad_Prestele_baseline_and_Topdown_moderate_growth_projection.csv' ), 'Prestele baseline and BottoUp: (maximum)': THISDIR.joinpath( 'ad', 'ad_Prestele_baseline_and_BottoUp_maximum.csv'), }, }, 'Region: Middle East and Africa': { 'Raw Data for ALL LAND TYPES': { 'FAOSTAT': THISDIR.joinpath('ad', 'ad_FAOSTAT.csv'), 'Prestele baseline and Topdown (moderate growth) projection': THISDIR.joinpath( 'ad', 'ad_Prestele_baseline_and_Topdown_moderate_growth_projection.csv' ), 'Prestele baseline and BottoUp: (maximum)': THISDIR.joinpath( 'ad', 'ad_Prestele_baseline_and_BottoUp_maximum.csv'), }, }, 'Region: Latin America': { 'Raw Data for ALL LAND TYPES': { 'FAOSTAT': THISDIR.joinpath('ad', 'ad_FAOSTAT.csv'), 'Prestele baseline and Topdown (moderate growth) projection': THISDIR.joinpath( 'ad', 'ad_Prestele_baseline_and_Topdown_moderate_growth_projection.csv' ), 'Prestele baseline and BottoUp: (maximum)': THISDIR.joinpath( 'ad', 'ad_Prestele_baseline_and_BottoUp_maximum.csv'), }, }, } self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS tla_2050 = self.tla_per_region.loc[2050] ad_2018 = pd.Series(self.ac.ref_base_adoption) # % smallholder area, based on updates to smallholder area VMA sheet # (34.1% was estimated in Book Ed1) smallholder_land = 0.315909724971454 large_farm_land = 1.0 - smallholder_land max_cons_ag_large_farm_tla = self.tla_per_region.loc[ 2050] * large_farm_land max_cons_ag_large_farm_tla[dd.SPECIAL_COUNTRIES] = 0.0 ad_2080 = 1.5 * pd.Series(self.ac.ref_base_adoption) # Maximum technical potential adoption area available for CA out of the 685 Mha based # on percentage in Prestele et al 2018 (81.4%, bottom up, likely maximum future area) # Values used in 2017 Project Drawdown book publication. prestele_pct_book = pd.Series( [0., 0.3952, 0.1662, 0.1632, 0.1422, 0.7332, 0., 0., 0., 0.], index=dd.REGIONS) prestele_mult = 0.814 prestele_ad_book = self.tla_per_region.loc[ 2050] * prestele_mult * prestele_pct_book # Data Source 1 # Source: Refer sheet "PD regional CA annual adoption" if 'BookVersion' in self.ac.name: pct = pd.Series( [0., 0.3952, 0.1662, 0.1632, 0.1422, 0.7332, 0., 0., 0., 0.], index=dd.REGIONS) else: pct = pd.Series([ 0., 0.465683756524670, 0.169344179047277, 0.194261406995049, 0.141859451675443, 0.712235299292505, 0., 0., 0., 0. ], index=dd.REGIONS) ds1_poss_adopt_2050 = max_cons_ag_large_farm_tla * pct ds1_datapoints = pd.DataFrame(columns=ca_pds_columns).set_index('Year') ds1_datapoints.loc[2018] = ad_2018 ds1_datapoints.loc[2030] = (1.0 * ds1_poss_adopt_2050) ds1_datapoints.loc[2050] = (1.0 * ds1_poss_adopt_2050) ds1_datapoints.loc[2080] = ad_2080 ds1_datapoints['World'] = 0.0 ds1_datapoints['World'] = ds1_datapoints.sum(axis=1) # Data Source 2 # Source: Refer sheet "PD regional CA annual adoption" if 'BookVersion' in self.ac.name: pct = pd.Series( [0., 0.7208, 0.4918, 0.4888, 0.4678, 1.0, 0., 0., 0., 0.], index=dd.REGIONS) else: pct = pd.Series([ 0., 0.791283756524669, 0.494944179047277, 0.519861406995050, 0.467459451675442, 1.037835299292510, 0., 0., 0., 0. ], index=dd.REGIONS) ds2_poss_adopt_2050 = max_cons_ag_large_farm_tla * pct ds2_datapoints = pd.DataFrame(columns=ca_pds_columns).set_index('Year') ds2_datapoints.loc[2018] = ad_2018 ds2_datapoints.loc[2030] = (1.0 * ds2_poss_adopt_2050) ds2_datapoints.loc[2050] = (1.0 * ds2_poss_adopt_2050) ds2_datapoints.loc[2080] = ad_2080 ds2_datapoints['World'] = 0.0 ds2_datapoints['World'] = ds2_datapoints.sum(axis=1) # Data Source 3 # Source: Refer sheet "PD regional CA annual adoption" ds3_datapoints = pd.DataFrame(columns=ca_pds_columns).set_index('Year') ds3_datapoints.loc[2018] = ad_2018 ds3_datapoints.loc[2030] = (0.8 * max_cons_ag_large_farm_tla) ds3_datapoints.loc[2050] = (1.0 * max_cons_ag_large_farm_tla) ds3_datapoints.loc[2080] = ad_2080 ds3_datapoints['World'] = 0.0 ds3_datapoints['World'] = ds3_datapoints.sum(axis=1) # Data Source 4 # Source: Refer sheet "PD regional CA annual adoption" ds4_datapoints = pd.DataFrame(columns=ca_pds_columns).set_index('Year') ds4_datapoints.loc[2018] = ad_2018 ds4_datapoints.loc[2030] = (0.8 * ds2_poss_adopt_2050) ds4_datapoints.loc[2050] = (0.6 * ds2_poss_adopt_2050) ds4_datapoints.loc[2080] = ad_2080 ds4_datapoints['World'] = 0.0 ds4_datapoints['World'] = ds4_datapoints.sum(axis=1) # Data Source 5 # Source: Refer sheet "PD regional CA annual adoption" ds5_datapoints = pd.DataFrame(columns=ca_pds_columns).set_index('Year') ds5_datapoints.loc[2018] = ad_2018 ds5_datapoints.loc[2030] = (0.8 * ds1_poss_adopt_2050) ds5_datapoints.loc[2050] = (0.6 * ds1_poss_adopt_2050) ds5_datapoints.loc[2080] = ad_2080 ds5_datapoints['World'] = 0.0 ds5_datapoints['World'] = ds5_datapoints.sum(axis=1) # Data Source 6 # Source: see PresteleAdoptionCalc sheet if 'BookVersion' in self.ac.name: ds6_prestele_poss_adopt_2050 = prestele_ad_book else: pct = pd.Series([ 0., 0.740285597497468, 0.61878404520945, 0.581170964964222, 0.0900760503108076, 0.803736844958406, 0., 0., 0., 0. ], index=dd.REGIONS) ds6_prestele_poss_adopt_2050 = self.tla_per_region.loc[ 2050] * prestele_mult * pct ds6_datapoints = pd.DataFrame(columns=ca_pds_columns).set_index('Year') ds6_datapoints.loc[2018] = ad_2018 ds6_datapoints.loc[2030] = (0.8 * ds6_prestele_poss_adopt_2050) ds6_datapoints.loc[2050] = (0.6 * ds6_prestele_poss_adopt_2050) ds6_datapoints.loc[2080] = ad_2080 ds6_datapoints['World'] = 0.0 ds6_datapoints['World'] = ds6_datapoints.sum(axis=1) # Data Source 7 # Source: see PresteleAdoptionCalc sheet if 'BookVersion' in self.ac.name: ds7_prestele_poss_adopt_2050 = prestele_ad_book else: pct = pd.Series( [0., 1.0, 1.0, 1.0, 0.320741884451365, 1.0, 0., 0., 0., 0.], index=dd.REGIONS) ds7_prestele_poss_adopt_2050 = self.tla_per_region.loc[ 2050] * prestele_mult * pct ds7_datapoints = pd.DataFrame(columns=ca_pds_columns).set_index('Year') ds7_datapoints.loc[2018] = ad_2018 ds7_datapoints.loc[2030] = (0.8 * ds7_prestele_poss_adopt_2050) ds7_datapoints.loc[2050] = (0.6 * ds7_prestele_poss_adopt_2050) ds7_datapoints.loc[2080] = ad_2080 ds7_datapoints['World'] = 0.0 ds7_datapoints['World'] = ds7_datapoints.sum(axis=1) # Data Source 8 # Source: see PresteleAdoptionCalc sheet if 'BookVersion' in self.ac.name: ds8_prestele_poss_adopt_2050 = prestele_ad_book else: pct = pd.Series([ 0., 0.46568375652467, 0.169344179047277, 0.194261406995049, 0.141859451675443, 0.712235299292505, 0., 0., 0., 0. ], index=dd.REGIONS) ds8_prestele_poss_adopt_2050 = self.tla_per_region.loc[ 2050] * prestele_mult * pct ds8_datapoints = pd.DataFrame(columns=ca_pds_columns).set_index('Year') ds8_datapoints.loc[2018] = ad_2018 ds8_datapoints.loc[2050] = (1.0 * ds8_prestele_poss_adopt_2050) ds8_datapoints['World'] = 0.0 ds8_datapoints['World'] = ds8_datapoints.sum(axis=1) ca_pds_data_sources = [ { 'name': 'Low,High Early Adoption, Polynomial Trend', 'include': False, 'description': ('An annual growth rate of 0.36% was used to forecast regional adoption. ' 'Regional adoption of CA in the year 2050 was calculated and their ' 'percentage to the total arable land area was estimated, and are used as ' 'assumptions 1-5, below. It is also assumed that 100% of the projected ' 'adoption will be achieved by 2030. As, it is a bridge solution to RA, the ' 'area under CA will decline post 2030 and will remains to only 80% of the ' 'estimated adoption by 2050. '), 'datapoints': ds1_datapoints, 'datapoints_degree': 3 }, { 'name': 'High,High Early Adoption, Polynomial Trend', 'include': False, 'description': ('Adoption of CA was reported maximum in Brazil, across the globe. Thus, its ' 'annual growth rate of 1.24% was used to forecast regional adoption. ' 'Regional adoption of CA in the year 2050 was calculated and their ' 'percentage to the total arable land area was estimated, and are used as ' 'assumptions 1-5, below. It is also assumed that 100% of the projected ' 'adoption will be achieved by 2030. As, it is a bridge solution to RA, the ' 'area under CA will decline post 2030 and will remains to only 80% of the ' 'estimated adoption by 2050. '), 'datapoints': ds2_datapoints, 'datapoints_degree': 3 }, { 'name': 'Max, Polynomial Trend', 'include': False, 'description': ('A 100% regional adoption was assumed in this scenario. '), 'datapoints': ds3_datapoints, 'datapoints_degree': 3 }, { 'name': 'High, Early Adoption, Polynomial Trend', 'include': False, 'description': ('Adoption of CA was reported maximum in Brazil, across the globe. Thus, its ' 'annual growth rate of 1.24% was used to forecast regional adoption. ' 'Regional adoption of CA in the year 2050 was calculated and their ' 'percentage to the total arable land area was estimated, and are used as ' 'assumptions 1-5, below. It is also assumed that 80% of the projected ' 'adoption will be achieved by 2030. As, it is a bridge solution to RA, the ' 'area under CA will decline post 2030 and will remains to only 60% of the ' 'estimated adoption by 2050. '), 'datapoints': ds4_datapoints, 'datapoints_degree': 3 }, { 'name': 'Low, Early Adoption, Polynomial Trend', 'include': False, 'description': ('An annual growth rate of 0.36% was used to forecast regional adoption. ' 'Regional adoption of CA in the year 2050 was calculated and their ' 'percentage to the total arable land area was estimated, and are used as ' 'assumptions 1-5, below. It is also assumed that 80% of the projected ' 'adoption will be achieved by 2030. As, it is a bridge solution to RA, the ' 'area under CA will decline post 2030 and will remains to only 60% of the ' 'estimated adoption by 2050. '), 'datapoints': ds5_datapoints, 'datapoints_degree': 3 }, { 'name': 'Moderate CA Adoption rates based on Prestele Topdown map, polynomial', 'include': False, 'description': ('Regional adoption of CA in the year 2050 was calculated and their ' 'percentage to the total arable land area was estimated, and are used as ' 'assumptions 1-5, below. It is also assumed that 80% of the projected ' 'adoption will be achieved by 2030. It is a bridge solution to RA so the ' 'area under CA will decline post 2030 and will remain to only 60% of the ' 'estimated adoption by 2050. SEI added current and projected adoption and ' 'max potential adoption (assumption 10) based on Prestele et al 2018. after ' 'applying Prestele regional percent adoption by TopDown projection ' '(intermediate adoption rate to 2050), to country -level data available in ' 'their supplementary materials, then summing by PDrawdown regions (which ' 'differ from Prestele regions). The % of regional Drawdown TLA projected by ' '2050 using Prestele projections (not mean of data) was calculated and used ' 'in Revised growth assumptions 1-5. '), 'datapoints': ds6_datapoints, 'datapoints_degree': 3 }, { 'name': 'Likely max CA based on Prestele BottomUp Map, polynominal', 'include': False, 'description': ('Regional adoption of CA in the year 2050 was calculated and their ' 'percentage to the total arable land area was estimated, and are used as ' 'assumptions 1-5, below. It is also assumed that 80% of the projected ' 'adoption will be achieved by 2030. It is a bridge solution to RA so the ' 'area under CA will decline post 2030 and will remain to only 60% of the ' 'estimated adoption by 2050. SEI added current and projected adoption and ' 'max potential adoption (assumption 10) based on Prestele et al 2018. after ' 'applying Prestele regional percent adoption by BOTTOM UP projection (forced ' 'to 2050), to country -level data available in their supplementary ' 'materials, then summing by PDrawdown regions (which differ from Prestele ' 'regions). The % of regional Drawdown TLA projected by 2050 using Prestele ' 'projections (not mean of data) was calculated OR if the bottom up ' 'projection result in extent larger than Drawdown regional TLA, then 100% ' 'was used in Revised growth assumptions 1-5. '), 'datapoints': ds7_datapoints, 'datapoints_degree': 3 }, { 'name': 'Baseline scenario', 'include': True, 'description': ('tis is the average of scenarios 1-7 '), 'datapoints': ds8_datapoints, 'maximum': max_cons_ag_large_farm_tla['World'] }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) for s in self.pds_ca.scenarios.values(): df = s['df'] df.loc[2014] = [ 108.926170040128000, 43.700575542980000, 9.040960261572450, 8.934730992728910, 1.113417893008100, 46.136485349838400, 0.0, 0.0, 0.0, 0.0 ] df.loc[2015] = [ 118.522634649202000, 47.190416175021700, 10.277201842542000, 10.390765035686000, 1.355692262948170, 49.308559333003700, 0.0, 0.0, 0.0, 0.0 ] df.loc[2016] = [ 128.231557482326000, 50.685767480789800, 11.580017143547000, 11.936077959964700, 1.613327416836600, 52.416367481188000, 0.0, 0.0, 0.0, 0.0 ] df.loc[2017] = [ 138.054065103220000, 54.187020002847500, 12.949707603363100, 13.570892429945200, 1.886419963055470, 55.460025104009000, 0.0, 0.0, 0.0, 0.0 ] df.loc[2018] = [ 147.991284075603000, 57.694564283758300, 14.386574660765900, 15.295431110007600, 2.175066509986860, 58.439647511084400, 0.0, 0.0, 0.0, 0.0 ] # Custom REF Data ca_ref_data_sources = [ { 'name': '[Type Scenario 1 Name Here (REF CASE)...]', 'include': True, 'description': ('[PLEASE DESCRIBE IN DETAIL THE METHODOLOGY YOU USED IN THIS ANALYSIS. BE ' 'SURE TO INCLUDE ANY ADDITIONAL EQUATIONS YOU UTILIZED] '), 'filename': THISDIR.joinpath( 'ca_ref_data', 'custom_ref_ad_Type_Scenario_1_Name_Here_REF_CASE_.csv') }, ] self.ref_ca = customadoption.CustomAdoption( data_sources=ca_ref_data_sources, soln_adoption_custom_name=self.ac.soln_ref_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if self.ac.soln_ref_adoption_basis == 'Custom': ref_adoption_data_per_region = self.ref_ca.adoption_data_per_region( ) else: ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2014] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2018] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, ref_adoption_data_per_region=ref_adoption_data_per_region, use_first_pds_datapoint_main=False, adoption_base_year=2018, copy_pds_to_ref=False, copy_ref_datapoint=False, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name) self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution()) # Custom PDS Data ca_pds_data_sources = [ { 'name': 'Linear trend based on Zomers >30% tree cover percent area applied in grassland area', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Linear_trend_based_on_Zomers_30_tree_cover_percent_area_applied_in_grassland_area.csv' ) }, { 'name': 'Linear trend based on Zomers >30% tree cover percent area and conversion of >10% are to 30% tree cover area applied in grassland area', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Linear_trend_based_on_Zomers_30_tree_cover_percent_area_and_conversion_of_10_are_to_30_t_d419700f.csv' ) }, { 'name': 'Medium growth, linear trend', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Medium_growth_linear_trend.csv') }, { 'name': 'High growth, linear trend', 'include': False, 'filename': THISDIR.joinpath('ca_pds_data', 'custom_pds_ad_High_growth_linear_trend.csv') }, { 'name': 'Low growth, linear trend (based on improved pasture area)', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Low_growth_linear_trend_based_on_improved_pasture_area.csv' ) }, { 'name': 'High growth, linear trend (based on improved pasture area)', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_High_growth_linear_trend_based_on_improved_pasture_area.csv' ) }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=0.5, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None ht_ref_adoption_initial = pd.Series( [314.15, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2014] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_regions, ht_percentages = zip( *self.ac.pds_adoption_final_percentage) ht_pds_adoption_final_percentage = pd.Series(list(ht_percentages), index=list(ht_regions)) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2014] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution())
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name) if self.ac.use_custom_tla: self.c_tla = tla.CustomTLA(filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region(self.ae.get_land_distribution(), custom_world_values=custom_world_vals) # Custom PDS Data ca_pds_columns = ['Year', 'World'] + dd.MAIN_REGIONS ca_pds_data_sources = [ {'name': 'Average growth, linear trend', 'include': True, # This scenario is built on the historical (1962-2012) average global growth rate of # tropical staple crops. The historical data available for each decade was interpolated # based on the best curve fit and the interpolated data were then used in the # AdoptionData. The calculation uses the 2050 adopted value and calculates the # percentage with reference to the TLA, which is used to build this adoption scenario. 'datapoints': pd.DataFrame([ [2014, 25.42446198181150, 0.0, 0.0, 0.0, 0.0, 0.0], [2050, self.tla_per_region.loc[2050, 'World'] * 0.6179095040166380, 0.0, 0.0, 0.0, 0.0, 0.0], ], columns=ca_pds_columns).set_index('Year') }, {'name': 'Medium growth, linear trend', 'include': True, # This scenario is built on the historical (1962-2012) average global growth rate of # tropical staple crops. The historical data available for each decade was interpolated # based on the best curve fit and the interpolated data were then used in the # AdoptionData. This scenario presents the result assuming a 5% increase on the # historical growth rate. The calculation uses the 2050 adopted value and calculates # the percentage with reference to the TLA, which is used to build this adoption scenario. 'datapoints': pd.DataFrame([ [2014, 25.42446198181150, 0.0, 0.0, 0.0, 0.0, 0.0], [2050, self.tla_per_region.loc[2050, 'World'] * 0.648804979217470, 0.0, 0.0, 0.0, 0.0, 0.0], ], columns=ca_pds_columns).set_index('Year') }, {'name': 'Low growth linear trend', 'include': True, # It is assumed that the adoption of tropical tree staples will reach 55% of its # TLA by 2050. 'datapoints': pd.DataFrame([ [2014, 25.42446198181150, 0.0, 0.0, 0.0, 0.0, 0.0], [2050, self.tla_per_region.loc[2050, 'World'] * 0.55, 0.0, 0.0, 0.0, 0.0, 0.0], ], columns=ca_pds_columns).set_index('Year') }, {'name': 'Low early growth, linear trend', 'include': True, # This scenario assumes 60% adoption of the solution by 2030 and remains same until 2050. # The early adoption of the solution was considered because of the higher carbon and # financial impact of the solution and lower land availability. 'datapoints': pd.DataFrame([ [2014, 25.42446198181150, 0.0, 0.0, 0.0, 0.0, 0.0], [2030, self.tla_per_region.loc[2030, 'World'] * 0.6, 0.0, 0.0, 0.0, 0.0, 0.0], [2050, self.tla_per_region.loc[2050, 'World'] * 0.6, 0.0, 0.0, 0.0, 0.0, 0.0], ], columns=ca_pds_columns).set_index('Year') }, {'name': 'Max early growth, linear trend', 'include': True, # This scenario assumes 100% adoption of the solution by 2050 with the assumption that # 70% of that adoption will be acheived by 2030. The early adoption of the solution was # considered because of the higher carbon and financial impact of the solution and lower # land availability. 'datapoints': pd.DataFrame([ [2014, 25.42446198181150, 0.0, 0.0, 0.0, 0.0, 0.0], [2030, self.tla_per_region.loc[2030, 'World'] * 0.7, 0.0, 0.0, 0.0, 0.0, 0.0], [2050, self.tla_per_region.loc[2050, 'World'] * 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], ], columns=ca_pds_columns).set_index('Year') }, ] self.pds_ca = customadoption.CustomAdoption(data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region() pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region() pds_adoption_is_single_source = None ht_ref_adoption_initial = pd.Series( [25.424461981811515, 0.03142549034684199, 0.0, 28.59165470128803, 17.01389600193888, 5.211947770049295, 0.0, 0.0, 0.0, 0.0], index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * (ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2014] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_regions, ht_percentages = zip(*self.ac.pds_adoption_final_percentage) ht_pds_adoption_final_percentage = pd.Series(list(ht_percentages), index=list(ht_regions)) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2014] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables(ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption(ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted=self.ua.soln_net_annual_funits_adopted() self.fc = firstcost.FirstCost(ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost(ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc.soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc.soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc.conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc.soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc.conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs(ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua.direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs(ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua.soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua.soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua.direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua.direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua.direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua.direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua.soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution())
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name) if self.ac.use_custom_tla: self.c_tla = tla.CustomTLA( filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution(), custom_world_values=custom_world_vals) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS commit_13_dec_2016 = 136.32 # commitment to reforestation made Dec 13, 2016. commit_13_dec_2016_tmr = 0.93 # % commitment that are projects in tropical TMR (based on country level commitments) commit_13_dec_2016_mha = commit_13_dec_2016 * commit_13_dec_2016_tmr # Mha of current commitments in tropical TMR intact_13_dec_2016 = 0.328 # % commitment in tropical TMR available are for intact forest # restoration (based on country level commitments) max_land_bonn = 350.0 # Max land Expected total land commited under Bonn Challenge and NY Declaration max_land_wri = self.tla_per_region.loc[ 2050, 'World'] # Total degraded land suitable for # restoration, considered to be in tropical TMRs by WRI commit_1_mha_new = max_land_bonn - commit_13_dec_2016 # Mha of total degraded land available for # new commitments in tropical TMR + additional degraded land available from the Forest # Protection solution, for which exact area has to be estimated. final_adoption_1 = (commit_13_dec_2016_mha * intact_13_dec_2016) + (commit_1_mha_new * 1.0) data_source_1 = { 'name': 'Optimistic-Achieve Commitment in 15 years w/ 100% intact, NYDF/2030 (Charlotte Wheeler, 2016)', 'include': True, # The adoption scenarios are calculated using the linear trendline based on # (i) current restoration commitments to date (as taken on 13/12/2016 from Bonn # Challenge website); # (ii) potential future commitments for intact forest restoration in tropics {32.80% # (based on current commitments) or 100% (projected)}; # (iii) the proportion of committed land restored to intact forest {304 million # hectares (based on WRI calculation) or 350 million hectares (based on New York # Declaration)}; and # (iv) the year commitments are realized (2030, 2045 or 2060). # The current restoration commitments is fixed in all custom scenarios, while the rest # variables changes from scenario to scenario.This scenario projects the future adoption # of the solution considering, (1) 100% intact forest restoration, (2) 350 million # hectare land availability for future restoration of tropical forests, and # (3) the commitments will be realized by the year 2030. 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 2030, final_adoption_1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2031, final_adoption_1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') } commit_2_mha_new = max_land_wri - (commit_13_dec_2016 * commit_13_dec_2016_tmr) final_adoption_2 = (commit_13_dec_2016_mha * intact_13_dec_2016) + (commit_2_mha_new * 1.0) data_source_2 = { 'name': 'Optimistic-Achieve Commitment in 15 years w/ 100% intact, WRI/2030 (Charlotte Wheeler, 2016)', 'include': True, # The adoption scenarios are calculated using the linear trendline based on # (i) current restoration commitments to date (as taken on 13/12/2016 from Bonn # Challenge website); # (ii) potential future commitments for intact forest restoration in tropics {32.80% # (based on current commitments) or 100% (projected)}; # (iii) the proportion of committed land restored to intact forest {304 million hectares # (based on WRI calculation) or 350 million hectares (based on New York # Declaration)}; and # (iv) the year commitments are realized (2030, 2045 or 2060). # The current restoration commitments is fixed in all custom scenarios, while the rest # variables changes from scenario to scenario.This scenario projects the future adoption # of the solution considering, (1) 100% intact forest restoration, (2) 304 million # hectare land availability for future restoration of tropical forests, and (3) the # commitments will be realized by the year 2030. 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 2030, final_adoption_2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2031, final_adoption_2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') } future_3_tmr = 0.328 # % of future commitments in tropical thermal moisture regime available are for intact forest restoration final_adoption_3 = ((commit_13_dec_2016_mha * intact_13_dec_2016) + ( (max_land_wri - commit_13_dec_2016_mha) * future_3_tmr)) data_source_3 = { 'name': 'Conservative-Achieve Commitment in 15 years w/ 32.8% intact, WRI/2030 (Charlotte Wheeler,2016)', 'include': True, # The adoption scenarios are calculated using the linear trendline based on # (i) current restoration commitments to date (as taken on 13/12/2016 from Bonn # Challenge website); # (ii) potential future commitments for intact forest restoration in tropics {32.80% # (based on current commitments) or 100% (projected)}; # (iii) the proportion of committed land restored to intact forest {304 million hectares # (based on WRI calculation) or 350 million hectares (based on New York # Declaration)}; and # (iv) the year commitments are realized (2030, 2045 or 2060). # The current restoration commitments is fixed in all custom scenarios, while the rest # variables changes from scenario to scenario.This scenario projects the future # adoption of the solution considering, (1) 32.8% intact forest restoration, # (2) 304 million hectare land availability for future restoration of tropical forests, # and (3) the commitments will be realized by the year 2030. 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 2030, final_adoption_3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2031, final_adoption_3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') } future_4_tmr = 0.328 # % of future commitments in tropical thermal moisture regime available are for intact forest restoration final_adoption_4 = ((commit_13_dec_2016_mha * intact_13_dec_2016) + ( (max_land_wri - commit_13_dec_2016_mha) * future_4_tmr)) data_source_4 = { 'name': 'Conservative-Achieve Commitment in 15 years w/ 32.8% intact with continued growth post-2030, WRI/2030 and beyond (Charlotte Wheeler,2016)', 'include': True, # The adoption scenarios are calculated using the linear trendline based on # (i) current restoration commitments to date (as taken on 13/12/2016 from Bonn # Challenge website); # (ii) potential future commitments for intact forest restoration in tropics {32.80% # (based on current commitments) or 100% (projected)}; # (iii) the proportion of committed land restored to intact forest {304 million hectares # (based on WRI calculation) or 350 million hectares (based on New York # Declaration)}; and # (iv) the year commitments are realized (2030, 2045 or 2060). # The current restoration commitments is fixed in all custom scenarios, while the rest # variables changes from scenario to scenario.This scenario projects the future # adoption of the solution considering, (1) 32.8% intact forest restoration, # (2) 304 million hectare land availability for future restoration of tropical forests, # and (3) the commitments will be realized by the year 2030. # # This is scenario 3, except, it is also assumed that the adoption of the solution # will continue post 2030 as well. 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 2030, final_adoption_4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') } future_5_tmr = 1.0 # % of future commitments in tropical thermal moisture regime available are for intact forest restoration final_adoption_5 = ((commit_13_dec_2016_mha * intact_13_dec_2016) + ( (max_land_wri - commit_13_dec_2016_mha) * future_5_tmr)) data_source_5 = { 'name': 'Conservative-Achieve Commitment in 30 years w/ 100% intact, WRI/2045 (Charlotte Wheeler,2016)', 'include': True, # The adoption scenarios are calculated using the linear trendline based on # (i) current restoration commitments to date (as taken on 13/12/2016 from Bonn # Challenge website); # (ii) potential future commitments for intact forest restoration in tropics {32.80% # (based on current commitments) or 100% (projected)}; # (iii) the proportion of committed land restored to intact forest {304 million hectares # (based on WRI calculation) or 350 million hectares (based on New York # Declaration)}; and # (iv) the year commitments are realized (2030, 2045 or 2060). # The current restoration commitments is fixed in all custom scenarios, while the rest # variables changes from scenario to scenario.This scenario projects the future # adoption of the solution considering, (1) 100% intact forest restoration, # (2) 304 million hectare land availability for future restoration of tropical forests, # and (3) the commitments will be realized by the year 2045. 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 2045, final_adoption_5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2046, final_adoption_5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') } future_6_tmr = 0.328 # % of future commitments in tropical thermal moisture regime available are for intact forest restoration final_adoption_6 = ((commit_13_dec_2016_mha * intact_13_dec_2016) + ( (max_land_wri - commit_13_dec_2016_mha) * future_6_tmr)) data_source_6 = { 'name': 'Conservative-Achieve Commitment in 30 years w/ 32.8% intact, WRI/2045 (Charlotte Wheeler,2016)', 'include': True, # The adoption scenarios are calculated using the linear trendline based on # (i) current restoration commitments to date (as taken on 13/12/2016 from Bonn # Challenge website); # (ii) potential future commitments for intact forest restoration in tropics {32.80% # (based on current commitments) or 100% (projected)}; # (iii) the proportion of committed land restored to intact forest {304 million hectares # (based on WRI calculation) or 350 million hectares (based on New York # Declaration)}; and # (iv) the year commitments are realized (2030, 2045 or 2060). # The current restoration commitments is fixed in all custom scenarios, while the rest # variables changes from scenario to scenario.This scenario projects the future # adoption of the solution considering, (1) 32.8% intact forest restoration, # (2) 304 million hectare land availability for future restoration of tropical forests, # and (3) the commitments will be realized by the year 2045. 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 2045, final_adoption_6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2046, final_adoption_6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') } future_7_tmr = 0.328 # % of future commitments in tropical thermal moisture regime available are for intact forest restoration final_adoption_7 = ((commit_13_dec_2016_mha * intact_13_dec_2016) + ( (max_land_wri - commit_13_dec_2016_mha) * future_7_tmr)) data_source_7 = { 'name': 'Conservative-Achieve Commitment in 30 years w/ 32.8% intact with continued growth, WRI/2045 (Charlotte Wheeler,2016)', 'include': True, # The adoption scenarios are calculated using the linear trendline based on # (i) current restoration commitments to date (as taken on 13/12/2016 from Bonn # Challenge website); # (ii) potential future commitments for intact forest restoration in tropics {32.80% # (based on current commitments) or 100% (projected)}; # (iii) the proportion of committed land restored to intact forest {304 million hectares # (based on WRI calculation) or 350 million hectares (based on New York # Declaration)}; and # (iv) the year commitments are realized (2030, 2045 or 2060). # The current restoration commitments is fixed in all custom scenarios, while the rest # variables changes from scenario to scenario. This scenario projects the future # adoption of the solution considering, (1) 32.8% intact forest restoration, # (2) 304 million hectare land availability for future restoration of tropical forests, # and (3) the commitments will be realized by the year 2045. # # This is scenario 6, except, it is also assumed that the adoption of the solution # will continue post 2045 as well. 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 2045, final_adoption_7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') } future_8_tmr = 1.0 # % of future commitments in tropical thermal moisture regime available are for intact forest restoration final_adoption_8 = ((commit_13_dec_2016_mha * intact_13_dec_2016) + ( (max_land_wri - commit_13_dec_2016_mha) * future_8_tmr)) data_source_8 = { 'name': 'Conservative-Achieve Commitment in 45 years w/ 100% intact, WRI/2060 (Charlotte Wheeler,2016)', 'include': False, # The adoption scenarios are calculated using the linear trendline based on # (i) current restoration commitments to date (as taken on 13/12/2016 from Bonn # Challenge website); # (ii) potential future commitments for intact forest restoration in tropics {32.80% # (based on current commitments) or 100% (projected)}; # (iii) the proportion of committed land restored to intact forest {304 million hectares # (based on WRI calculation) or 350 million hectares (based on New York # Declaration)}; and # (iv) the year commitments are realized (2030, 2045 or 2060). # The current restoration commitments is fixed in all custom scenarios, while the rest # variables changes from scenario to scenario. # # This scenario projects the future adoption of the solution considering, # (1) 100% intact forest restoration, (2) 304 million hectare land availability # for future restoration of tropical forests, and (3) the commitments will be # realized by the year 2060. 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 2060, final_adoption_8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') } future_9_tmr = 0.328 # % of future commitments in tropical thermal moisture regime available are for intact forest restoration final_adoption_9 = ((commit_13_dec_2016_mha * intact_13_dec_2016) + ( (max_land_wri - commit_13_dec_2016_mha) * future_9_tmr)) data_source_9 = { 'name': 'Conservative-Achieve Commitment in 45 years w/ 32.8% intact, WRI/2060 (Charlotte Wheeler,2016)', 'include': False, # The adoption scenarios are calculated using the linear trendline based on # (i) current restoration commitments to date (as taken on 13/12/2016 from Bonn # Challenge website); # (ii) potential future commitments for intact forest restoration in tropics {32.80% # (based on current commitments) or 100% (projected)}; # (iii) the proportion of committed land restored to intact forest {304 million hectares # (based on WRI calculation) or 350 million hectares (based on New York # Declaration)}; and # (iv) the year commitments are realized (2030, 2045 or 2060). # The current restoration commitments is fixed in all custom scenarios, while the rest # variables changes from scenario to scenario. # # This scenario projects the future adoption of the solution considering, # (1) 32.8% intact forest restoration, (2) 304 million hectare land availability # for future restoration of tropical forests, and (3) the commitments will be realized # by the year 2060. 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 2060, final_adoption_9, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') } ca_pds_data_sources = [ data_source_1, data_source_2, data_source_3, data_source_4, data_source_5, data_source_6, data_source_7, data_source_8, data_source_9 ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None ht_ref_adoption_initial = pd.Series( [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2014] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_regions, ht_percentages = zip( *self.ac.pds_adoption_final_percentage) ht_pds_adoption_final_percentage = pd.Series(list(ht_percentages), index=list(ht_regions)) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2014] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution())
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla: self.c_tla = tla.CustomTLA( filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = { 'Raw Data for ALL LAND TYPES': { 'FAOSTAT 2016 + Literature (Exponential)': THISDIR.joinpath('ad', 'ad_FAOSTAT_2016_Literature_Exponential.csv'), 'FAOSTAT 2016 + Literature (2nd order)': THISDIR.joinpath('ad', 'ad_FAOSTAT_2016_Literature_2nd_order.csv'), 'FAOSTAT 2016 + Literature (linear)': THISDIR.joinpath('ad', 'ad_FAOSTAT_2016_Literature_linear.csv'), }, 'Region: OECD90': { 'Raw Data for ALL LAND TYPES': { 'FAOSTAT 2016 + Literature (Exponential)': THISDIR.joinpath( 'ad', 'ad_FAOSTAT_2016_Literature_Exponential.csv'), 'FAOSTAT 2016 + Literature (2nd order)': THISDIR.joinpath( 'ad', 'ad_FAOSTAT_2016_Literature_2nd_order.csv'), 'FAOSTAT 2016 + Literature (3rd order)': THISDIR.joinpath( 'ad', 'ad_FAOSTAT_2016_Literature_3rd_order.csv'), }, }, 'Region: Asia (Sans Japan)': { 'Raw Data for ALL LAND TYPES': { 'FAOSTAT 2016 + Literature (Exponential)': THISDIR.joinpath( 'ad', 'ad_FAOSTAT_2016_Literature_Exponential.csv'), 'FAOSTAT 2016 + Literature (2nd order)': THISDIR.joinpath( 'ad', 'ad_FAOSTAT_2016_Literature_2nd_order.csv'), 'FAOSTAT 2016 + Literature (3rd order)': THISDIR.joinpath( 'ad', 'ad_FAOSTAT_2016_Literature_3rd_order.csv'), }, }, 'Region: Middle East and Africa': { 'Raw Data for ALL LAND TYPES': { 'FAOSTAT 2016 + Literature (Exponential)': THISDIR.joinpath( 'ad', 'ad_FAOSTAT_2016_Literature_Exponential.csv'), 'FAOSTAT 2016 + Literature (2nd order)': THISDIR.joinpath( 'ad', 'ad_FAOSTAT_2016_Literature_2nd_order.csv'), 'FAOSTAT 2016 + Literature (3rd order)': THISDIR.joinpath( 'ad', 'ad_FAOSTAT_2016_Literature_3rd_order.csv'), }, }, 'Region: Latin America': { 'Raw Data for ALL LAND TYPES': { 'FAOSTAT 2016 + Literature (Exponential)': THISDIR.joinpath( 'ad', 'ad_FAOSTAT_2016_Literature_Exponential.csv'), 'FAOSTAT 2016 + Literature (2nd order)': THISDIR.joinpath( 'ad', 'ad_FAOSTAT_2016_Literature_2nd_order.csv'), 'FAOSTAT 2016 + Literature (3rd order)': THISDIR.joinpath( 'ad', 'ad_FAOSTAT_2016_Literature_3rd_order.csv'), }, }, } self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS tla_2050 = self.tla_per_region.loc[2050] ref_base_2018 = pd.Series(self.ac.ref_base_adoption) # Data Source 1: Jong 2018 # (https://link.springer.com/content/pdf/10.1007%2F978-981-10-5269-9.pdf); # FAOSTAT, accessed in 2018 # 2050 medium adoption value based on historical data interpolation, based on FAOSTAT data ds1_adoption_data = self.ad.adoption_data(region='World') ds1_ad_2050 = ds1_adoption_data.loc[ 2050, 'FAOSTAT 2016 + Literature (Exponential)'] ds1_percent = ds1_ad_2050 / tla_2050['World'] ds1_percentages = pd.Series([ 0.0, ds1_percent, ds1_percent, ds1_percent, ds1_percent, ds1_percent, 0.0, 0.0, 0.0, 0.0 ], index=dd.REGIONS) ds1_regional = tla_2050 * ds1_percentages ds1_regional.clip(lower=ref_base_2018, inplace=True) ds1_regional['World'] = 0.0 ds1_world_2050 = ds1_regional.sum(axis=0) # Excel uses regional TLA to compute World, but doesn't populate regional adoption ds1_2050 = [ ds1_world_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] # Data Source 2: Jong 2018 # (https://link.springer.com/content/pdf/10.1007%2F978-981-10-5269-9.pdf); # FAOSTAT, accessed in 2018 # 2050 average adoption value based on historical data interpolation, # based on FAOSTAT data (without TLA limitation) ds2_adoption_data = self.ad.adoption_data(region='World') ds2_ad_2050 = ds2_adoption_data.loc[ 2050, 'FAOSTAT 2016 + Literature (2nd order)'] ds2_percent = ds2_ad_2050 / tla_2050['World'] ds2_percentages = pd.Series([ 0.0, ds2_percent, ds2_percent, ds2_percent, ds2_percent, ds2_percent, 0.0, 0.0, 0.0, 0.0 ], index=dd.REGIONS) ds2_regional = tla_2050 * ds2_percentages ds2_regional.clip(lower=ref_base_2018, inplace=True) ds2_regional['World'] = 0.0 ds2_world_2050 = ds2_regional.sum(axis=0) # Excel uses regional TLA to compute World, but doesn't populate regional adoption ds2_2050 = [ ds2_world_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] # Data Source 3: Jong 2018 # (https://link.springer.com/content/pdf/10.1007%2F978-981-10-5269-9.pdf); # FAOSTAT, accessed in 2018 # 2050 minimum adoption value based on historical data interpolation, # based on FAOSTAT data (without TLA limitation) ds3_adoption_data = self.ad.adoption_data(region='World') ds3_ad_2050 = ds3_adoption_data.loc[ 2050, 'FAOSTAT 2016 + Literature (linear)'] ds3_percent = ds3_ad_2050 / tla_2050['World'] ds3_percentages = pd.Series([ 0.0, ds3_percent, ds3_percent, ds3_percent, ds3_percent, ds3_percent, 0.0, 0.0, 0.0, 0.0 ], index=dd.REGIONS) ds3_regional = tla_2050 * ds3_percentages ds3_regional.clip(lower=ref_base_2018, inplace=True) ds3_regional['World'] = 0.0 ds3_world_2050 = ds3_regional.sum(axis=0) # Excel uses regional TLA to compute World, but doesn't populate regional adoption ds3_2050 = [ ds3_world_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ca_pds_data_sources = [ { 'name': 'Medium growth based on exponential interpolation of historical data, linear trend', 'include': True, # This scenario is built on the historical (1962-2016) average global # growth rate of tropical staple crops based on FAOSTAT 2018 and Jong # et al. 2018 data (see "Master - Adoption Data" sheet for details). # Future projections up to 2060 were interpolated based on an exponential # best-curve fit applied to historical data available at decadal intervals # for the given time-period. 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [2050] + ds1_2050, ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'High growth based on 2nd order polynomial interpolation of historical data, linear trend', 'include': True, # This scenario is built on the historical (1962-2016) average global # growth rate of tropical staple crops based on FAOSTAT 2018 and Jong # et al. 2018 data (see "Master - Adoption Data" sheet for details). # Future projections up to 2060 were interpolated based on a 2nd order # polynomial best-curve fit applied to historical data available at # decadal intervals for the given time-period. 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [2050] + ds2_2050, ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Low growth based on linear interpolation of historical data, linear trend', 'include': True, # This scenario is built on the historical (1962-2016) average global # growth rate of tropical staple crops based on FAOSTAT 2018 and Jong # et al. 2018 data (see "Master - Adoption Data" sheet for details). # Future projections up to 2060 were interpolated based on a linear # best-curve fit applied to historical data available at decadal # intervals for the given time-period. 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [2050] + ds3_2050, ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Medium growth with 70% adoption 2030 (based on exponential interpolations of historical data), linear trend', 'include': True, # Scenario 1, with 70% adoption by 2030 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [2030] + [0.7 * x for x in ds1_2050], [2050] + ds1_2050, ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'High growth with 70% adoption 2030 (based on 2nd order polynomial interpolations of historical data), linear trend', 'include': True, # Scenario 2, with 70% adoption by 2030 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [2030] + [0.7 * x for x in ds2_2050], [2050] + ds2_2050, ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Low growth with 70% adoption 2030 (based on linear interpolations of historical data), linear trend', 'include': True, # Scenario 3, with 70% adoption by 2030 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [2030] + [0.7 * x for x in ds3_2050], [2050] + ds3_2050, ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Max adoption, linear growth', 'include': True, # "100% adoption by 2050 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [2050] + [ tla_2050['World'], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) for s in self.pds_ca.scenarios.values(): df = s['df'] for y in range(2012, 2019): df.loc[y] = [ 0.0001, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2014] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, use_first_pds_datapoint_main=True, adoption_base_year=2018, copy_pds_to_ref=False, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla and self.ac.custom_tla_fixed_value is not None: self.c_tla = tla.CustomTLA( fixed_value=self.ac.custom_tla_fixed_value) custom_world_vals = self.c_tla.get_world_values() elif self.ac.use_custom_tla: self.c_tla = tla.CustomTLA( filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = { 'Raw Data for ALL LAND TYPES': { 'Henwood 1994 and Henwood 2010': THISDIR.joinpath('ad', 'ad_Henwood_1994_and_Henwood_2010.csv'), 'Henwood 2010': THISDIR.joinpath('ad', 'ad_Henwood_2010.csv'), }, } self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS tla_world_2050 = self.tla_per_region.loc[2050, 'World'] ad_2014 = 132.860079407797 # adoption in year 2014 (refer B647, adoption data sheet) ad_2018 = self.ac.ref_base_adoption['World'] total_temperate_grassland = 1209.098 # In Excel, the Custom PDS Scenarios tab columns AC:AF compute a limit on adoption # based on the amount of degraded land remaining. We compute the same limit here. def constrained_tla(ad_2050): (slope, intercept) = np.polyfit(x=[2018, 2050], y=[ad_2018, ad_2050], deg=1) degrade_df = pd.DataFrame( 0, index=range(2014, 2061), columns=[ 'Total undegraded land at the start of the year', 'Degraded land at the end of the year', 'Total undegraded land at the end of the year', 'Constrained TLA' ]) for year in range(2014, 2061): if year == 2014: undeg_start = tla_world_2050 - ad_2014 else: last = degrade_df.loc[ year - 1, 'Total undegraded land at the end of the year'] undeg_start = last - slope degrade_df.loc[ year, 'Total undegraded land at the start of the year'] = undeg_start degraded_end = max(0, undeg_start * self.ac.degradation_rate) degrade_df.loc[ year, 'Degraded land at the end of the year'] = degraded_end degrade_df.loc[ year, 'Total undegraded land at the end of the year'] = ( undeg_start - degraded_end) degrade_df.loc[year, 'Constrained TLA'] = ( tla_world_2050 - degrade_df['Degraded land at the end of the year'].sum()) return degrade_df['Constrained TLA'].min() # Data Source 1: Linear growth, conservative # SOURCE: Henwood, W. D. (2010). Toward a strategy for the conservation and # protection of the world's temperate grasslands. Great Plains Research, 121-134. ds1_commit_2014 = 0.25 # % commitment for protection of temperate grassland by 2014 ds1_adoption_2050 = total_temperate_grassland * ds1_commit_2014 ds1_constrained_tla = constrained_tla(ad_2050=ds1_adoption_2050) # Data Source 3: Linear growth, High # SOURCE: Henwood, W. D. (2010). Toward a strategy for the conservation and # protection of the world's temperate grasslands. Great Plains Research, 121-134. ds3_commit_2014 = 0.5 # % commitment for protection of temperate grassland by 2014 ds3_adoption_2018 = self.ac.ref_base_adoption['World'] ds3_adoption_2050 = total_temperate_grassland * ds3_commit_2014 ds3_constrained_tla = constrained_tla(ad_2050=ds3_adoption_2050) # Data Source 4: Linear growth, High # SOURCE: Henwood, W. D. (2010). Toward a strategy for the conservation and # protection of the world's temperate grasslands. Great Plains Research, 121-134. ds4_commit_2014 = 1.0 # % commitment for protection of temperate grassland by 2014 ds4_adoption_2018 = self.ac.ref_base_adoption['World'] ds4_adoption_2050 = total_temperate_grassland * ds4_commit_2014 ds4_constrained_tla = constrained_tla(ad_2050=ds4_adoption_2050) ca_pds_data_sources = [ { 'name': 'Linear growth, conservative', 'include': True, 'maximum': ds1_constrained_tla, 'description': ('The future adoption is projected based on the protection commitment made ' 'for the temperate grassland, which is 10% of the total temperate grassland ' 'area. Since, the current protection is much higher than the 10% commitment, ' 'so 25% commitment target is considered for this projection. ' ), 'datapoints': pd.DataFrame([ [2018, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 2050, ds1_adoption_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0. ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Exsisting progonostication', 'include': True, 'maximum': ds1_constrained_tla, 'description': ('The future adoption value was projected using the data interpolator and ' 'adoption data sheet based on the data available on protected grassland area ' 'globally in the temperate in the year 1994/2010 and 1996/2009. ' 'NOTE: in actual implementation, this scenario is set equal to the "Linear ' 'Growth, conservative" scenario not from adoption data.'), 'datapoints': pd.DataFrame([ [2018, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 2050, ds1_adoption_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0. ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Linear growth, High', 'include': True, 'maximum': ds3_constrained_tla, 'description': ('The future adoption is projected based on the protection commitment made ' 'for the temperate grassland, which is 10% of the total temperate grassland ' 'area. Since, the current protection is much higher than the 10% commitment, ' 'so 50% commitment target is considered for this projection. ' ), 'datapoints': pd.DataFrame([ [2018, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 2050, ds3_adoption_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0. ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Max adoption, linear trend', 'include': True, 'maximum': ds4_constrained_tla, 'description': ('In this scenario, it is assumed that 100% of the grassland as per the TLA ' 'will be protected by 2050 '), 'datapoints': pd.DataFrame([ [2018, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 2050, ds4_adoption_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0. ], ], columns=ca_pds_columns).set_index('Year') }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) for s in self.pds_ca.scenarios.values(): df = s['df'] df.loc[2014, 'World'] = 132.860079407797 df.loc[2015, 'World'] = 139.475887288368 df.loc[2016, 'World'] = 146.114200458296 df.loc[2017, 'World'] = 152.77501982823 df.loc[2018, 'World'] = 159.457782791276 # Custom REF Data ca_ref_data_sources = [ { 'name': '[Type Scenario 1 Name Here (REF CASE)...]', 'include': True, 'description': ('[PLEASE DESCRIBE IN DETAIL THE METHODOLOGY YOU USED IN THIS ANALYSIS. BE ' 'SURE TO INCLUDE ANY ADDITIONAL EQUATIONS YOU UTILIZED] '), 'filename': THISDIR.joinpath( 'ca_ref_data', 'custom_ref_ad_Type_Scenario_1_Name_Here_REF_CASE_.csv') }, ] self.ref_ca = customadoption.CustomAdoption( data_sources=ca_ref_data_sources, soln_adoption_custom_name=self.ac.soln_ref_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if self.ac.soln_ref_adoption_basis == 'Custom': ref_adoption_data_per_region = self.ref_ca.adoption_data_per_region( ) else: ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2014] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, ref_adoption_data_per_region=ref_adoption_data_per_region, use_first_pds_datapoint_main=False, adoption_base_year=2018, copy_pds_to_ref=False, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=False) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, tot_red_in_deg_land=self.ua. cumulative_reduction_in_total_degraded_land(), pds_protected_deg_land=self.ua. pds_cumulative_degraded_land_protected(), ref_protected_deg_land=self.ua. ref_cumulative_degraded_land_protected(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla and self.ac.custom_tla_fixed_value is not None: self.c_tla = tla.CustomTLA(fixed_value=self.ac.custom_tla_fixed_value) custom_world_vals = self.c_tla.get_world_values() elif self.ac.use_custom_tla: self.c_tla = tla.CustomTLA(filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region(self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ ['param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA'], ['trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium'], ['growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE'], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = { 'Raw Data for ALL LAND TYPES': { 'RR 2018, https://rightsandresources.org/wp-content/uploads/2018/09/At-A-Crossroads_RRI_Sept-2018.pdf': THISDIR.joinpath('ad', 'ad_RR_2018_httpsrightsandresources_orgwpcontentuploads201809AtACrossroads_RRI_Sept2018_pdf.csv'), }, } self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS tla_world_2050 = self.tla_per_region.loc[2050, 'World'] ad_2018 = self.ac.ref_base_adoption['World'] ad_2012 = 431.635465343388 # current adoption in year 2012 (refer U46, adoption data sheet) # https://rightsandresources.org/wp-content/uploads/2018/09/At-A-Crossroads_RRI_Sept-2018.pdf lmic_18_3 = 337.0 # 18.3% adoption in 33 Low and Middle Income Countries lmic_22_1 = 425.0 # 22.1% adoption in 33 Low and Middle Income Countries lmic_23_0 = 458.0 # 23% adoption in 33 Low and Middle Income Countries lmic_24_1 = 484.0 # 24.1% adoption in 33 Low and Middle Income Countries tla_lmic = (lmic_18_3 / 18.3) * 100 lmic_50_0 = tla_lmic * 0.5 # 50% adoption in 33 Low and Middle Income Countries lmic_75_0 = tla_lmic * 0.75 # 75% adoption in 33 Low and Middle Income Countries wtla_50 = tla_world_2050 * 0.5 wtla_75 = tla_world_2050 * 0.75 def constrained_tla(datapoints): (slope, intercept) = np.polyfit(x=datapoints.index, y=datapoints['World'], deg=1) degrade_df = pd.DataFrame(0, index=range(2014, 2061), columns=[ 'Total undegraded land at the start of the year', 'Degraded land at the end of the year', 'Total undegraded land at the end of the year', 'Constrained TLA']) for year in range(2014, 2061): if year == 2014: undeg_start = tla_world_2050 - ad_2012 else: last = degrade_df.loc[year-1, 'Total undegraded land at the end of the year'] undeg_start = last - slope degrade_df.loc[year, 'Total undegraded land at the start of the year'] = undeg_start degraded_end = max(0, undeg_start * self.ac.degradation_rate) degrade_df.loc[year, 'Degraded land at the end of the year'] = degraded_end degrade_df.loc[year, 'Total undegraded land at the end of the year'] = ( undeg_start - degraded_end) degrade_df.loc[year, 'Constrained TLA'] = (tla_world_2050 - degrade_df['Degraded land at the end of the year'].sum()) return degrade_df # Data Source 1 ds1_datapoints = pd.DataFrame([ [2002, lmic_18_3, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2008, lmic_22_1, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2013, lmic_23_0, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2017, lmic_24_1, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2030, lmic_50_0, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') ds1_maximum = constrained_tla(datapoints=ds1_datapoints)['Constrained TLA'].min() ds2_datapoints = pd.DataFrame([ [2002, lmic_18_3, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2008, lmic_22_1, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2013, lmic_23_0, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2017, lmic_24_1, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2030, lmic_50_0, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, lmic_75_0, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') ds2_maximum = constrained_tla(datapoints=ds2_datapoints)['Constrained TLA'].min() ds3_datapoints = pd.DataFrame([ [2002, lmic_18_3, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2008, lmic_22_1, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2013, lmic_23_0, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2017, lmic_24_1, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2030, tla_lmic, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, tla_lmic, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') ds3_maximum = constrained_tla(datapoints=ds3_datapoints)['Constrained TLA'].min() ds4_datapoints = pd.DataFrame([ [2002, lmic_18_3, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2008, lmic_22_1, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2013, lmic_23_0, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2017, lmic_24_1, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2030, wtla_50, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') ds4_maximum = constrained_tla(datapoints=ds4_datapoints)['Constrained TLA'].min() ds5_datapoints = pd.DataFrame([ [2002, lmic_18_3, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2008, lmic_22_1, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2013, lmic_23_0, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2017, lmic_24_1, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2030, wtla_50, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, wtla_75, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') ds5_maximum = constrained_tla(datapoints=ds5_datapoints)['Constrained TLA'].min() ds6_datapoints = pd.DataFrame([ [2002, lmic_18_3, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2008, lmic_22_1, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2013, lmic_23_0, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2017, lmic_24_1, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2030, wtla_50, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, tla_world_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') ds6_maximum = constrained_tla(datapoints=ds6_datapoints)['Constrained TLA'].min() ca_pds_data_sources = [ {'name': 'Moderate growth, Linear Trend', 'include': True, 'description': ( 'Future adoption of forest area under Indigenous People (IP) management was ' 'built based on the adoption in Low and Middle Income Countries given for ' 'the year 2002, 2008, 2013, and targeted percentage for the year 2030 by ' 'Rights and Resources 2018 publication. ' ), 'datapoints_degree': 1, 'datapoints': ds1_datapoints, 'maximum': ds1_maximum}, {'name': 'High growth, Linear Trend', 'include': True, 'description': ( 'Future adoption of forest area under Indigenous People (IP) management was ' 'built based on the adoption in Low and Middle Income Countries given for ' 'the year 2002, 2008, 2013, and targeted percentage for the year 2030 by ' 'Rights and Resources 2018 publication. Further assumption was made that ' 'the forest area under indigenous people management will increase to 75% by ' '2050 in Low and Middle Income Countries. ' ), 'datapoints_degree': 1, 'datapoints': ds2_datapoints, 'maximum': ds2_maximum}, {'name': 'Max growth, Linear Trend', 'include': True, 'description': ( 'Future adoption of forest area under Indigenous People (IP) management was ' 'built based on the adoption in Low and Middle Income Countries given for ' 'the year 2002, 2008, 2013, and targeted percentage for the year 2030 by ' 'Rights and Resources 2018 publication. Further assumption was made that ' 'the forest area under indigenous people management will increase to 100% by ' '2050 in Low and Middle Income Countries. ' ), 'datapoints_degree': 1, 'datapoints': ds3_datapoints, 'maximum': ds3_maximum}, {'name': 'Moderate growth, AEZ TLA, Linear Trend', 'include': True, 'description': ( 'Future adoption of forest area under Indigenous People (IP) management was ' 'built based on the adoption in Low and Middle Income Countries given for ' 'the year 2002, 2008, 2013, and targeted percentage for the year 2030 by ' 'Rights and Resources 2018 publication. However, the 2030 projected area is ' 'calculated with reference to the assigned TLA of the solution and not by ' 'the total area as calculated for theLow and Middle Income Countries. ' ), 'datapoints_degree': 1, 'datapoints': ds4_datapoints, 'maximum': ds4_maximum}, {'name': 'High growth, AEZ TLA, Linear Trend', 'include': True, 'description': ( 'Future adoption of forest area under Indigenous People (IP) management was ' 'built based on the adoption in Low and Middle Income Countries given for ' 'the year 2002, 2008, 2013, and targeted percentage for the year 2030 by ' 'Rights and Resources 2018 publication. Further assumption was made that ' 'the forest area under indigenous people management will increase to 75% by ' '2050 in Low and Middle Income Countries. However, the 2030 and 2050 ' 'projected area is calculated with reference to the assigned TLA of the ' 'solution and not by the total area as calculated for the Low and Middle ' 'Income Countries. ' ), 'datapoints_degree': 1, 'datapoints': ds5_datapoints, 'maximum': ds5_maximum}, {'name': 'Max growth, AEZ TLA, Linear Trend', 'include': True, 'description': ( 'Future adoption of forest area under Indigenous People (IP) management was ' 'built based on the adoption in Low and Middle Income Countries given for ' 'the year 2002, 2008, 2013, and targeted percentage for the year 2030 by ' 'Rights and Resources 2018 publication. Further assumption was made that ' 'the forest area under indigenous people management will increase to 100% by ' '2050 in Low and Middle Income Countries. However, the 2030 and 2050 ' 'projected area is calculated with reference to the assigned TLA of the ' 'solution and not by the total area as calculated for the Low and Middle ' 'Income Countries. ' ), 'datapoints_degree': 1, 'datapoints': ds6_datapoints, 'maximum': ds6_maximum}, ] self.pds_ca = customadoption.CustomAdoption(data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) for s in self.pds_ca.scenarios.values(): df = s['df'] df.loc[2012, 'World'] = 431.635465343388 df.loc[2013, 'World'] = 442.123227592586 df.loc[2014, 'World'] = 453.987693921633 df.loc[2015, 'World'] = 464.65888472248 df.loc[2016, 'World'] = df.loc[2015, 'World'] df.loc[2017, 'World'] = 486.074210468988 df.loc[2018, 'World'] = 496.809418409265 # Custom REF Data ca_ref_data_sources = [ {'name': '[Type Scenario 1 Name Here (REF CASE)...]', 'include': True, 'description': ( 'Reference adoption wrt change in current adoption from 2014 to 2018 ' ), 'filename': THISDIR.joinpath('ca_ref_data', 'custom_ref_ad_Type_Scenario_1_Name_Here_REF_CASE_.csv')}, ] self.ref_ca = customadoption.CustomAdoption(data_sources=ca_ref_data_sources, soln_adoption_custom_name=self.ac.soln_ref_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if self.ac.soln_ref_adoption_basis == 'Custom': ref_adoption_data_per_region = self.ref_ca.adoption_data_per_region() else: ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region() pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region() pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series( list(self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * (ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2018] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables(ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, ref_adoption_data_per_region=ref_adoption_data_per_region, use_first_pds_datapoint_main=False, adoption_base_year=2018, copy_pds_to_ref=False, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption(ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=False) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted=self.ua.soln_net_annual_funits_adopted() self.fc = firstcost.FirstCost(ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost(ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc.soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc.soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc.conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc.soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc.conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs(ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua.direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs(ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua.soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua.soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua.direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua.direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua.direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua.direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, tot_red_in_deg_land=self.ua.cumulative_reduction_in_total_degraded_land(), pds_protected_deg_land=self.ua.pds_cumulative_degraded_land_protected(), ref_protected_deg_land=self.ua.ref_cumulative_degraded_land_protected(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name) self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution()) # Custom PDS Data ca_pds_data_sources = [ { 'name': 'Low,High Early Adoption, Polynomial Trend', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_LowHigh_Early_Adoption_Polynomial_Trend.csv' ) }, { 'name': 'High,High Early Adoption, Polynomial Trend', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_HighHigh_Early_Adoption_Polynomial_Trend.csv' ) }, { 'name': 'Max, Polynomial Trend', 'include': True, 'filename': THISDIR.joinpath('ca_pds_data', 'custom_pds_ad_Max_Polynomial_Trend.csv') }, { 'name': 'High, Early Adoption, Polynomial Trend', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_High_Early_Adoption_Polynomial_Trend.csv') }, { 'name': 'Low, Early Adoption, Polynomial Trend', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Low_Early_Adoption_Polynomial_Trend.csv') }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None ht_ref_adoption_initial = pd.Series([ 71.6843318543261, 21.7864515209236, 5.79724982776745, 7.68605153649748, 0.244451347436256, 36.1701276217012, 0.0, 0.0, 0.0, 0.0 ], index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2014] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_regions, ht_percentages = zip( *self.ac.pds_adoption_final_percentage) ht_pds_adoption_final_percentage = pd.Series(list(ht_percentages), index=list(ht_regions)) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2014] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution())
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla: self.c_tla = tla.CustomTLA( filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = { 'Raw Data for ALL LAND TYPES': { 'FAO 2015': THISDIR.joinpath('ad', 'ad_FAO_2015.csv'), }, } self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS adoption_2014 = self.ac.ref_base_adoption['World'] tla_2050 = self.tla_per_region.loc[2050, 'World'] tla_afforestation = 717.972721643776 tla_bamboo = 363.757256176669 tla_perennial_bioenergy = 264.89533875 tla_all_biomass = tla_afforestation + tla_bamboo + tla_perennial_bioenergy ds6_percent_afforestation = tla_afforestation / tla_all_biomass ds6_percent_adoption_2050 = ( 1614 * ds6_percent_afforestation) / tla_all_biomass ds6_adoption_2050 = ds6_percent_adoption_2050 * tla_2050 ds7_percent_adoption_2050 = 1614 / tla_all_biomass ds7_adoption_2050 = ds7_percent_adoption_2050 * tla_2050 ca_pds_data_sources = [ { 'name': 'Regional linear trend', 'include': True, 'datapoints_degree': 1, # Future forest plantation area is projected based on country level data available # for the year 1990, 2000, 2005, and 2010 from the FAO's Forest Resource Assessment # report from 2015. # # Country level data about planted forest area from 1990 - 2014 was aggregated at # the regional level (for details see hidden ""HistoricAndProjectedData"" sheet). # This data was then used to project future adoption using a linear trend. 'datapoints': pd.DataFrame([ [ 1990, np.nan, 96.8914, 44.1631, 106.1562, 16.5338, 14.9281, 0.0, 0.0, 0.0, 0.0 ], [ 2000, np.nan, 97.2555, 44.2605, 107.5489, 16.7251, 15.2771, 0.0, 0.0, 0.0, 0.0 ], [ 2005, np.nan, 97.6355, 44.3794, 109.8028, 16.9607, 15.6649, 0.0, 0.0, 0.0, 0.0 ], [ 2010, np.nan, 97.8700, 44.4540, 111.5210, 17.1760, 16.0730, 0.0, 0.0, 0.0, 0.0 ], [ 2014, np.nan, 98.1783330003811, 44.5558196042818, 113.7890763825080, 17.4259450169749, 16.5131623025461, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Regional max linear trend', 'include': True, # "Future forest plantation area is projected based on country level data available # for the year 1990, 2000, 2005, and 2010 from the FAO's Forest Resource Assessment # report from 2015. Country level data about planted forest area from 1990 - 2014 # was aggregated at the regional level, and used to determine regional annual growth # rates. For details about the calculations of regional rates see hidden # ""HistoricAndProjectedData"" sheet). # # In this scenario, regional future adoption of forest plantations is projected # based on the maximum historical regional growth rate reported in the respective # region (between 1990 - 2014). For each region, future adoption projected based # on the maximum linear regional trend between any two given time periods. 'datapoints': pd.DataFrame([ [ 2010, np.nan, 97.8700, 44.4540, 111.5210, 17.1760, 16.0730, 0.0, 0.0, 0.0, 0.0 ], [ 2014, np.nan, 98.1783330003811, 44.5558196042818, 113.7890763825080, 17.4259450169749, 16.5131623025461, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': '50% of the max historical annual afforestation rate across the regions', 'include': True, # Future forest plantation area is projected based on country level data available # for the year 1990, 2000, 2005, and 2010 from the FAO's Forest Resource Assessment # report from 2015. Country level data about planted forest area from 1990 - 2014 # was aggregated at the regional level, and used to determine regional annual growth # rates. For details about the calculations of regional rates see hidden # "HistoricAndProjectedData" sheet). # # In this scenario, regional future adoption of forest plantations is projected # based on the maximum historical regional growth rate across all regions (between # 1990 - 2014), which occurred in Asia (0.57 Mha annual increase between 2010 -2014). # For the ASIA region this same rate (0.57 Mha annual increase) is used for # projecting the future adoption of forest plantation. For all other regions half # of this growth rate is applied (0.29 Mha annual increase). 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_50_of_the_max_historical_annual_afforestation_rate_across_the_regions.csv' ) }, { 'name': '100% of the max historical annual afforestation rate across the regions', 'include': True, # Future forest plantation area is projected based on country level data available # for the year 1990, 2000, 2005, and 2010 from the FAO's Forest Resource Assessment # report from 2015. Country level data about planted forest area from 1990 - 2014 # was aggregated at the regional level, and used to determine regional annual growth # rates. For details about the calculations of regional rates see hidden # "HistoricAndProjectedData" sheet). # # In this scenario, regional future adoption of forest plantations is projected # based on the maximum historical regional growth rate across all regions (between # 1990 - 2014), which occurred in Asia (0.57 Mha increase between 2010 -2014). # To project future adoption of forest plantations, this rate was applied to all # regions, including Asia (0.57 Mha annual increase). 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_100_of_the_max_historical_annual_afforestation_rate_across_the_regions.csv' ) }, { 'name': '200% increase for Asia and 100% for the other regions', 'include': True, # Future forest plantation area is projected based on country level data available # for the year 1990, 2000, 2005, and 2010 from the FAO's Forest Resource Assessment # report from 2015. Country level data about planted forest area from 1990 - 2014 # was aggregated at the regional level, and used to determine regional annual growth # rates. For details about the calculations of regional rates see hidden # "HistoricAndProjectedData" sheet). # # In this scenario, regional future adoption of forest plantations is projected # based on the maximum historical regional growth rate across all regions (between # 1990 - 2014), which occurred in Asia (0.57 Mha increase between 2010 -2014). # To project future adoption of forest plantations, this rate was applied to all # regions (0.57 Mha annual increase) except for Asia region where the rate was # doubled (1.14 Mha annual increase). 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_200_increase_for_Asia_and_100_for_the_other_regions.csv' ) }, { 'name': 'Conservative growth projection based on Kreidenweis et al. (2016)', 'include': True, # This projection of future adoption of afforestation is based on Kreidenweis # et al. (2016)'s ""global afforestation"" scenario, which assumes 1614 Mha total # afforested area by 2050. # We calculated the proportion of this projection based on the percent of # afforestation to the total TLA set for the biomass crops as per 2019 land # allocation model. This proportion was applied to TLA set for this solution # allocated on forest AEZs. 'datapoints': pd.DataFrame([ [ 2014, adoption_2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2050, ds6_adoption_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year'), 'maximum': tla_bamboo }, { 'name': 'High growth projection based on Kreidenweis et al. (2016)', 'include': True, # "This projection of future adoption of afforestation is based on Kreidenweis # et al. (2016)'s ""global afforestation"" scenario, which assumes 1614 Mha total # afforested area by 2050. # We calculated the proportion of this projection based on the percent of # afforestation to the total TLA set for the biomass crops as per 2019 land # allocation model. This proportion was applied to TLA set for this solution # allocated on forest AEZs. 'datapoints': pd.DataFrame([ [ 2014, adoption_2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2050, ds7_adoption_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Linear projections based on Evans (2009) publication', 'include': True, # Projections of future adoption of forest plantations are based on the total # predicted area of planted forest in 2030 (344.5 Mha), as reported by Evans (2009), # see Table 5.5. The predictions are made according to two scenarios (Scenario 2: # "Business as Usual" and Scenario 3: "Higher Productivity") described in # Table 5.2 of the publication. 'datapoints': pd.DataFrame([ [ 2014, 294.140179643776, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2030, 344.500000000000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=0.5, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) # Manual adjustment made in spreadsheet for Drawdown 2020. for s in self.pds_ca.scenarios.values(): df = s['df'] df.loc[2014] = [ 290.462336306692, 98.1783330003811, 44.5558196042818, 113.789076382508, 17.4259450169749, 16.5131623025461, 0.0, 0.0, 0.0, 0.0 ] df.loc[2015] = [ 291.336550416405, 98.2542011640878, 44.5812227272287, 114.378174359749, 17.4918608321974, 16.6310913331414, 0.0, 0.0, 0.0, 0.0 ] df.loc[2016] = [ 292.240912741787, 98.3317866108997, 44.6073285492058, 114.988603296961, 17.5600505509306, 16.7531437337891, 0.0, 0.0, 0.0, 0.0 ] df.loc[2017] = [ 293.175447683892, 98.4110924492030, 44.6341380907823, 115.620380827999, 17.6305154458053, 16.8793208701027, 0.0, 0.0, 0.0, 0.0 ] df.loc[2018] = [ 294.140179643776, 98.4921217873836, 44.6616523725276, 116.273524586716, 17.7032567894526, 17.0096241076960, 0.0, 0.0, 0.0, 0.0 ] # Custom REF Data ca_ref_data_sources = [ { 'name': '[Type Scenario 1 Name Here (REF CASE)...]', 'include': True, 'filename': THISDIR.joinpath( 'ca_ref_data', 'custom_ref_ad_Type_Scenario_1_Name_Here_REF_CASE_.csv') }, ] self.ref_ca = customadoption.CustomAdoption( data_sources=ca_ref_data_sources, soln_adoption_custom_name=self.ac.soln_ref_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if self.ac.soln_ref_adoption_basis == 'Custom': ref_adoption_data_per_region = self.ref_ca.adoption_data_per_region( ) else: ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2018] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, ref_adoption_data_per_region=ref_adoption_data_per_region, use_first_pds_datapoint_main=False, adoption_base_year=2018, copy_pds_to_ref=False, copy_ref_datapoint=False, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla and self.ac.custom_tla_fixed_value is not None: self.c_tla = tla.CustomTLA( fixed_value=self.ac.custom_tla_fixed_value) custom_world_vals = self.c_tla.get_world_values() elif self.ac.use_custom_tla: self.c_tla = tla.CustomTLA( filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = {} self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS tla_world_2050 = self.tla_per_region.loc[2050, 'World'] ad_2018 = self.ac.ref_base_adoption['World'] # Data Source 4-5 # Zomer et al. 2014; Zomer, R. J., Trabucco, A., Coe, R., Place, F., # Van Noordwijk, M., & Xu, J. C. (2014). Trees on farms: an update and # reanalysis of agroforestry’s global extent and socio-ecological characteristics. # World Agroforestry Center Working Paper, 179. ds5_adoption = ad_2018 for y in range(2015, 2049): ds5_adoption = ds5_adoption * (1 + 0.0128) # In Excel, the 2018 adoption is used as 2014 and the 2048 adoption is used as 2050. ds5_ad_2050 = ds5_adoption # Data Source 6-9 # Thomson et al. 2018; Thomson, A., Misselbrook, T., Moxley, J., Buys, G., # Evans, C., Malcolm, H., ... & Reinsch, S. (2018). Quantifying the impact # of future land use scenarios to 2050 and beyond. Final report. ds6_cropland_percent = 0.05 global_cropland = 1411.0 remaining_cropland = global_cropland - ad_2018 ds6_ad_2018 = 248.0 # No idea why ds6 uses a different adoption in 2018 ds6_ad_2050 = (remaining_cropland * ds6_cropland_percent) + ds6_ad_2018 ds7_cropland_percent = 0.1 ds7_ad_2050 = (remaining_cropland * ds7_cropland_percent) + ad_2018 ds8_cropland_percent = 0.2 ds8_ad_2050 = (remaining_cropland * ds8_cropland_percent) + ad_2018 ds9_cropland_percent = 0.39 ds9_ad_2050 = (remaining_cropland * ds9_cropland_percent) + ad_2018 ca_pds_data_sources = [ { 'name': 'Medium, linear growth', 'include': False, 'description': ('Due to the unavailability of any historical data or future prognostication, ' 'we have assumed a 75% adoption of the solution under this scenario. ' ), 'maximum': tla_world_2050, 'datapoints': pd.DataFrame([ [2018, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 2050, 0.75 * tla_world_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0. ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'High, linear growth', 'include': False, 'description': ('Due to the unavailability of any historical data or future prognostication, ' 'we have assumed a 90% adoption of the solution under this scenario. ' ), 'maximum': tla_world_2050, 'datapoints': pd.DataFrame([ [2018, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 2050, 0.9 * tla_world_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0. ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Max, linear growth', 'include': True, 'description': ('Due to the unavailability of any historical data or future prognostication, ' 'we have assumed a 100% adoption of the solution under this scenario. ' ), 'maximum': tla_world_2050, 'datapoints': pd.DataFrame([ [2018, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 2050, 1.0 * tla_world_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0. ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': '0.64% annual adoption increase based on Zomer 2014 global increase rates of <20% tree cover on cropland', 'include': True, 'description': ('Linear projection based on current global increase rates of tree cover ' 'greater than 10% on cropland, as calculated based on Zomer et al. (2014) ' 'data. Percent of agricultural land under >10% and >20% tree cover in 2000 ' "and 2010 was calculated (see 'Zomer2014-CurrentAdoption' sheet). We " 'compared this to total global cropland (1473 Mha according to GAEZ zones) ' 'and calculated a global increase in 10-20% tree cover on cropland of 6.4% ' 'from 2000 - 2010, which was converted to an annual increase rate of 0.64 % ' 'for this scenario. '), 'maximum': tla_world_2050, 'growth_initial': pd.DataFrame( [[2018, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.]], columns=ca_pds_columns).set_index('Year'), 'growth_rate': 0.0064 }, { 'name': '1.28% annual adoption increase based on Zomer 2014 global increase rates of <10% tree cover on cropland', 'include': True, 'description': ('Linear projection based on current global increase rates of tree cover ' 'greater than 10% on cropland, as calculated based on Zomer et al. (2014) ' 'data. Percent of agricultural land under >10% and >20% tree cover in 2000 ' "and 2010 was calculated (see 'Zomer2014-CurrentAdoption' sheet). We " 'compared this to total global cropland (1473 Mha according to GAEZ zones) ' 'and calculated a global increase in 10-20% tree cover on cropland of 6.4% ' 'from 2000 - 2010, which was doubled and converted to an annual increase ' 'rate of 1.28 % for this scenario. '), 'maximum': tla_world_2050, 'datapoints': pd.DataFrame([ [2018, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, ds5_ad_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Low conversion of remaining cropland by 2050 (5% - UK medium ambition scenario)', 'include': True, 'description': ('Linear projection based on the projected rate of 5% conversion of remaining ' 'cropland by 2050 as reported by Thomson et al. (2018) for UK projections of ' 'future land-use change. Total remaining global cropland in 2014 is ' 'estimated at 1225 Mha, which was calculated based on the difference between ' 'total current cropland of 1473 Mha and the total global area already under ' 'tree intercropping. '), 'maximum': tla_world_2050, 'datapoints': pd.DataFrame([ [2018, ds6_ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, ds6_ad_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Medium conversion of remaining cropland by 2050 (10% - UK medium ambition scenario)', 'include': True, 'description': ('Linear projection based on the projected rate of 10% conversion of ' 'remaining cropland by 2050 as reported by Thomson et al. (2018) for UK ' 'projections of future land-use change. Total remaining global cropland in ' '2014 is estimated at 1225 Mha, which was calculated based on the difference ' 'between total current cropland of 1473 Mha and the total global area ' 'already under tree intercropping. '), 'maximum': tla_world_2050, 'datapoints': pd.DataFrame([ [2018, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, ds7_ad_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'High conversion of remaining cropland by 2050 (20%)', 'include': True, 'description': ('Linear projection estimating a medium current adoption rate of 20% of tree ' 'intercropping on remaining global cropland. Total remaining global cropland ' 'in 2014 is estimated at 1225 Mha, which was calculated based on the ' 'difference between total current cropland of 1473 Mha and the total global ' 'area already under tree intercropping. '), 'maximum': tla_world_2050, 'datapoints': pd.DataFrame([ [2018, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, ds8_ad_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Very high conversion of remaining cropland by 2050 (39% - current adoption in EU)', 'include': True, 'description': ('Linear projection based on current adoption rate of tree intercropping on ' 'cropland in the EU, which is 39% as reported in den Herder et al. (2017). ' 'This rate was applied to all current remaining global cropland by 2050. ' 'Total remaining global cropland in 2014 is estimated at 1225 Mha, which was ' 'calculated based on the difference between total current cropland of 1473 ' 'Mha and the total global area already under tree intercropping. ' ), 'maximum': tla_world_2050, 'datapoints': pd.DataFrame([ [2018, ad_2018, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, ds9_ad_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) for s in self.pds_ca.scenarios.values(): df = s['df'] df.loc[2012, 'World'] = 254.91717271225 df.loc[2013, 'World'] = 256.900453733641 df.loc[2014, 'World'] = 259.672330723017 df.loc[2015, 'World'] = 261.743911973822 df.loc[2016, 'World'] = 263.820565911005 df.loc[2017, 'World'] = 265.901052727049 df.loc[2018, 'World'] = 267.984718062521 # Custom REF Data ca_ref_data_sources = [ { 'name': '[Type Scenario 1 Name Here (REF CASE)...]', 'include': True, 'description': ('[PLEASE DESCRIBE IN DETAIL THE METHODOLOGY YOU USED IN THIS ANALYSIS. BE ' 'SURE TO INCLUDE ANY ADDITIONAL EQUATIONS YOU UTILIZED] '), 'filename': THISDIR.joinpath( 'ca_ref_data', 'custom_ref_ad_Type_Scenario_1_Name_Here_REF_CASE_.csv') }, ] self.ref_ca = customadoption.CustomAdoption( data_sources=ca_ref_data_sources, soln_adoption_custom_name=self.ac.soln_ref_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if self.ac.soln_ref_adoption_basis == 'Custom': ref_adoption_data_per_region = self.ref_ca.adoption_data_per_region( ) else: ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2014] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) use_first_pds_datapoint_main = False if (self.ac.name == 'PDS-100p2050-Optimum' or self.ac.name == 'PDS-100p2050-Optimum-Jan2019' or self.ac.name == 'PDS-97p2050-Drawdown-Jan2019'): use_first_pds_datapoint_main = True self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, ref_adoption_data_per_region=ref_adoption_data_per_region, use_first_pds_datapoint_main=use_first_pds_datapoint_main, adoption_base_year=2018, copy_pds_to_ref=False, copy_ref_datapoint=False, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name) self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution()) # Custom PDS Data ca_pds_data_sources = [ { 'name': 'Regional linear trend', 'include': True, 'filename': THISDIR.joinpath('ca_pds_data', 'custom_pds_ad_Regional_linear_trend.csv') }, { 'name': 'Regional max linear trend', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Regional_max_linear_trend.csv') }, { 'name': '50% of the max annual afforestation rate across the regions', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_50_of_the_max_annual_afforestation_rate_across_the_regions.csv' ) }, { 'name': '100% of the max annual afforestation rate across the regions', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_100_of_the_max_annual_afforestation_rate_across_the_regions.csv' ) }, { 'name': '200% increase for Asia and 100% for the other regions', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_200_increase_for_Asia_and_100_for_the_other_regions.csv' ) }, { 'name': 'Global high - medium early adoption', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Global_high_medium_early_adoption.csv') }, { 'name': 'Global high - high early adoption', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Global_high_high_early_adoption.csv') }, { 'name': 'Global max - max early adoption', 'include': False, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Global_max_max_early_adoption.csv') }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None ht_ref_adoption_initial = pd.Series([ 297.78662238675923, 98.41788764519316, 44.68660278943361, 119.60170249905194, 17.61544828747855, 17.464981165602055, 0.0, 0.0, 0.0, 0.0 ], index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2014] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_regions, ht_percentages = zip( *self.ac.pds_adoption_final_percentage) ht_pds_adoption_final_percentage = pd.Series(list(ht_percentages), index=list(ht_regions)) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2014] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution())
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla: self.c_tla = tla.CustomTLA( filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = {} self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS tla_2050 = self.tla_per_region.loc[2050] total_grazing_area = 2700.0 ds1_percentages = pd.Series([ 0.0, 0.413624302911244, 0.0, 0.070550343761321, 0.138183856774756, 0.845901090636972, 0.0, 0.0, 0.0, 0.0 ], index=dd.REGIONS) ds1_2050 = tla_2050 * ds1_percentages ds1_2050['World'] = ds1_2050.sum() ds2_percentages = pd.Series([ 0.0, 0.596920577658838, 0.0, 0.0836983623713848, 0.178254518319696, 0.933216308519849, 0.0, 0.0, 0.0, 0.0 ], index=dd.REGIONS) ds2_2050 = tla_2050 * ds2_percentages ds2_2050['World'] = ds2_2050.sum() ds3_percentages = pd.Series([ 0.494785212286615, 0.494785212286615, 0.0, 0.0743985443301198, 0.153620863162148, 0.853238399576085, 0.0, 0.0, 0.0, 0.0 ], index=dd.REGIONS) ds3_2050 = tla_2050 * ds3_percentages # Data source 4 is described as scenario 1 with 70% adoption by 2030, but in actual # implementation it does not make the World be a sum of the regions. Instead, it # makes the World use the percentage of the OECD90 region. ds4_percentages = pd.Series([ 0.413624302911244, 0.413624302911244, 0.0, 0.070550343761321, 0.138183856774756, 0.845901090636972, 0.0, 0.0, 0.0, 0.0 ], index=dd.REGIONS) ds4_2050 = tla_2050 * ds4_percentages # Data source 5 is described as scenario 2 with 70% adoption by 2030, but in actual # implementation it does not make the World be a sum of the regions. Instead, it # makes the World use the percentage of the OECD90 region. ds5_percentages = pd.Series([ 0.596920577658838, 0.596920577658838, 0.0, 0.0836983623713848, 0.178254518319696, 0.933216308519849, 0.0, 0.0, 0.0, 0.0 ], index=dd.REGIONS) ds5_2050 = tla_2050 * ds5_percentages # SOURCE: Organic World 2009 Table 47, Organic World 2019 and FAOStat. # Region, Organic grazing area 2009 Mha, Organic grazing area 2009 %, # Organic grazing area 2019 Mha, Organic grazing area 2019 % # Africa, 0.03, 0%, 0.08, 0% # Asia, 0.6, 0%, 1, 0% # EU, 2.1, 3%, 5.7, 8% # Latin America, 0.006, 0%, 4.9, 3% # N. America, 1.1, 0%, 1.4, 0% # Oceania, 11.7, 8%, 34.9, 24% # Global Total, 15.5, 0.50%, 48, 2% ds7_mha_2009 = 15.5 ds7_mha_2019 = 48 ds7_growth_rate = (ds7_mha_2019 - ds7_mha_2009) / (2019 - 2009) # Note that Excel says the ref_base_adoption is for 2018, when computing a growth # projection it uses it as 2014. We do the same here, bug-for-bug compatibility. ds7_2050 = self.ac.ref_base_adoption['World'] + (ds7_growth_rate * (2050 - 2014)) # Costa Rica proposes a 20-40% increase in 20 years; increase managed grazing # area by 1-2% per year (Navarro 2015). ds8_2050 = 0.4 * total_grazing_area # Brazil INDC proposes to restore 15 Mha of degraded grassland, (20% of national # grazing area), (Federative Republic of Brazil 2015) ds9_2050 = 0.2 * total_grazing_area # Sá (2016) projects an increase in restoration of degraded pasture in Latin America # from 10Mha in 2015 to 20Mha in 2020. That’s 11% of 177.4 Mha grazing land for # South America (FAOstat 2019) ds10_2050 = 0.11 * total_grazing_area ca_pds_data_sources = [ { 'name': 'Low Growth, Linear Trend', 'include': True, # The adoption of managed grazing is projected based on weighted "average, medium, # and high" growth rates, calculated based on the available country specifc area # under managed grazing and the region specific total grazing area (Using Henderson # et al 2015 estimates). This scenario builds the future projection based on the # low growth rate. 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [2050] + ds1_2050.tolist(), ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'High Growth, Linear Trend', 'include': True, # The adoption of managed grazing is projected based on weighted "average, medium, # and high" growth rates, calculated based on the available country specifc area # under managed grazing and the region specific total grazing area (Using Henderson # et al 2015 estimates). This scenario builds the future projection based on the # high growth rate. 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [2050] + ds2_2050.tolist(), ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Medium Growth, Linear Trend', 'include': True, # The adoption of managed grazing is projected based on weighted "average, medium, # and high" growth rates, calculated based on the available country specifc area # under managed grazing and the region specific total grazing area (Using Henderson # et al 2015 estimates). This scenario builds the future projection based on the # medium growth rate. 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [2050] + ds3_2050.tolist(), ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Low High Early Growth, Linear Trend', 'include': True, # This is scenario 1 with 70% adoption by 2030. 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [2030] + (0.7 * ds4_2050).tolist(), [2050] + ds4_2050.tolist(), ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'High High Early Growth, Linear Trend', 'include': True, # This is scenario 2 with 70% adoption by 2030. 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [2030] + (0.7 * ds5_2050).tolist(), [2050] + ds5_2050.tolist(), ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Medium High Early Growth, Linear Trend', 'include': True, # This is scenario 3 with 70% adoption by 2030. 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [2030] + (0.7 * ds3_2050).tolist(), [2050] + ds3_2050.tolist(), ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Linear growth, based on Organic Grazing Historic Growth', 'include': True, # The future adoption of managed grazing is projected based on the organic # grazing historic growth rate using the linear trend. 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [2050] + [ds7_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Future commitments, max growth', 'include': True, # Future adoption of managed grazing is projected based on the country/regional # commitments as given in the table below. It is assumed that the country/regional # level trends will be adopted at the global level. This scenario is based on the # high end commitments given for the Costa Rica. 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [ 2050, ds8_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Future Commitments, moderate growth', 'include': True, # Future adoption of managed grazing is projected based on the country/regional # commitments as given in the table below. It is assumed that the country/regional # level trends will be adopted at the global level. This scenario is based on the # high end commitments given for the Brazil. 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [ 2050, ds9_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Future Commitments, low growth', 'include': True, # Future adoption of managed grazing is projected based on the country/regional # commitments as given in the table below. It is assumed that the country/regional # level trends will be adopted at the global level. This scenario is based on the # high end commitments given for the Latin America. 'datapoints': pd.DataFrame([ [2018] + list(self.ac.ref_base_adoption.values()), [ 2050, ds10_2050, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) for s in self.pds_ca.scenarios.values(): df = s['df'] for y in range(2012, 2019): df.loc[y] = [ 71.6320447618946, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2014] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, use_first_pds_datapoint_main=True, adoption_base_year=2018, copy_pds_to_ref=False, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla and self.ac.custom_tla_fixed_value is not None: self.c_tla = tla.CustomTLA( fixed_value=self.ac.custom_tla_fixed_value) custom_world_vals = self.c_tla.get_world_values() elif self.ac.use_custom_tla: self.c_tla = tla.CustomTLA( filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = {} self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_data_sources = [ { 'name': 'Constant degradation rate, 100% adoption by 2050, linear', 'include': True, 'description': ('The TLA_Envelope sheet was used to compute the annual degradation of the ' 'wetland. The annual protection rate was adjusted so that 100% of the ' 'remaining wetlands in 2050 were protected. This adoption is less than 100% ' 'of the wetlands in 2014. '), 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Constant_degradation_rate_100_adoption_by_2050_linear.csv' ) }, { 'name': 'Constant degradation rate, 80% adoption by 2050, linear', 'include': True, 'description': ('The TLA_Envelope sheet was used to compute the annual degradation of the ' 'wetland. The annual protection rate was adjusted so that 80% of the ' 'remaining wetlands in 2050 were protected. This is the same as Scenario 1 ' 'except for a smaller percentage protected by 2050. '), 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Constant_degradation_rate_80_adoption_by_2050_linear.csv' ) }, { 'name': 'Constant degradation rate, 100% adoption by 2030, linear', 'include': True, 'description': ('The TLA_Envelope sheet was used to compute the annual degradation of the ' 'wetland. The annual protection rate was adjusted so that 100% of the ' 'remaining wetlands in 2030 were protected. Because there is 100% ' 'protection in 2030, all values after that are constant. '), 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Constant_degradation_rate_100_adoption_by_2030_linear.csv' ) }, { 'name': 'Constant degradation rate, 80% adoption by 2030, linear', 'include': True, 'description': ('The TLA_Envelope sheet was used to compute the annual degradation of the ' 'wetland. The annual protection rate was adjusted so that 80% of the ' 'remaining wetlands in 2030 were protected. Because there is only 80% ' 'protection in 2030 linear interpolation was used to bridge the 2014, 2030, ' 'and 2050 values. '), 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Constant_degradation_rate_80_adoption_by_2030_linear.csv' ) }, { 'name': 'Variable degradation rate, 100% adoption by 2050, linear', 'include': True, 'description': ('The TLA_Envelope sheet was used to compute the annual degradation of the ' 'wetland. The annual protection rate was adjusted so that 100% of the ' 'remaining wetlands in 2050 were protected. This adoption is less than 100% ' 'of the wetlands in 2014. This is the same as Scenario 1 except an annual ' 'reduction in degradation rate is applied. '), 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Variable_degradation_rate_100_adoption_by_2050_linear.csv' ) }, { 'name': 'Variable degradation rate, 80% adoption by 2050, linear', 'include': True, 'description': ('The TLA_Envelope sheet was used to compute the annual degradation of the ' 'wetland. The annual protection rate was adjusted so that 80% of the ' 'remaining wetlands in 2050 were protected. This is the same as Scenario 5 ' 'except for a smaller percentage protected by 2050. '), 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Variable_degradation_rate_80_adoption_by_2050_linear.csv' ) }, { 'name': 'Variable degradation rate, 100% adoption by 2030, linear', 'include': True, 'description': ('The TLA_Envelope sheet was used to compute the annual degradation of the ' 'wetland. The annual protection rate was adjusted so that 100% of the ' 'remaining wetlands in 2030 were protected. Because there is 100% ' 'protection in 2030, all values after that are constant. This is the same as ' 'Scenario 3 except a variable degradation rate is used. '), 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Variable_degradation_rate_100_adoption_by_2030_linear.csv' ) }, { 'name': 'Variable degradation rate, 80% adoption by 2030, linear', 'include': True, 'description': ('The TLA_Envelope sheet was used to compute the annual degradation of the ' 'wetland. The annual protection rate was adjusted so that 80% of the ' 'remaining wetlands in 2030 were protected. Because there is only 80% ' 'protection in 2030 linear interpolation was used to bridge the 2014, 2030, ' 'and 2050 values. This scenario is the same as Scenario 4 except a variable ' 'degradation rate is used. '), 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Variable_degradation_rate_80_adoption_by_2030_linear.csv' ) }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2014] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, use_first_pds_datapoint_main=False, adoption_base_year=2018, copy_pds_to_ref=False, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, tot_red_in_deg_land=self.ua. cumulative_reduction_in_total_degraded_land(), pds_protected_deg_land=self.ua. pds_cumulative_degraded_land_protected(), ref_protected_deg_land=self.ua. ref_cumulative_degraded_land_protected(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla: self.c_tla = tla.CustomTLA(filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region(self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ ['param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA'], ['trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium'], ['growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE'], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = { } self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS # Current commitments made under Bonn Challenge (taken on 16/12/2019) bonn_mha = 149.012768 # % current commitments are projects in temperate thermal moisture regime temperate_percent = 0.198187597540394 # % current commitments in temperate thermal moisture regime available are # for intact forest restoration intact_percent = 0.4423 # Calculated by subtracting the total degraded land suitable for tropical # forest restoration (304 Mha) and boreal (46 Mha) from the WRI estimates # of 500 Mha as the potential global area for forest restoration # TODO: the spatial-aez work in late 2019 provided direct data input of temperate # forest area, distinct from boreal and tropical, which could be used here. title = 'Percent of Degraded Land Suitable for Intact Temperate Forest Restoration' intact_mha = self.ac.lookup_vma(vma_title=title) if intact_mha is None: intact_mha = VMAs[title].avg_high_low(key='mean') # Max land Expected total land commited under Bonn Challenge and NY Declaration max_land = 350.0 # Mha of current commitments in temperate thermal moisture regime committed_mha = bonn_mha * temperate_percent # Mha of total degraded land available for new commitments in # temperate thermal moisture regime, from New York Declaration nydf_new_mha = (max_land - bonn_mha) * temperate_percent # WRI prediction for max available land area wri_new_mha = intact_mha - committed_mha # DATA SOURCE 1, using NYDF land area ds1_future_commit = 1.0 ds1_2030 = (committed_mha * intact_percent) + (nydf_new_mha * ds1_future_commit) # future land area with WRI prediction plus 44.23% and 100% commitment future_mha_44p = (committed_mha * intact_percent) + (wri_new_mha * 0.4423) future_mha_100p = (committed_mha * intact_percent) + (wri_new_mha * 1.0) ca_pds_data_sources = [ {'name': 'Optimistic-Achieve Commitment in 15 years w/ 100% intact, (Charlotte Wheeler, 2016)', 'include': True, 'description': ( 'The adoption scenarios are calculated using the linear trendline based ' 'on: (1) Current commitments to date, (2) Potential future commitments, (3) ' 'The proportion of committee land restored to intact forest (100% or 44.23%), ' 'and (4) The year commitments are realised (2030, 2045 or 2060). In this ' 'scenario, NYDF prediction for max area available for temperate forest ' 'restoration, 100% new commitment for intact forest and year 2030 was ' 'considered when the commitments will be realized.'), 'maximum': intact_mha, 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2030, ds1_2030, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2031, ds1_2030, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ], columns=ca_pds_columns).set_index('Year')}, {'name': 'Optimistic-Achieve Commitment in 15 years w/ 100% intact, WRI estimates (Charlotte Wheeler, 2016)', 'include': True, 'description': ( 'The adoption scenarios are calculated using the linear trendline based ' 'on: (1) Current commitments to date, (2) Potential future commitments, (3) ' 'The proportion of committee land restored to intact forest (100% or 44.23%), ' 'and (4) The year commitments are realised (2030, 2045 or 2060). In this ' 'scenario, WRI prediction for max area available for temperate forest ' 'restoration, 100% new commitment for intact forest and year 2030 was ' 'considered when the commitments will be realized. '), 'maximum': intact_mha, 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2030, future_mha_100p, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2031, future_mha_100p, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ], columns=ca_pds_columns).set_index('Year')}, {'name': 'Conservative-Achieve Commitment in 15 years w/ 44.2% intact, (Charlotte Wheeler,2016)', 'include': True, 'description': ( 'The adoption scenarios are calculated using the linear trendline based ' 'on: (1) Current commitments to date, (2) Potential future commitments, (3) ' 'The proportion of committee land restored to intact forest (100% or 44.23%), ' 'and (4) The year commitments are realised (2030, 2045 or 2060). In this ' 'scenario, WRI prediction for max area available for temperate forest ' 'restoration, 44.23% new commitment for intact forest and year 2030 was ' 'considered when the commitments will be realized. '), 'maximum': intact_mha, 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2030, future_mha_44p, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2031, future_mha_44p, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ], columns=ca_pds_columns).set_index('Year')}, {'name': 'Conservative-Achieve Commitment in 15 years w/ 44.2% intact with continued growth post-2030, (Charlotte Wheeler,2016)', 'include': True, 'description': ( 'The adoption scenarios are calculated using the linear trendline based ' 'on: (1) Current commitments to date, (2) Potential future commitments, (3) ' 'The proportion of committee land restored to intact forest (100% or 44.23%), ' 'and (4) The year commitments are realised (2030, 2045 or 2060). In this ' 'scenario, WRI prediction for max area available for temperate forest ' 'restoration, 44.23% new commitment for intact forest and year 2030 was ' 'considered when the commitments will be realized, with continued growth ' 'in post 2030.'), 'maximum': intact_mha, 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2030, future_mha_44p, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ], columns=ca_pds_columns).set_index('Year')}, {'name': 'Conservative-Achieve Commitment in 30 years w/ 100% intact, (Charlotte Wheeler,2016)', 'include': True, 'description': ( 'The adoption scenarios are calculated using the linear trendline based ' 'on: (1) Current commitments to date, (2) Potential future commitments, (3) ' 'The proportion of committee land restored to intact forest (100% or 44.23%), ' 'and (4) The year commitments are realised (2030, 2045 or 2060). In this ' 'scenario, WRI prediction for max area available for temperate forest ' 'restoration, 100% new commitment for intact forest and year 2045 was ' 'considered when the commitments will be realized. '), 'maximum': intact_mha, 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2045, future_mha_100p, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2046, future_mha_100p, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ], columns=ca_pds_columns).set_index('Year')}, {'name': 'Conservative-Achieve Commitment in 30 years w/ 44.2% intact, (Charlotte Wheeler,2016)', 'include': True, 'description': ( 'The adoption scenarios are calculated using the linear trendline based ' 'on: (1) Current commitments to date, (2) Potential future commitments, (3) ' 'The proportion of committee land restored to intact forest (100% or 44.23%), ' 'and (4) The year commitments are realised (2030, 2045 or 2060). In this ' 'scenario, WRI prediction for max area available for temperate forest ' 'restoration, 44.23% new commitment for intact forest and year 2045 was ' 'considered when the commitments will be realized. '), 'maximum': intact_mha, 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2045, future_mha_44p, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2046, future_mha_44p, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ], columns=ca_pds_columns).set_index('Year')}, {'name': 'Conservative-Achieve Commitment in 30 years w/ 44.2% intact with continued growth, (Charlotte Wheeler,2016)', 'include': True, 'description': ( 'The adoption scenarios are calculated using the linear trendline based ' 'on: (1) Current commitments to date, (2) Potential future commitments, (3) ' 'The proportion of committee land restored to intact forest (100% or 44.23%), ' 'and (4) The year commitments are realised (2030, 2045 or 2060). In this ' 'scenario, WRI prediction for max area available for temperate forest ' 'restoration, 44.23% new commitment for intact forest and year 2045 was ' 'considered when the commitments will be realized, with continued growth ' 'in post 2045. '), 'maximum': intact_mha, 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2045, future_mha_44p, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ], columns=ca_pds_columns).set_index('Year')}, {'name': 'Conservative-Achieve Commitment in 45 years w/ 100% intact (Charlotte Wheeler,2016)', 'include': True, 'description': ( 'The adoption scenarios are calculated using the linear trendline based ' 'on: (1) Current commitments to date, (2) Potential future commitments, (3) ' 'The proportion of committee land restored to intact forest (100% or 44.23%), ' 'and (4) The year commitments are realised (2030, 2045 or 2060). In this ' 'scenario, WRI prediction for max area available for temperate forest ' 'restoration, 100% new commitment for intact forest and year 2060 was ' 'considered when the commitments will be realized. '), 'maximum': intact_mha, 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2060, future_mha_100p, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ], columns=ca_pds_columns).set_index('Year')}, {'name': 'Conservative-Achieve Commitment in 45 years w/ 44.2% intact (Charlotte Wheeler,2016)', 'include': True, 'description': ( 'The adoption scenarios are calculated using the linear trendline based ' 'on: (1) Current commitments to date, (2) Potential future commitments, (3) ' 'The proportion of committee land restored to intact forest (100% or 44.23%), ' 'and (4) The year commitments are realised (2030, 2045 or 2060). In this ' 'scenario, WRI prediction for max area available for temperate forest ' 'restoration, 44.23% new commitment for intact forest and year 2060 was ' 'considered when the commitments will be realized. '), 'maximum': intact_mha, 'datapoints': pd.DataFrame([ [2014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2060, future_mha_44p, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ], columns=ca_pds_columns).set_index('Year')}, ] self.pds_ca = customadoption.CustomAdoption(data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region() pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region() pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series( list(self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * (ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2014] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables(ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, use_first_pds_datapoint_main=True, adoption_base_year=2018, copy_pds_to_ref=False, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption(ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted=self.ua.soln_net_annual_funits_adopted() self.fc = firstcost.FirstCost(ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost(ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc.soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc.soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc.conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc.soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc.conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs(ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua.direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs(ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua.soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua.soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua.direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua.direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua.direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua.direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua.soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla: self.c_tla = tla.CustomTLA( filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = {} self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS ad_vma = VMAs['Future adoption (million hectares)'] ad_cached = self.ac.lookup_vma( vma_title='Future adoption (million hectares)') adoption_2050_mean = ad_cached if ad_cached else ad_vma.avg_high_low( key='mean') adoption_2050_high = ad_vma.avg_high_low(key='high') ca_pds_data_sources = [ { 'name': 'Average growth, linear trend', 'include': True, # In this scenario, the future adoption of the solution was based on the average # percent future adoption of perennial bioenergy crops as derived from the VMA sheet. 'datapoints': pd.DataFrame([ [ 2014, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [ 2018, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [ 2050, adoption_2050_mean, 0., 0., 0., 0., 0., 0., 0., 0., 0. ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Medium growth, linear trend', 'include': True, # In this scenario, the future adoption of the solution was based on the high # percent future adoption of perennial bioenergy crops as derived from the VMA sheet. 'datapoints': pd.DataFrame([ [ 2014, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [ 2018, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [ 2050, adoption_2050_high, 0., 0., 0., 0., 0., 0., 0., 0., 0. ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Max growth, linear trend', 'include': True, # This scenario assumes that perennial bioenergy crops will be cultivated on # 100% of the total land allocated to this solution by 2050. 'datapoints': pd.DataFrame([ [ 2014, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [ 2018, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [ 2050, self.tla_per_region.loc[2050, 'World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Average early growth, linear trend', 'include': True, # This is scenario 1, with the assumption that 70% of the total adoption will # be achieved by 2030. 'datapoints': pd.DataFrame([ [ 2014, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [ 2018, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [ 2030, 0.7 * adoption_2050_mean, 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [ 2050, adoption_2050_mean, 0., 0., 0., 0., 0., 0., 0., 0., 0. ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Medium early growth, linear trend', 'include': True, # This is scenario 2, with the assumption that 70% of the total adoption will # be achieved by 2030. 'datapoints': pd.DataFrame([ [ 2014, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [ 2018, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [ 2030, 0.7 * adoption_2050_high, 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [ 2050, adoption_2050_high, 0., 0., 0., 0., 0., 0., 0., 0., 0. ], ], columns=ca_pds_columns).set_index('Year') }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=None) ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2018] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, use_first_pds_datapoint_main=True, adoption_base_year=2018, copy_pds_to_ref=True, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=False) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution()) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = { 'Raw Data for ALL LAND TYPES': { 'Project Drawdown 2018_Direct Seeded Rice Area (2nd Polynomial Growth)': THISDIR.joinpath( 'ad', 'ad_Project_Drawdown_2018_Direct_Seeded_Rice_Area_2nd_Polynomial_Growth.csv' ), 'Project Drawdown 2018_Rice Area under water management (Linear Growth)': THISDIR.joinpath( 'ad', 'ad_Project_Drawdown_2018_Rice_Area_under_water_management_Linear_Growth.csv' ), }, } self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS tla_2050 = self.tla_per_region.loc[2050, 'World'] ad_2018 = self.ac.ref_base_adoption['World'] # 2050 adoption based on Project Drawdown 2018 Direct Seeded # Rice Area (2nd order Polynomial Growth); Refer "Adoption Data" sheet ad_2050_2ndpoly = 69.9380489958066000 # 2050 adoption based on Project Drawdown 2018_Rice Area under water # management (Linear Growth); Refer "Adoption Data" sheet ad_2050_linear = 170.3736841446970000 # 2050 adoption based on Project Drawdown 2018_Rice Area under water # management (Linear Growth, divided by 2); Refer "Adoption Data" sheet ad_2050_linear_half = 85.1868420723484000 ad_2050_avg = (ad_2050_2ndpoly + ad_2050_linear + ad_2050_linear_half) / 3.0 ad_2050_min = min( [ad_2050_2ndpoly, ad_2050_linear, ad_2050_linear_half]) ad_2050_max = max( [ad_2050_2ndpoly, ad_2050_linear, ad_2050_linear_half]) ca_pds_data_sources = [ { 'name': 'Medium Growth', 'include': True, 'description': ('Future adoption of improved rice cultivation is projected based on the ' 'historical growth rate of direct seeded rice and water management available ' 'in the literature (refer "Current Adoption_LR" sheet). The historical data ' 'was interpolated, a 2nd order polynomial growth was considered for direct ' 'seeded rice data and linear growth for the water management, The ' 'interpolated data is then placed in the "adoption data" sheet. The future ' 'adoption in the present scenario is based on the "average adoption value ' 'projected for the year 2050" based on the given data set. '), 'datapoints': pd.DataFrame([ [ 2018, ad_2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2050, ad_2050_avg, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Low Growth', 'include': True, 'description': ('Future adoption of improved rice cultivation is projected based on the ' 'historical growth rate of direct seeded rice and water management available ' 'in the literature (refer "Current Adoption_LR" sheet). The historical data ' 'was interpolated, a 2nd order polynomial growth was considered for direct ' 'seeded rice data and linear growth for the water management, The ' 'interpolated data is then placed in the "adoption data" sheet. The future ' 'adoption in the present scenario is based on the "minimum adoption value ' 'projected for the year 2050" based on the given data set. '), 'datapoints': pd.DataFrame([ [ 2018, ad_2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2050, ad_2050_min, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'High Growth', 'include': True, 'description': ('Future adoption of improved rice cultivation is projected based on the ' 'historical growth rate of direct seeded rice and water management available ' 'in the literature (refer "Current Adoption_LR" sheet). The historical data ' 'was interpolated, a 2nd order polynomial growth was considered for direct ' 'seeded rice data and linear growth for the water management, The ' 'interpolated data is then placed in the "adoption data" sheet. The future ' 'adoption in the present scenario is based on the "maximum adoption value ' 'projected for the year 2050" based on the given data set. '), 'datapoints': pd.DataFrame([ [ 2018, ad_2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2050, ad_2050_max, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Medium Growth, Early Adoption', 'include': True, 'description': ('Future adoption of improved rice cultivation is projected based on the ' 'historical growth rate of direct seeded rice and water management available ' 'in the literature (refer "Current Adoption_LR" sheet). The historical data ' 'was interpolated, a 2nd order polynomial growth was considered for direct ' 'seeded rice data and linear growth for the water management, The ' 'interpolated data is then placed in the "adoption data" sheet. The future ' 'adoption in the present scenario is based on the "average adoption value ' 'projected for the year 2050" based on the given data set. In addition, it ' 'is also assumed that 75% of the projected adoption for the year 2050 will ' 'be achieved by 2030. '), 'datapoints': pd.DataFrame([ [ 2018, ad_2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2030, 0.75 * ad_2050_avg, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2050, ad_2050_avg, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Low Growth, Early Adoption', 'include': True, 'description': ('Future adoption of improved rice cultivation is projected based on the ' 'historical growth rate of direct seeded rice and water management available ' 'in the literature (refer "Current Adoption_LR" sheet). The historical data ' 'was interpolated, a 2nd order polynomial growth was considered for direct ' 'seeded rice data and linear growth for the water management, The ' 'interpolated data is then placed in the "adoption data" sheet. The future ' 'adoption in the present scenario is based on the "minimum adoption value ' 'projected for the year 2050" based on the given data set. In addition, it ' 'is also assumed that 75% of the projected adoption for the year 2050 will ' 'be achieved by 2030. '), 'datapoints': pd.DataFrame([ [ 2018, ad_2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2030, 0.75 * ad_2050_min, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2050, ad_2050_min, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'High Growth, Early Adoption', 'include': False, 'description': ('Future adoption of improved rice cultivation is projected based on the ' 'historical growth rate of direct seeded rice and water management available ' 'in the literature (refer "Current Adoption_LR" sheet). The historical data ' 'was interpolated, a 2nd order polynomial growth was considered for direct ' 'seeded rice data and linear growth for the water management, The ' 'interpolated data is then placed in the "adoption data" sheet. The future ' 'adoption in the present scenario is based on the "maximum adoption value ' 'projected for the year 2050" based on the given data set. In addition, it ' 'is also assumed that 75% of the projected adoption for the year 2050 will ' 'be achieved by 2030. '), 'datapoints': pd.DataFrame([ [ 2018, ad_2018, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2030, 0.75 * ad_2050_max, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], [ 2050, ad_2050_max, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], ], columns=ca_pds_columns).set_index('Year') }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) for s in self.pds_ca.scenarios.values(): df = s['df'] df.loc[2014, 'World'] = 31.2753335238409000 df.loc[2015, 'World'] = 33.6257358946259000 df.loc[2016, 'World'] = 35.9761382654110000 df.loc[2017, 'World'] = 38.3265406361960000 df.loc[2018, 'World'] = 40.6769430069810000 # Custom REF Data ca_ref_data_sources = [ { 'name': '[Type Scenario 1 Name Here (REF CASE)...]', 'include': True, 'description': 'No description entered.', 'filename': THISDIR.joinpath( 'ca_ref_data', 'custom_ref_ad_Type_Scenario_1_Name_Here_REF_CASE_.csv') }, ] self.ref_ca = customadoption.CustomAdoption( data_sources=ca_ref_data_sources, soln_adoption_custom_name=self.ac.soln_ref_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if self.ac.soln_ref_adoption_basis == 'Custom': ref_adoption_data_per_region = self.ref_ca.adoption_data_per_region( ) else: ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2018] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, ref_adoption_data_per_region=ref_adoption_data_per_region, use_first_pds_datapoint_main=False, adoption_base_year=2018, copy_pds_to_ref=False, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=False) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla: self.c_tla = tla.CustomTLA( filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = { 'Raw Data for ALL LAND TYPES': { 'Nair 2012 & Lal et al. 2018': THISDIR.joinpath('ad', 'ad_Nair_2012_Lal_et_al__2018.csv'), }, } self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS tla_2050 = self.tla_per_region.loc[2050, 'World'] adoption_vma = VMAs['Current Adoption'] adoption_2018 = adoption_vma.avg_high_low(key='mean') # SOURCE: den Herder, M., Moreno, G., Mosquera-Losada, R. M., Palma, J. H., Sidiropoulou, # A., Freijanes, J. J. S., ... & Papanastasis, V. P. (2017). Current extent and # stratification of agroforestry in the European Union. Agriculture, Ecosystems & # Environment, 241, 121-132. ds4_silvo_of_grassland = 0.35 ds4_total_grassland = 3621.237045 ds4_potential_adoption = ds4_silvo_of_grassland * ds4_total_grassland ds4_adopt_2050 = 0.6 * ds4_potential_adoption # SOURCE: Somarriba, E., Beer, J., Alegre-Orihuela, J., Andrade, H. J., Cerda, R., DeClerck, # F., ... & Krishnamurthy, L. (2012). Mainstreaming agroforestry in Latin America. In # Agroforestry-The Future of Global Land Use (pp. 429-453). Springer, Dordrecht. ds5_adoption_rate = 0.45 pg_vma = VMAs['Total Pasture/Grazing Area'] pasture_grassland_area = pg_vma.avg_high_low(key='mean') ds5_potential_adoption = ds5_adoption_rate * pasture_grassland_area ds5_adopt_2050 = 0.6 * ds5_potential_adoption # SOURCE: Holman et al., 2004, http://www.lrrd.org/lrrd16/12/holm16098.htm growth_initial = pd.DataFrame( [[2018] + list(self.ac.ref_base_adoption.values())], columns=ca_pds_columns).set_index('Year') ds6_rate = 0.006 # SOURCE: Holman et al., 2004, http://www.lrrd.org/lrrd16/12/holm16098.htm ds7_rate = 0.013 ca_pds_data_sources = [ { 'name': 'Linear trend based on Zomers >30% tree cover percent area applied in grassland area', 'include': False, # This is a proxy adoption scenario which is created in the absence of any data # available either on historical growth rate of silvopasture or any future # projections. Thus, the present scenario builds the future adoption using the # Zoomer 2014 information available on tree coverage in the agricultural area. # Country level data on agricultural area with > 30 percent tree cover was available # at Zomer 2014. This data was compiled at the Project Drawdown regions, which is # then used to get their percent with respect to the total agricultural area. # Those percentages were then applied on the grassland area to get the regional # grassland area under >30 percent tree cover. The future adoption of the silvopasture # area under was thus projected based on the regional linear trend applied to the # grassland area with >30 percent tree coverage. The projections were based on the # regional linear trend. (Refer PD region wise - silvopasture sheet) 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Linear_trend_based_on_Zomers_30_tree_cover_percent_area_applied_in_grassland_area.csv' ) }, { 'name': 'Linear trend based on Zomers >30% tree cover percent area and conversion of >10% are to 30% tree cover area applied in grassland area', 'include': False, # In this scenario, the future area in silvopasture is projected based on scenario # one, in addition it was assumed that there will be some extra area available for # silvopasture by the conversion of 0-10 percent/11-20 percent tree coverage # grassland area to >30 percent tree coverage areas as required for a silvopasture # system. The projections are based on regional linear trends. 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Linear_trend_based_on_Zomers_30_tree_cover_percent_area_and_conversion_of_10_are_to_30_t_d419700f.csv' ) }, { 'name': 'Linear Interpolation for Adoption Data based on Nair 2012 & Lal et al. 2018', 'include': True, # In the absence of comprehensive historical data for silvopasture adoption, this # scenario uses available global adoption estimates reported in peer-reviewed # publications. Data points ffrom 2012 (Nair 2012) and 2018 (Lal et al. 2018) were # used for a linear interpolation of future adoption based on historic expansion of # silvopasture adoption. 'datapoints': pd.DataFrame([ [ 2018, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [ 2050, 1083.33333333333, 0., 0., 0., 0., 0., 0., 0., 0., 0. ], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Medium interpolation based on current adoption, linear trend (high regional proportion of grazing land under silvopasture)', 'include': True, # Future area in silvopasture is projected based on the proportion of current area # of grazing or pasture land under silvopasture practice in the EU, which currently # has the highest regional proportion of grazing land under silvopasture worldwide # (35%), as reported by den Herder et al 2017 (see VMA, Variable 31). This percentage # was applied to the total global grazing area to obtain a medium estimate of # potential projected area for future silvopasture adoption. This scenario assumes # 60 percent of future silvopasture adoption by 2050. 'datapoints': pd.DataFrame([ [ 2018, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [2050, ds4_adopt_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'High interpolation based on current adoption, linear trend (high national proportion of grazing land under silvopasture)', 'include': True, # Future area in silvopasture is projected based on the proportion of current area # of grazing or pasture land under silvopasture practice in Nicaragua, which currently # has the highest national proportion of grazing land under silvopasture worldwide # (45%), as reported by Somarriba et al 2012 (see VMA, Variable 31). This percentage # was applied to the total global grazing area to obtain a high estimate of potential # projected area for future silvopasture adoption. This scenario assumes 60 percent # of future silvopasture adoption by 2050. 'datapoints': pd.DataFrame([ [ 2018, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [2050, ds5_adopt_2050, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Low growth, linear trend (based on improved pasture area)', 'include': True, # This is a proxy adoption scenario which is created in the absence of any data # available either on historical growth rate of silvopasture or any future projections # on silvopasture. In this scenario future adoption of silvopasture area was projected # using the Thorton 2010 future adoption rates given for improved pasture. The # silvopasture adoption is projected based on the average annual adoption percent # (0.60%) increase in the improved pasture area given for the five countries (Mexico, # Honduras, Nicaragua, Costa Rica, and Panama) by Holman et al 2004 and reported by # Thorton et al 2010. With the limitation of data at the regional level, the # projections are made only at the global scale. 'growth_rate': ds6_rate, 'growth_initial': growth_initial }, { 'name': 'High growth, linear trend (based on improved pasture area)', 'include': True, # This is a proxy adoption scenario which is created in the absence of any data # available either on historical growth rate of silvopasture or any future projections # on silvopasture. In this scenario future adoption of silvopasture area was projected # using the Thorton 2010 future adoption rates given for improved pasture. The # silvopasture adoption is projected based on the maximum annual adoption percent # (1.30%) increase in the improved pasture area given for the five countries (Mexico, # Honduras, Nicaragua, Costa Rica, and Panama) by Holman et al 2004 and reported by # Thorton et al 2010. With the limitation of data at the regional level, the # projections are made only at the global scale. 'growth_rate': ds7_rate, 'growth_initial': growth_initial }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) # Manual adjustment made in spreadsheet for Drawdown 2020. for source in ca_pds_data_sources: if 'filename' in source: # only the interpolated sources are adjusted continue name = source['name'] s = self.pds_ca.scenarios[name] df = s['df'] df.loc[2012, 'World'] = 450.0 df.loc[2013, 'World'] = 466.666666666667 df.loc[2014, 'World'] = 483.333333333333 df.loc[2015, 'World'] = 500.0 df.loc[2016, 'World'] = 516.666666666667 df.loc[2017, 'World'] = 533.333333333333 df.loc[2018, 'World'] = 550.0 # Custom REF Data ca_ref_data_sources = [ { 'name': '[Type Scenario 1 Name Here (REF CASE)...]', 'include': True, 'filename': THISDIR.joinpath( 'ca_ref_data', 'custom_ref_ad_Type_Scenario_1_Name_Here_REF_CASE_.csv') }, ] self.ref_ca = customadoption.CustomAdoption( data_sources=ca_ref_data_sources, soln_adoption_custom_name=self.ac.soln_ref_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if self.ac.soln_ref_adoption_basis == 'Custom': ref_adoption_data_per_region = self.ref_ca.adoption_data_per_region( ) else: ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2018] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, ref_adoption_data_per_region=ref_adoption_data_per_region, use_first_pds_datapoint_main=False, adoption_base_year=2018, copy_pds_to_ref=False, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) if self.ac.use_custom_tla and self.ac.custom_tla_fixed_value is not None: self.c_tla = tla.CustomTLA( fixed_value=self.ac.custom_tla_fixed_value) custom_world_vals = self.c_tla.get_world_values() elif self.ac.use_custom_tla: self.c_tla = tla.CustomTLA( filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution(), custom_world_values=custom_world_vals) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = {} self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS ad_world_2018 = self.ac.ref_base_adoption['World'] ad_2018 = pd.Series(self.ac.ref_base_adoption) tla_world_2050 = self.tla_per_region.loc[2050, 'World'] degrade_rate_conservative = pd.Series(self.ac.degradation_rate, index=range(2014, 2061)) degrade_rate_low = pd.Series(0, index=range(2014, 2061)) degrade_rate_low.loc[2014] = self.ac.degradation_rate degrade_rate_low.loc[2020] = degrade_rate_low.loc[2014] / 2.0 step = (degrade_rate_low.loc[2014] - degrade_rate_low.loc[2020]) / 6.0 for year in range(2015, 2020): degrade_rate_low.loc[year] = degrade_rate_low.loc[2014] - ( (year - 2014) * step) step = (degrade_rate_low.loc[2020] - degrade_rate_low.loc[2030]) / 10.0 for year in range(2021, 2030): degrade_rate_low.loc[year] = degrade_rate_low.loc[2020] - ( (year - 2020) * step) degrade_rate_low.loc[2030:] = 0.0 # In Excel, the Custom PDS Scenarios tab columns AC:AF compute a limit on adoption # based on the amount of degraded land remaining. We compute the same limit here. def constrained_tla(rate): degrade_df = pd.DataFrame( 0, index=range(2014, 2061), columns=[ 'Total undegraded land at the start of the year', 'Degraded land at the end of the year', 'Total undegraded land at the end of the year', 'Constrained TLA' ]) for year in range(2014, 2061): if year == 2014: # Not a typo, Excel uses the 2018 base adoption number starting in 2014. # We are bug-for-bug compatible here. undeg_start = tla_world_2050 - ad_world_2018 else: last = degrade_df.loc[year - 1, 'Constrained TLA'] undeg_start = last - ad_world_2018 degrade_df.loc[ year, 'Total undegraded land at the start of the year'] = undeg_start degraded_end = max(0, undeg_start * rate[year]) degrade_df.loc[ year, 'Degraded land at the end of the year'] = degraded_end degrade_df.loc[ year, 'Total undegraded land at the end of the year'] = ( undeg_start - degraded_end) degrade_df.loc[year, 'Constrained TLA'] = ( tla_world_2050 - degrade_df['Degraded land at the end of the year'].sum()) return degrade_df # Data Source 1 ds1_growth_rate = 0.0197583057035311 ds1_datapoints = pd.DataFrame(0.0, index=range(2012, 2061), columns=dd.REGIONS) ds1_datapoints.loc[2012:2018, 'World'] = ad_world_2018 ds1_maximum = 1035.0 for year in range(2019, 2061): rate = 1 + ds1_growth_rate newval = ds1_datapoints.loc[year - 1, 'World'] * rate ds1_datapoints.loc[year, 'World'] = min(ds1_maximum, newval) # Data Source 2 ds2_growth_rate = 0.0102232658124979 ds2_datapoints = pd.DataFrame(0.0, index=range(2012, 2061), columns=dd.REGIONS) ds2_datapoints.loc[2012:2018, 'World'] = ad_world_2018 ds2_maximum = 1016.0 for year in range(2019, 2061): rate = 1 + ds2_growth_rate newval = ds2_datapoints.loc[year - 1, 'World'] * rate ds2_datapoints.loc[year, 'World'] = min(ds2_maximum, newval) # Data Source 3 ds3_growth_rate = 0.00550564152557609 ds3_datapoints = pd.DataFrame(0.0, index=range(2012, 2061), columns=dd.REGIONS) ds3_datapoints.loc[2012:2018, 'World'] = ad_world_2018 ds3_maximum = 998.0 for year in range(2019, 2061): rate = 1 + ds3_growth_rate newval = ds3_datapoints.loc[year - 1, 'World'] * rate ds3_datapoints.loc[year, 'World'] = min(ds3_maximum, newval) # Data Source 4 ds4_growth_rate = 0.0197583057035311 ds4_datapoints = pd.DataFrame(0.0, index=range(2012, 2061), columns=dd.REGIONS) ds4_datapoints.loc[2012:2018, 'World'] = ad_world_2018 ds4_maximum = 1047.9 for year in range(2019, 2061): rate = 1 + ds4_growth_rate newval = ds4_datapoints.loc[year - 1, 'World'] * rate ds4_datapoints.loc[year, 'World'] = min(ds4_maximum, newval) # Data Source 5 ds5_growth_rate = 0.0102232658124979 ds5_datapoints = pd.DataFrame(0.0, index=range(2012, 2061), columns=dd.REGIONS) ds5_datapoints.loc[2012:2018, 'World'] = ad_world_2018 ds5_maximum = 1046.8 for year in range(2019, 2061): rate = 1 + ds5_growth_rate newval = ds5_datapoints.loc[year - 1, 'World'] * rate ds5_datapoints.loc[year, 'World'] = min(ds5_maximum, newval) # Data Source 6 ds6_growth_rate = 0.00550564152557609 ds6_datapoints = pd.DataFrame(0.0, index=range(2012, 2061), columns=dd.REGIONS) ds6_datapoints.loc[2012:2018, 'World'] = ad_world_2018 ds6_minimum = 1046.0 for year in range(2019, 2061): rate = 1 + ds6_growth_rate newval = ds6_datapoints.loc[year - 1, 'World'] * rate ds6_datapoints.loc[year, 'World'] = min(ds6_minimum, newval) # Data Source 7 ds7_constrained = constrained_tla(rate=degrade_rate_conservative) ds7_constrained_2050 = ds7_constrained.loc[2050, 'Constrained TLA'] ds7_datapoints = pd.DataFrame(columns=ca_pds_columns).set_index('Year') ds7_datapoints.loc[2014] = ad_2018 ds7_datapoints.loc[2030] = (1.0 * ds7_constrained_2050) ds7_datapoints.loc[2050] = ds7_constrained_2050 # Data Source 8 ds8_datapoints = pd.DataFrame(columns=ca_pds_columns).set_index('Year') ds8_datapoints.loc[2014] = ad_2018 ds8_datapoints.loc[2030] = (0.9 * ds7_constrained_2050) ds8_datapoints.loc[2050] = ds7_constrained_2050 # Data Source 9 ds9_constrained = constrained_tla(rate=degrade_rate_low) ds9_constrained_2050 = ds9_constrained.loc[2050, 'Constrained TLA'] ds9_datapoints = pd.DataFrame(columns=ca_pds_columns).set_index('Year') ds9_datapoints.loc[2014] = ad_2018 ds9_datapoints.loc[2030] = (1.0 * ds9_constrained_2050) ds9_datapoints.loc[2050] = ds9_constrained_2050 # Data Source 10 ds10_datapoints = pd.DataFrame( columns=ca_pds_columns).set_index('Year') ds10_datapoints.loc[2014] = ad_2018 ds10_datapoints.loc[2030] = (0.9 * ds9_constrained_2050) ds10_datapoints.loc[2050] = ds9_constrained_2050 ca_pds_data_sources = [ { 'name': 'High adoption and conservative degradation rate', 'include': True, 'description': ('The historical protected area evolution (1990-2015) in Morales-Hidalgo was ' 'used to estimate three protected areas\' yearly increase rates: 1,98%; 1,02% ' 'and 0,55% for the forest PA corresponding to 1990-2015, 2005- 2015 and ' '2010- 2015 respectively. This, coupled with the TLA\'s current degradation ' 'rate of 0.31% result in scenarios 1, 2 and 3. The New York declaration on ' 'Forests is used to estimate an alternative degradation rate which starts ' 'from 0.31% and linearly decreases to half its value in 2020 and then to ' 'zero in 2030. The yearly increase rates from Morales- Hidalgo plus this ' 'degradation rate result in scenarios 4, 5 and 6. '), 'maximum': 1035.0, 'datapoints': ds1_datapoints }, { 'name': 'Medium adoption and conservative degradation rate', 'include': True, 'description': ('The historical protected area evolution (1990-2015) in Morales-Hidalgo was ' 'used to estimate three protected areas yearly increase rates: 1,98%; 1,02% ' 'and 0,55% for the forest PA corresponding to 1990-2015, 2005- 2015 and ' '2010- 2015 respectively. This, coupled with the TLA\'s current degradation ' 'rate of 0.31% result in scenarios 1, 2 and 3. The New York declaration on ' 'Forests is used to estimate an alternative degradation rate which starts ' 'from 0.31% and linearly decreases to half its value in 2020 and then to ' 'zero in 2030. The yearly increase rates from Morales- Hidalgo plus this ' 'degradation rate result in scenarios 4, 5 and 6. '), 'maximum': 1016.0, 'datapoints': ds2_datapoints }, { 'name': 'Low adoption and conservative degradation rate', 'include': True, 'description': ('The historical protected area evolution (1990-2015) in Morales-Hidalgo was ' 'used to estimate three protected areas yearly increase rates: 1,98%; 1,02% ' 'and 0,55% for the forest PA corresponding to 1990-2015, 2005- 2015 and ' '2010- 2015 respectively. This, coupled with the TLA\'s current degradation ' 'rate of 0.31% result in scenarios 1, 2 and 3. The New York declaration on ' 'Forests is used to estimate an alternative degradation rate which starts ' 'from 0.31% and linearly decreases to half its value in 2020 and then to ' 'zero in 2030. The yearly increase rates from Morales- Hidalgo plus this ' 'degradation rate result in scenarios 4, 5 and 6. '), 'maximum': 998.0, 'datapoints': ds3_datapoints }, { 'name': 'High adoption and low degradation rate', 'include': True, 'description': ('The historical protected area evolution (1990-2015) in Morales-Hidalgo was ' 'used to estimate three protected areas yearly increase rates: 1,98%; 1,02% ' 'and 0,55% for the forest PA corresponding to 1990-2015, 2005- 2015 and ' '2010- 2015 respectively. This, coupled with the TLA\'s current degradation ' 'rate of 0.31% result in scenarios 1, 2 and 3. The New York declaration on ' 'Forests is used to estimate an alternative degradation rate which starts ' 'from 0.31% and linearly decreases to half its value in 2020 and then to ' 'zero in 2030. The yearly increase rates from Morales- Hidalgo plus this ' 'degradation rate result in scenarios 4, 5 and 6. '), 'maximum': 1047.9, 'datapoints': ds4_datapoints }, { 'name': 'Medium adoption and low degradation rate', 'include': True, 'description': ('The historical protected area evolution (1990-2015) in Morales-Hidalgo was ' 'used to estimate three protected areas\' yearly increase rates: 1,98%; 1,02% ' 'and 0,55% for the forest PA corresponding to 1990-2015, 2005- 2015 and ' '2010- 2015 respectively. This, coupled with the TLA\'s current degradation ' 'rate of 0.31% result in scenarios 1, 2 and 3. The New York declaration on ' 'Forests is used to estimate an alternative degradation rate which starts ' 'from 0.31% and linearly decreases to half its value in 2020 and then to ' 'zero in 2030. The yearly increase rates from Morales- Hidalgo plus this ' 'degradation rate result in scenarios 4, 5 and 6. '), 'maximum': 1046.8, 'datapoints': ds5_datapoints }, { 'name': 'Low adoption and low degradation rate', 'include': True, 'description': ('The historical protected area evolution (1990-2015) in Morales-Hidalgo was ' 'used to estimate three protected areas\' yearly increase rates: 1,98%; 1,02% ' 'and 0,55% for the forest PA corresponding to 1990-2015, 2005- 2015 and ' '2010- 2015 respectively. This, coupled with the TLA\'s current degradation ' 'rate of 0.31% result in scenarios 1, 2 and 3. The New York declaration on ' 'Forests is used to estimate an alternative degradation rate which starts ' 'from 0.31% and linearly decreases to half its value in 2020 and then to ' 'zero in 2030. The yearly increase rates from Morales- Hidalgo plus this ' 'degradation rate result in scenarios 4, 5 and 6. '), 'maximum': 1046, 'datapoints': ds6_datapoints }, { 'name': '100% conservative degradation TLA in 2030', 'include': True, 'description': ('Linear increase up to 100% of TLA value in 2030 (calculated with the ' 'conservative degradation rate) and TLA value from then onwards ' ), 'maximum': ds7_constrained_2050, 'datapoints': ds7_datapoints }, { 'name': '90% conservative degradation TLA in 2030', 'include': True, 'description': ('Linear increase up to 90% of TLA value in 2030 (calculated with the ' 'conservative degradation rate) and then linear increase to 100% TLA value ' 'in 2050 from then onwards '), 'maximum': ds7_constrained_2050, 'datapoints': ds8_datapoints }, { 'name': '100% low degradation TLA by 2030', 'include': True, 'description': ('Linear increase up to 100% of TLA value in 2030 (calculated with the low ' 'degradation rate) and TLA value from then onwards '), 'maximum': ds9_constrained_2050, 'datapoints': ds9_datapoints }, { 'name': '90% low degradation TLA by 2030', 'include': True, 'description': ('Linear increase up to 90% of TLA value in 2030 (calculated with the low ' 'degradation rate) and TLA value from then onwards '), 'maximum': ds9_constrained_2050, 'datapoints': ds10_datapoints }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=self.ac.soln_pds_adoption_custom_high_sd_mult, low_sd_mult=self.ac.soln_pds_adoption_custom_low_sd_mult, total_adoption_limit=self.tla_per_region) for s in self.pds_ca.scenarios.values(): df = s['df'] df.loc[2014:2018, 'World'] = 651.0 ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2018] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, use_first_pds_datapoint_main=True, adoption_base_year=2018, copy_pds_to_ref=True, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=False) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, tot_red_in_deg_land=self.ua. cumulative_reduction_in_total_degraded_land(), pds_protected_deg_land=self.ua. pds_cumulative_degraded_land_protected(), ref_protected_deg_land=self.ua. ref_cumulative_degraded_land_protected(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name) self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution()) # Custom PDS Data ca_pds_data_sources = [ { 'name': 'Conservative-Low, Linear Trend', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_ConservativeLow_Linear_Trend.csv') }, { 'name': 'Conservative-Medium, Linear Trend', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_ConservativeMedium_Linear_Trend.csv') }, { 'name': 'High-linear trend', 'include': True, 'filename': THISDIR.joinpath('ca_pds_data', 'custom_pds_ad_Highlinear_trend.csv') }, { 'name': 'High-high early growth, linear trend', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Highhigh_early_growth_linear_trend.csv') }, { 'name': 'High, very high early growth, linear trend', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_High_very_high_early_growth_linear_trend.csv' ) }, { 'name': 'Max, high early growth, linear trend', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Max_high_early_growth_linear_trend.csv') }, { 'name': 'Aggressive Max, urgent adoption', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_Aggressive_Max_urgent_adoption.csv') }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None ht_ref_adoption_initial = pd.Series( [3.27713, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2014] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_regions, ht_percentages = zip( *self.ac.pds_adoption_final_percentage) ht_pds_adoption_final_percentage = pd.Series(list(ht_percentages), index=list(ht_regions)) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2014] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, tot_red_in_deg_land=self.ua. cumulative_reduction_in_total_degraded_land(), pds_protected_deg_land=self.ua. pds_cumulative_degraded_land_protected(), ref_protected_deg_land=self.ua. ref_cumulative_degraded_land_protected(), regime_distribution=self.ae.get_land_distribution())
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name) if self.ac.use_custom_tla: self.c_tla = tla.CustomTLA( filename=THISDIR.joinpath('custom_tla_data.csv')) custom_world_vals = self.c_tla.get_world_values() else: custom_world_vals = None self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution(), custom_world_values=custom_world_vals) # Custom PDS Data ca_pds_data_sources = [ { 'name': 'Optimistic-Achieve Commitment in 15 years w/ 100% intact, (Charlotte Wheeler, 2016)', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_OptimisticAchieve_Commitment_in_15_years_w_100_intact_Charlotte_Wheeler_2016.csv' ) }, { 'name': 'Optimistic-Achieve Commitment in 15 years w/ 100% intact, WRI estimates (Charlotte Wheeler, 2016)', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_OptimisticAchieve_Commitment_in_15_years_w_100_intact_WRI_estimates_Charlotte_Wheeler_2016.csv' ) }, { 'name': 'Conservative-Achieve Commitment in 15 years w/ 44.2% intact, (Charlotte Wheeler,2016)', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_ConservativeAchieve_Commitment_in_15_years_w_44_2_intact_Charlotte_Wheeler2016.csv' ) }, { 'name': 'Conservative-Achieve Commitment in 15 years w/ 44.2% intact with continued growth post-2030, (Charlotte Wheeler,2016)', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_ConservativeAchieve_Commitment_in_15_years_w_44_2_intact_with_continued_growth_post2030__967aa8cc.csv' ) }, { 'name': 'Conservative-Achieve Commitment in 30 years w/ 100% intact, (Charlotte Wheeler,2016)', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_ConservativeAchieve_Commitment_in_30_years_w_100_intact_Charlotte_Wheeler2016.csv' ) }, { 'name': 'Conservative-Achieve Commitment in 30 years w/ 44.2% intact, (Charlotte Wheeler,2016)', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_ConservativeAchieve_Commitment_in_30_years_w_44_2_intact_Charlotte_Wheeler2016.csv' ) }, { 'name': 'Conservative-Achieve Commitment in 30 years w/ 44.2% intact with continued growth, (Charlotte Wheeler,2016)', 'include': True, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_ConservativeAchieve_Commitment_in_30_years_w_44_2_intact_with_continued_growth_Charlotte_4167ecee.csv' ) }, { 'name': 'Conservative-Achieve Commitment in 45 years w/ 100% intact (Charlotte Wheeler,2016)', 'include': False, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_ConservativeAchieve_Commitment_in_45_years_w_100_intact_Charlotte_Wheeler2016.csv' ) }, { 'name': 'Conservative-Achieve Commitment in 45 years w/ 44.2% intact (Charlotte Wheeler,2016)', 'include': False, 'filename': THISDIR.joinpath( 'ca_pds_data', 'custom_pds_ad_ConservativeAchieve_Commitment_in_45_years_w_44_2_intact_Charlotte_Wheeler2016.csv' ) }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None ht_ref_adoption_initial = pd.Series( [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2014] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_regions, ht_percentages = zip( *self.ac.pds_adoption_final_percentage) ht_pds_adoption_final_percentage = pd.Series(list(ht_percentages), index=list(ht_regions)) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2014] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution())
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution()) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = { 'Raw Data for ALL LAND TYPES': { 'Organic annual cropland estimate (sum of low growth by regions)': THISDIR.joinpath( 'ad', 'ad_Organic_annual_cropland_estimate_sum_of_low_growth_by_regions.csv' ), 'Organic annual cropland estimate (sum of medium growth by region)': THISDIR.joinpath( 'ad', 'ad_Organic_annual_cropland_estimate_sum_of_medium_growth_by_region.csv' ), 'Organic annual cropland estimate (sum of high growth by region)': THISDIR.joinpath( 'ad', 'ad_Organic_annual_cropland_estimate_sum_of_high_growth_by_region.csv' ), }, 'Region: OECD90': { 'Raw Data for ALL LAND TYPES': { 'Willer 2018 SEI calc RA lin': THISDIR.joinpath('ad', 'ad_Willer_2018_SEI_calc_RA_lin.csv'), 'Willer 2018 SEI calc RA exp': THISDIR.joinpath('ad', 'ad_Willer_2018_SEI_calc_RA_exp.csv'), 'Willer 2018 SEI calc RA 3rd poly': THISDIR.joinpath( 'ad', 'ad_Willer_2018_SEI_calc_RA_3rd_poly.csv'), }, }, 'Region: Eastern Europe': { 'Raw Data for ALL LAND TYPES': { 'Willer 2018 SEI calc RA lin': THISDIR.joinpath('ad', 'ad_Willer_2018_SEI_calc_RA_lin.csv'), 'Willer 2018 SEI calc RA 3rd poly': THISDIR.joinpath( 'ad', 'ad_Willer_2018_SEI_calc_RA_3rd_poly.csv'), 'Willer 2018 SEI calc RA exp': THISDIR.joinpath('ad', 'ad_Willer_2018_SEI_calc_RA_exp.csv'), }, }, 'Region: Asia (Sans Japan)': { 'Raw Data for ALL LAND TYPES': { 'Willer 2018 SEI calc RA lin': THISDIR.joinpath('ad', 'ad_Willer_2018_SEI_calc_RA_lin.csv'), 'Willer 2018 SEI calc RA exp': THISDIR.joinpath('ad', 'ad_Willer_2018_SEI_calc_RA_exp.csv'), 'Willer 2018 SEI calc RA 3rd poly': THISDIR.joinpath( 'ad', 'ad_Willer_2018_SEI_calc_RA_3rd_poly.csv'), }, }, 'Region: Middle East and Africa': { 'Raw Data for ALL LAND TYPES': { 'Willer 2018 SEI calc RA lin': THISDIR.joinpath('ad', 'ad_Willer_2018_SEI_calc_RA_lin.csv'), 'Willer 2018 SEI calc RA 3rd poly': THISDIR.joinpath( 'ad', 'ad_Willer_2018_SEI_calc_RA_3rd_poly.csv'), 'Willer 2018 SEI calc RA exp': THISDIR.joinpath('ad', 'ad_Willer_2018_SEI_calc_RA_exp.csv'), }, }, 'Region: Latin America': { 'Raw Data for ALL LAND TYPES': { 'Willer 2018 SEI calc RA lin': THISDIR.joinpath('ad', 'ad_Willer_2018_SEI_calc_RA_lin.csv'), 'Willer 2018 SEI calc RA exp': THISDIR.joinpath('ad', 'ad_Willer_2018_SEI_calc_RA_exp.csv'), 'Willer 2018 SEI calc RA 3rd poly': THISDIR.joinpath( 'ad', 'ad_Willer_2018_SEI_calc_RA_3rd_poly.csv'), }, }, 'Region: USA': { 'Tropical-Humid Land': { 'USDA NASS Organic Surv; Cropland area 2016, 2008 summaries': THISDIR.joinpath( 'ad', 'ad_USDA_NASS_Organic_Surv_Cropland_area_2016_2008_summaries.csv' ), }, }, } self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS tla_2050 = self.tla_per_region.loc[2050] world_2014 = self.tla_per_region.loc[2014, 'World'] ad_2018 = list(self.ac.ref_base_adoption.values()) # % smallholder area, based on updates to smallholder area VMA sheet # (34.1% was estimated in Book Ed1) smallholder_pct = 0.315909724971454 # Maximum technical potential adoption area available for conservation agriculture, # based on % large farmers (Note: not a typo, we're accounting for leftover # Conservation Agriculture land here) max_adoption = smallholder_pct * world_2014 def _get_datapoints(percent, extra=0.0): w = self.tla_per_region.loc[2014, 'World'] dp = [ 0.0, # World is the sum of the regions. ((percent['OECD90'] + extra) * self.tla_per_region.loc[2050, 'OECD90']), ((percent['Eastern Europe'] + extra) * self.tla_per_region.loc[2050, 'Eastern Europe']), ((percent['Asia (Sans Japan)'] + extra) * self.tla_per_region.loc[2050, 'Asia (Sans Japan)']), ((percent['Middle East and Africa'] + extra) * self.tla_per_region.loc[2050, 'Middle East and Africa']), ((percent['Latin America'] + extra) * self.tla_per_region.loc[2050, 'Latin America']), 0.0, 0.0, 0.0, 0.0 ] # China, India, USA, EU dp[0] = sum(dp) return dp # Data Source 1 lin = 'Willer 2018 SEI calc RA lin' ds1_percent = { 'OECD90': self.ad.adoption_data(region='OECD90').loc[2050, lin] / world_2014, 'Eastern Europe': self.ad.adoption_data(region='Eastern Europe').loc[2050, lin] / world_2014, 'Asia (Sans Japan)': self.ad.adoption_data(region='Asia (Sans Japan)').loc[2050, lin] / world_2014, 'Middle East and Africa': self.ad.adoption_data(region='Middle East and Africa').loc[2050, lin] / world_2014, 'Latin America': self.ad.adoption_data(region='Latin America').loc[2050, lin] / world_2014, 'China': 0.0, 'India': 0.0, 'EU': 0.0, 'USA': 0.0 } ds1_regen = 0.2 # RA adoption in addition to organic agriculture adoption ds1_2050 = _get_datapoints(percent=ds1_percent, extra=ds1_regen) ds1_2030 = [x * 0.6 for x in ds1_2050] # Data Source 2 ply = 'Willer 2018 SEI calc RA 3rd poly' exp = 'Willer 2018 SEI calc RA exp' ds2_percent = { 'OECD90': self.ad.adoption_data(region='OECD90').loc[2050, ply] / world_2014, 'Eastern Europe': self.ad.adoption_data(region='Eastern Europe').loc[2050, exp] / world_2014, 'Asia (Sans Japan)': self.ad.adoption_data(region='Asia (Sans Japan)').loc[2050, ply] / world_2014, 'Middle East and Africa': self.ad.adoption_data(region='Middle East and Africa').loc[2050, exp] / world_2014, 'Latin America': self.ad.adoption_data(region='Latin America').loc[2050, ply] / world_2014, 'China': 0.0, 'India': 0.0, 'EU': 0.0, 'USA': 0.0 } ds2_regen = 0.2 # RA adoption in addition to organic agriculture adoption ds2_2050 = _get_datapoints(percent=ds2_percent, extra=ds2_regen) ds2_2030 = [x * 0.6 for x in ds2_2050] # Data Source 3 percent = { 'OECD90': 0.6, 'Eastern Europe': 0.6, 'Asia (Sans Japan)': 0.6, 'Middle East and Africa': 0.6, 'Latin America': 0.6, 'China': 0.0, 'India': 0.0, 'EU': 0.0, 'USA': 0.0 } ds3_2050 = _get_datapoints(percent=percent) ds3_2030 = [x * 0.8 for x in ds3_2050] # Data Source 4 ds4_regen = 0.3 # RA adoption in addition to organic agriculture adoption ds4_2050 = _get_datapoints(percent=ds2_percent, extra=ds4_regen) ds4_2030 = [x * 0.8 for x in ds4_2050] # Data Source 5, SOURCE: Project Drawdown 2016, constrained TLA for RA ds5_regen = 0.3 # RA adoption in addition to organic agriculture adoption ds5_2050 = _get_datapoints(percent=ds1_percent, extra=ds5_regen) ds5_2030 = [x * 0.8 for x in ds5_2050] # Data Source 6 ds6_2050 = ds3_2050 ds6_2040 = [x * 0.75 for x in ds6_2050] # Data Source 7 ds7_2050 = ds3_2050 ds7_2040 = [x * 0.8 for x in ds7_2050] # Data Source 8 ds8_percent = {} for region in ds1_percent.keys(): ds8_percent[region] = (ds1_percent[region] + ds2_percent[region]) / 2.0 ds8_2050 = _get_datapoints(percent=ds8_percent) ca_pds_data_sources = [ { 'name': 'Low, Linear Trend', 'include': False, 'description': ('This scenario projected the future growth of regenerative agriculture based ' 'on the low historical growth rate of the organic agriculture in different ' 'regions (Willer et al 2016). In addition, it was assumed that the adoption ' 'of RA will be higher (20%) than that of the organic agriculture and 60% of ' 'the estimated adoption by 2050 will be achieved by 2030. Along with this, ' 'this scenario also includes the leftover area from conservation ' 'agriculture, as discussed above. Current adoption values for the year ' '2012-2017 are taken from the sheet "org adoption by country". This change ' 'was made in response to the new year set for the currrent adoption, i.e., ' '2018. '), 'datapoints': pd.DataFrame([ [2018] + ad_2018, [2030] + ds1_2030, [2050] + ds1_2050, ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'High, Linear Trend', 'include': False, 'description': ('This scenario projected the future growth of regenerative agriculture based ' 'on the high historical growth rate of the organic agriculture in different ' 'regions (Willer et al 2018, after calculation for arable land). In ' 'addition, it was assumed that the adoption of RA will be higher (20%) than ' 'that of the organic agriculture and 60% of the estimated adoption by 2050 ' 'will be achieved by 2030. Along with this, this scenario also includes the ' 'leftover area from conservation agriculture, as discussed above. Current ' 'adoption values for the year 2012-2017 are taken from the sheet "org ' 'adoption by country". This change was made in response to the new year set ' 'for the currrent adoption, i.e., 2018. '), 'datapoints': pd.DataFrame([ [2018] + ad_2018, [2030] + ds2_2030, [2050] + ds2_2050, ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Max, Linear Trend', 'include': False, 'description': ('This scenario projected a 60% adoption of the solution by 2050 and assumed ' '80% of the that will be achieved by 2030. Along with this, this scenario ' 'also includes the leftover area from conservation agriculture, as discussed ' 'above. Current adoption values for the year 2012-2017 are taken from the ' 'sheet "org adoption by country". This change was made in response to the ' 'new year set for the currrent adoption, i.e., 2018. '), 'datapoints': pd.DataFrame([ [2018] + ad_2018, [2030] + ds3_2030, [2050] + ds3_2050, ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Aggressive-high, early growth, linear trend', 'include': False, 'description': ('This scenario projected the future growth of regenerative agriculture based ' 'on the high historical growth rate of the organic agriculture in different ' 'regions (Willer et al 2018, after calculaion for arable land). In addition, ' 'it was assumed that the adoption of RA will be higher (30%) than that of ' 'the organic agriculture and 80% of the estimated adoption by 2050 will be ' 'achieved by 2030. Along with this, this scenario also includes the leftover ' 'area from conservation agriculture, as discussed above. Current adoption ' 'values for the year 2012-2017 are taken from the sheet "org adoption by ' 'country". This change was made in response to the new year set for the ' 'currrent adoption, i.e., 2018. '), 'datapoints': pd.DataFrame([ [2018] + ad_2018, [2030] + ds4_2030, [2050] + ds4_2050, ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Aggressive-low, early growth, linear trend', 'include': False, 'description': ('This scenario projected the future growth of regenerative agriculture based ' 'on the low historical growth rate of the organic agriculture in different ' 'regions (Willer et al 2016). In addition, it was assumed that the adoption ' 'of RA will be higher (30%) than that of the organic agriculture and 80% of ' 'the estimated adoption by 2050 will be achieved by 2030. Along with this, ' 'this scenario also includes the leftover area from conservation ' 'agriculture, as discussed above. Current adoption values for the year ' '2012-2017 are taken from the sheet "org adoption by country". This change ' 'was made in response to the new year set for the currrent adoption, i.e., ' '2018. '), 'datapoints': pd.DataFrame([ [2018] + ad_2018, [2030] + ds5_2030, [2050] + ds5_2050, ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Conservative, low growth 1, only RA', 'include': False, 'description': ('Assuming a lower current adoption of the solution, this scenario has taken ' 'a conservative approach and projected a 60% adoption of the solution by ' '2050 and assumed 75% of the that will be achieved by 2040. This scenario is ' 'built independent of conservation agriculture, so no leftover area of ' 'conservation agriculture was added to this solution. Current adoption ' 'values for the year 2012-2017 are taken from the sheet "org adoption by ' 'country". This change was made in response to the new year set for the ' 'currrent adoption, i.e., 2018. '), 'datapoints': pd.DataFrame([ [2018] + ad_2018, [2040] + ds6_2040, [2050] + ds6_2050, ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Conservative, low growth 2, only RA', 'include': False, 'description': ('Assuming a lower current adoption of the solution, this scenario has taken ' 'a conservative approach and projected a 60% adoption of the solution by ' '2050 and assumed 80% of the that will be achieved by 2040. This scenario is ' 'built independent of conservation agriculture, so no leftover area of ' 'conservation agriculture was added to this solution. Current adoption ' 'values for the year 2012-2017 are taken from the sheet "org adoption by ' 'country". This change was made in response to the new year set for the ' 'currrent adoption, i.e., 2018. '), 'datapoints': pd.DataFrame([ [2018] + ad_2018, [2040] + ds7_2040, [2050] + ds7_2050, ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Baseline scenario', 'include': True, 'description': ('Baseline adoption '), 'datapoints': pd.DataFrame([ [2018] + ad_2018, [2050] + ds8_2050, ], columns=ca_pds_columns).set_index('Year') }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) # Shrinkage in land area used for the Conservation Agriculture solution are added to # the land area available for Regenerative Agriculture. for idx, s in enumerate(self.pds_ca.scenarios.values(), start=1): if 'BookVersion1' in self.ac.name: fname = f'ds{idx}_incr_change_in_cons_ag_book.csv' else: fname = f'ds{idx}_incr_change_in_cons_ag_current.csv' cons_ag_file = THISDIR.joinpath('ca_pds_data', fname) if cons_ag_file.is_file(): cons_ag_adopt = pd.read_csv(str(cons_ag_file), header=0, index_col=0, comment='#', skipinitialspace=True, skip_blank_lines=True, dtype=np.float64) # growth in Conservation Agriculture is not a factor, only reduction in area cons_ag_adopt[cons_ag_adopt >= 0.0] = 0.0 cons_ag_adopt['China', 'India', 'EU', 'USA'] = 0.0 s['df'] += cons_ag_adopt.abs() # Current adoption values for the year 2012-2017 are taken from the sheet # "org adoption by country" in the Excel file for this solution. for s in self.pds_ca.scenarios.values(): df = s['df'] df.loc[2014] = [ 10.0425, 6.230983199564, 1.024820758485, 1.495740017536, 0.280348210165, 0.342272547086, 0.0, 0.0, 0.0, 0.0 ] df.loc[2015] = [ 10.4821, 6.392187207238, 1.186149025025, 1.609802907785, 0.313522708425, 0.349200927281, 0.0, 0.0, 0.0, 0.0 ] df.loc[2016] = [ 10.9217, 6.560831715351, 1.372873741988, 1.732564062959, 0.350622850918, 0.356484379405, 0.0, 0.0, 0.0, 0.0 ] df.loc[2017] = [ 11.3613, 6.743428946088, 1.588992842952, 1.864686799696, 0.392113171655, 0.364411206077, 0.0, 0.0, 0.0, 0.0 ] df.loc[2018] = [ 11.8009, 6.946491121632, 1.839133620034, 2.006885018162, 0.438513174434, 0.373269709916, 0.0, 0.0, 0.0, 0.0 ] # Custom REF Data ca_ref_data_sources = [ { 'name': '[Type Scenario 1 Name Here (REF CASE)...]', 'include': True, 'description': ('[PLEASE DESCRIBE IN DETAIL THE METHODOLOGY YOU USED IN THIS ANALYSIS. BE ' 'SURE TO INCLUDE ANY ADDITIONAL EQUATIONS YOU UTILIZED] '), 'filename': THISDIR.joinpath( 'ca_ref_data', 'custom_ref_ad_Type_Scenario_1_Name_Here_REF_CASE_.csv') }, ] self.ref_ca = customadoption.CustomAdoption( data_sources=ca_ref_data_sources, soln_adoption_custom_name=self.ac.soln_ref_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if self.ac.soln_ref_adoption_basis == 'Custom': ref_adoption_data_per_region = self.ref_ca.adoption_data_per_region( ) else: ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2018] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, ref_adoption_data_per_region=ref_adoption_data_per_region, use_first_pds_datapoint_main=False, adoption_base_year=2018, copy_pds_to_ref=False, copy_ref_datapoint=False, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=True) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)
def __init__(self, scenario=None): if scenario is None: scenario = list(scenarios.keys())[0] self.scenario = scenario self.ac = scenarios[scenario] # TLA self.ae = aez.AEZ(solution_name=self.name, cohort=2020, regimes=dd.THERMAL_MOISTURE_REGIMES8) self.tla_per_region = tla.tla_per_region( self.ae.get_land_distribution()) adconfig_list = [ [ 'param', 'World', 'OECD90', 'Eastern Europe', 'Asia (Sans Japan)', 'Middle East and Africa', 'Latin America', 'China', 'India', 'EU', 'USA' ], [ 'trend', self.ac.soln_pds_adoption_prognostication_trend, 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium', 'Medium' ], [ 'growth', self.ac.soln_pds_adoption_prognostication_growth, 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE', 'NOTE' ], ['low_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ['high_sd_mult', 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] ] adconfig = pd.DataFrame(adconfig_list[1:], columns=adconfig_list[0], dtype=np.object).set_index('param') ad_data_sources = { 'Raw Data for ALL LAND TYPES': { 'Norman Uphoff (Personal Comunication)': THISDIR.joinpath('ad', 'ad_Norman_Uphoff_Personal_Comunication.csv'), }, 'Region: Asia (Sans Japan)': { 'Raw Data for ALL LAND TYPES': { 'IRIN (Adoption of SRI in China)': THISDIR.joinpath('ad', 'ad_IRIN_Adoption_of_SRI_in_China.csv'), 'IRIN (Adoption of SRI in India)': THISDIR.joinpath('ad', 'ad_IRIN_Adoption_of_SRI_in_India.csv'), 'IRIN (Adoption of SRI in Indonesia)': THISDIR.joinpath( 'ad', 'ad_IRIN_Adoption_of_SRI_in_Indonesia.csv'), }, }, } self.ad = adoptiondata.AdoptionData(ac=self.ac, data_sources=ad_data_sources, main_includes_regional=True, adconfig=adconfig) # Custom PDS Data ca_pds_columns = ['Year'] + dd.REGIONS tla_world_2050 = self.tla_per_region.loc[2050, 'World'] irin_sri_adopt_fname = THISDIR.joinpath('ca_pds_data', 'IRIN_SRI_Adoption.csv') irin_sri_adopt = pd.read_csv(str(irin_sri_adopt_fname), header=0, comment='#', skipinitialspace=True, skip_blank_lines=True, dtype=np.float64) irin_avg = irin_sri_adopt.mean().mean() irin_high = irin_sri_adopt.max().max() irin_mid = (irin_avg + irin_high) / 2.0 ca_pds_data_sources = [ { 'name': 'Average, Linear Trend', 'include': True, 'maximum': tla_world_2050, 'description': ('The future area under SRI is projected based on the adoption projections ' 'given for China, India, and Indonesia by IRIN. The data interpolator was ' 'used to extrapolate the data and the average and high adoption value for ' 'the year 2050 is summarized in the given assumptions. This scenario assumes ' 'that the area will increase by average growth. '), 'datapoints': pd.DataFrame([ [ 2018, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [2050, irin_avg, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'High, Linear Trend', 'include': False, 'maximum': tla_world_2050, 'description': ('The future area under SRI is projected based on the adoption projections ' 'given for China, India, and Indonesia by IRIN. The data interpolator was ' 'used to extrapolate the data and the average and high adoption value for ' 'the year 2050 is summarized in the given assumptions. This scenario assumes ' 'that the area will increase by maximum growth. '), 'datapoints': pd.DataFrame([ [ 2018, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [2050, irin_high, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Average, Linear Trend, Early Growth', 'include': False, 'maximum': tla_world_2050, 'description': ('This is scenario 1 with 100% adoption by 2030 '), 'datapoints': pd.DataFrame([ [ 2018, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [2030, irin_avg, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, irin_avg, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'High, Linear Trend, Early Growth', 'include': False, 'description': ('This is scenario 2 with 100% adoption by 2030 '), 'maximum': tla_world_2050, 'datapoints': pd.DataFrame([ [ 2018, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [2030, irin_high, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, irin_high, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Medium, Linear Trend', 'include': False, 'description': (' The future area under SRI is projected based on the adoption projections ' 'given for China, India, and Indonesia by IRIN. The data interpolator was ' 'used to extrapolate the data and the average and high adoption value for ' 'the year 2050 is summarized in the given assumptions. This scenario assumes ' 'that the area will increase by average growth based on assumption 1 and 2. ' ), 'maximum': tla_world_2050, 'datapoints': pd.DataFrame([ [ 2018, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [2050, irin_mid, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'Medium, Linear Trend, Early Growth', 'include': False, 'description': ('This is scenario 5 with 100% adoption by 2030 '), 'maximum': tla_world_2050, 'datapoints': pd.DataFrame([ [ 2018, self.ac.ref_base_adoption['World'], 0., 0., 0., 0., 0., 0., 0., 0., 0. ], [2030, irin_mid, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2050, irin_mid, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') }, { 'name': 'World Adoption, linear trend', 'include': False, 'description': ('The future growth is projected based on the world adoption of SRI in 2013 ' 'and 2018, based on the information received from personal communication ' 'through Prof. Norman Uphoff, Cornell University '), 'maximum': tla_world_2050, 'datapoints': pd.DataFrame([ [2013, 3.5, 0., 0., 0., 0., 0., 0., 0., 0., 0.], [2018, 6.7, 0., 0., 0., 0., 0., 0., 0., 0., 0.], ], columns=ca_pds_columns).set_index('Year') }, ] self.pds_ca = customadoption.CustomAdoption( data_sources=ca_pds_data_sources, soln_adoption_custom_name=self.ac.soln_pds_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) for s in self.pds_ca.scenarios.values(): df = s['df'] df.loc[2012, 'World'] = 2.86 df.loc[2013, 'World'] = 3.5 df.loc[2014, 'World'] = 4.15259261268174 df.loc[2015, 'World'] = 4.79610333421305 df.loc[2016, 'World'] = 5.44024605689438 df.loc[2017, 'World'] = 6.08503665221758 df.loc[2018, 'World'] = 6.73044601473859 # Custom REF Data ca_ref_data_sources = [ { 'name': '[Type Scenario 1 Name Here (REF CASE)...]', 'include': True, 'description': ('[PLEASE DESCRIBE IN DETAIL THE METHODOLOGY YOU USED IN THIS ANALYSIS. BE ' 'SURE TO INCLUDE ANY ADDITIONAL EQUATIONS YOU UTILIZED] '), 'filename': THISDIR.joinpath( 'ca_ref_data', 'custom_ref_ad_Type_Scenario_1_Name_Here_REF_CASE_.csv') }, ] self.ref_ca = customadoption.CustomAdoption( data_sources=ca_ref_data_sources, soln_adoption_custom_name=self.ac.soln_ref_adoption_custom_name, high_sd_mult=1.0, low_sd_mult=1.0, total_adoption_limit=self.tla_per_region) if self.ac.soln_ref_adoption_basis == 'Custom': ref_adoption_data_per_region = self.ref_ca.adoption_data_per_region( ) else: ref_adoption_data_per_region = None if False: # One may wonder why this is here. This file was code generated. # This 'if False' allows subsequent conditions to all be elif. pass elif self.ac.soln_pds_adoption_basis == 'Fully Customized PDS': pds_adoption_data_per_region = self.pds_ca.adoption_data_per_region( ) pds_adoption_trend_per_region = self.pds_ca.adoption_trend_per_region( ) pds_adoption_is_single_source = None elif self.ac.soln_pds_adoption_basis == 'Existing Adoption Prognostications': pds_adoption_data_per_region = self.ad.adoption_data_per_region() pds_adoption_trend_per_region = self.ad.adoption_trend_per_region() pds_adoption_is_single_source = self.ad.adoption_is_single_source() copy_pds_to_ref = (len(self.ac.pds_adoption_use_ref_years) == 0) ht_ref_adoption_initial = pd.Series(list( self.ac.ref_base_adoption.values()), index=dd.REGIONS) ht_ref_adoption_final = self.tla_per_region.loc[2050] * ( ht_ref_adoption_initial / self.tla_per_region.loc[2014]) ht_ref_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_ref_datapoints.loc[2018] = ht_ref_adoption_initial ht_ref_datapoints.loc[2050] = ht_ref_adoption_final.fillna(0.0) ht_pds_adoption_initial = ht_ref_adoption_initial ht_pds_adoption_final_percentage = pd.Series( list(self.ac.pds_adoption_final_percentage.values()), index=list(self.ac.pds_adoption_final_percentage.keys())) ht_pds_adoption_final = ht_pds_adoption_final_percentage * self.tla_per_region.loc[ 2050] ht_pds_datapoints = pd.DataFrame(columns=dd.REGIONS) ht_pds_datapoints.loc[2018] = ht_pds_adoption_initial ht_pds_datapoints.loc[2050] = ht_pds_adoption_final.fillna(0.0) self.ht = helpertables.HelperTables( ac=self.ac, ref_datapoints=ht_ref_datapoints, pds_datapoints=ht_pds_datapoints, pds_adoption_data_per_region=pds_adoption_data_per_region, ref_adoption_limits=self.tla_per_region, pds_adoption_limits=self.tla_per_region, ref_adoption_data_per_region=ref_adoption_data_per_region, use_first_pds_datapoint_main=False, adoption_base_year=2018, copy_pds_to_ref=copy_pds_to_ref, pds_adoption_trend_per_region=pds_adoption_trend_per_region, pds_adoption_is_single_source=pds_adoption_is_single_source) self.ef = emissionsfactors.ElectricityGenOnGrid(ac=self.ac) self.ua = unitadoption.UnitAdoption( ac=self.ac, ref_total_adoption_units=self.tla_per_region, pds_total_adoption_units=self.tla_per_region, electricity_unit_factor=1000000.0, soln_ref_funits_adopted=self.ht.soln_ref_funits_adopted(), soln_pds_funits_adopted=self.ht.soln_pds_funits_adopted(), bug_cfunits_double_count=False) soln_pds_tot_iunits_reqd = self.ua.soln_pds_tot_iunits_reqd() soln_ref_tot_iunits_reqd = self.ua.soln_ref_tot_iunits_reqd() conv_ref_tot_iunits = self.ua.conv_ref_tot_iunits() soln_net_annual_funits_adopted = self.ua.soln_net_annual_funits_adopted( ) self.fc = firstcost.FirstCost( ac=self.ac, pds_learning_increase_mult=2, ref_learning_increase_mult=2, conv_learning_increase_mult=2, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_tot_iunits=conv_ref_tot_iunits, soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_first_cost_uses_tot_units=True, fc_convert_iunit_factor=land.MHA_TO_HA) self.oc = operatingcost.OperatingCost( ac=self.ac, soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, soln_pds_tot_iunits_reqd=soln_pds_tot_iunits_reqd, soln_ref_tot_iunits_reqd=soln_ref_tot_iunits_reqd, conv_ref_annual_tot_iunits=self.ua.conv_ref_annual_tot_iunits(), soln_pds_annual_world_first_cost=self.fc. soln_pds_annual_world_first_cost(), soln_ref_annual_world_first_cost=self.fc. soln_ref_annual_world_first_cost(), conv_ref_annual_world_first_cost=self.fc. conv_ref_annual_world_first_cost(), single_iunit_purchase_year=2017, soln_pds_install_cost_per_iunit=self.fc. soln_pds_install_cost_per_iunit(), conv_ref_install_cost_per_iunit=self.fc. conv_ref_install_cost_per_iunit(), conversion_factor=land.MHA_TO_HA) self.c4 = ch4calcs.CH4Calcs( ac=self.ac, soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted) self.c2 = co2calcs.CO2Calcs( ac=self.ac, ch4_ppb_calculator=self.c4.ch4_ppb_calculator(), soln_pds_net_grid_electricity_units_saved=self.ua. soln_pds_net_grid_electricity_units_saved(), soln_pds_net_grid_electricity_units_used=self.ua. soln_pds_net_grid_electricity_units_used(), soln_pds_direct_co2eq_emissions_saved=self.ua. direct_co2eq_emissions_saved_land(), soln_pds_direct_co2_emissions_saved=self.ua. direct_co2_emissions_saved_land(), soln_pds_direct_n2o_co2_emissions_saved=self.ua. direct_n2o_co2_emissions_saved_land(), soln_pds_direct_ch4_co2_emissions_saved=self.ua. direct_ch4_co2_emissions_saved_land(), soln_pds_new_iunits_reqd=self.ua.soln_pds_new_iunits_reqd(), soln_ref_new_iunits_reqd=self.ua.soln_ref_new_iunits_reqd(), conv_ref_new_iunits=self.ua.conv_ref_new_iunits(), conv_ref_grid_CO2_per_KWh=self.ef.conv_ref_grid_CO2_per_KWh(), conv_ref_grid_CO2eq_per_KWh=self.ef.conv_ref_grid_CO2eq_per_KWh(), soln_net_annual_funits_adopted=soln_net_annual_funits_adopted, annual_land_area_harvested=self.ua. soln_pds_annual_land_area_harvested(), regime_distribution=self.ae.get_land_distribution(), regimes=dd.THERMAL_MOISTURE_REGIMES8)