def inference(model, data_loader, dataset_name, device, output_folder=None, use_cached=False, **kwargs): dataset = data_loader.dataset logger = logging.getLogger("SSD.inference") logger.info("Evaluating {} dataset({} images):".format( dataset_name, len(dataset))) predictions_path = os.path.join(output_folder, 'predictions.pth') if use_cached and os.path.exists(predictions_path): predictions = torch.load(predictions_path, map_location='cpu') else: print('we are prediciton...') predictions = compute_on_dataset(model, data_loader, device) synchronize() predictions = _accumulate_predictions_from_multiple_gpus(predictions) if not is_main_process(): return if output_folder: torch.save(predictions, predictions_path) return evaluate(dataset=dataset, predictions=predictions, output_dir=output_folder, **kwargs)
def cache_url(url, model_dir=None, progress=True): r"""Loads the Torch serialized object at the given URL. If the object is already present in `model_dir`, it's deserialized and returned. The filename part of the URL should follow the naming convention ``filename-<sha256>.ext`` where ``<sha256>`` is the first eight or more digits of the SHA256 hash of the contents of the file. The hash is used to ensure unique names and to verify the contents of the file. The default value of `model_dir` is ``$TORCH_HOME/models`` where ``$TORCH_HOME`` defaults to ``~/.torch``. The default directory can be overridden with the ``$TORCH_MODEL_ZOO`` environment variable. Args: url (string): URL of the object to download model_dir (string, optional): directory in which to save the object progress (bool, optional): whether or not to display a progress bar to stderr Example: >>> cached_file = maskrcnn_benchmark.utils.model_zoo.cache_url('https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth') """ if model_dir is None: torch_home = os.path.expanduser(os.getenv("TORCH_HOME", "~/.torch")) model_dir = os.getenv("TORCH_MODEL_ZOO", os.path.join(torch_home, "models")) if not os.path.exists(model_dir): os.makedirs(model_dir) parts = urlparse(url) filename = os.path.basename(parts.path) if filename == "model_final.pkl": # workaround as pre-trained Caffe2 models from Detectron have all the same filename # so make the full path the filename by replacing / with _ filename = parts.path.replace("/", "_") cached_file = os.path.join(model_dir, filename) if not os.path.exists(cached_file) and is_main_process(): sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file)) hash_prefix = HASH_REGEX.search(filename) if hash_prefix is not None: hash_prefix = hash_prefix.group(1) # workaround: Caffe2 models don't have a hash, but follow the R-50 convention, # which matches the hash PyTorch uses. So we skip the hash matching # if the hash_prefix is less than 6 characters if len(hash_prefix) < 6: hash_prefix = None download_url_to_file(url, cached_file, hash_prefix, progress=progress) synchronize() return cached_file
def main(): parser = argparse.ArgumentParser( description='SSD Evaluation on VOC and COCO dataset.') parser.add_argument( "--config-file", default="", metavar="FILE", help="path to config file", type=str, ) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument( "--ckpt", help= "The path to the checkpoint for test, default is the latest checkpoint.", default=None, type=str, ) parser.add_argument("--output_dir", default="eval_results", type=str, help="The directory to store evaluation results.") parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() num_gpus = int( os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 distributed = num_gpus > 1 if torch.cuda.is_available(): # This flag allows you to enable the inbuilt cudnn auto-tuner to # find the best algorithm to use for your hardware. torch.backends.cudnn.benchmark = True if distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend="nccl", init_method="env://") synchronize() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() # evaluation(cfg, ckpt=args.ckpt, distributed=distributed) logger = setup_logger("SSD", dist_util.get_rank(), cfg.OUTPUT_DIR) logger.info("Using {} GPUs".format(num_gpus)) logger.info(args) logger.info("Loaded configuration file {}".format(args.config_file)) with open(args.config_file, "r") as cf: config_str = "\n" + cf.read() logger.info(config_str) logger.info("Running with config:\n{}".format(cfg)) evaluation(cfg, ckpt=args.ckpt, distributed=distributed)
def main(): parser = argparse.ArgumentParser( description='Single Shot MultiBox Detector Training With PyTorch') parser.add_argument( "--config-file", default="", metavar="FILE", help="path to config file", type=str, ) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument('--log_step', default=10, type=int, help='Print logs every log_step') parser.add_argument('--save_step', default=2500, type=int, help='Save checkpoint every save_step') parser.add_argument( '--eval_step', default=2500, type=int, help='Evaluate dataset every eval_step, disabled when eval_step < 0') parser.add_argument('--use_tensorboard', default=True, type=str2bool) parser.add_argument('--sr', dest='sr', action='store_true', help='train with channel sparsity regularization') parser.add_argument('--finetune', dest='finetune', action='store_true', help='train with channel sparsity regularization') parser.add_argument('--s', type=float, default=0.0001, help='scale sparse rate (default: 0.0001)') parser.add_argument( "--skip-test", dest="skip_test", help="Do not test the final model", action="store_true", ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() num_gpus = int( os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 args.distributed = num_gpus > 1 args.num_gpus = num_gpus if torch.cuda.is_available(): # This flag allows you to enable the inbuilt cudnn auto-tuner to # find the best algorithm to use for your hardware. torch.backends.cudnn.benchmark = True if args.distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend="nccl", init_method="env://") synchronize() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() if cfg.OUTPUT_DIR: mkdir(cfg.OUTPUT_DIR) logger = setup_logger("SSD", dist_util.get_rank(), cfg.OUTPUT_DIR) logger.info("Using {} GPUs".format(num_gpus)) logger.info(args) logger.info("Loaded configuration file {}".format(args.config_file)) with open(args.config_file, "r") as cf: config_str = "\n" + cf.read() logger.info(config_str) logger.info("Running with config:\n{}".format(cfg)) model = train(cfg, args) if not args.skip_test: logger.info('Start evaluating...') torch.cuda.empty_cache() # speed up evaluating after training finished do_evaluation(cfg, model, distributed=args.distributed)
def main(): parser = argparse.ArgumentParser( description='Single Shot MultiBox Detector Training With PyTorch') parser.add_argument( "--config-file", default="", metavar="FILE", help="path to config file", type=str, ) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument('--log_step', default=10, type=int, help='Print logs every log_step') parser.add_argument('--save_step', default=1, type=int, help='Save checkpoint every save_step') parser.add_argument( '--eval_step', default=1, type=int, help='Evaluate dataset every eval_step, disabled when eval_step < 0') parser.add_argument('--use_tensorboard', default=True, type=str2bool) parser.add_argument( '--pruner', default='SlimmingPruner', type=str, choices=['AutoSlimPruner', 'SlimmingPruner', 'l1normPruner'], help='architecture to use') parser.add_argument('--pruneratio', default=0.4, type=float, help='architecture to use') parser.add_argument('--sr', dest='sr', action='store_true', help='train with channel sparsity regularization') parser.add_argument('--s', type=float, default=0.0001, help='scale sparse rate (default: 0.0001)') parser.add_argument( "--skip-test", dest="skip_test", help="Do not test the final model", action="store_true", ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() num_gpus = int( os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 args.distributed = num_gpus > 1 args.num_gpus = num_gpus if torch.cuda.is_available(): # This flag allows you to enable the inbuilt cudnn auto-tuner to # find the best algorithm to use for your hardware. torch.backends.cudnn.benchmark = True if args.distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend="nccl", init_method="env://") synchronize() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() logger = setup_logger("SSD", dist_util.get_rank(), cfg.OUTPUT_DIR) logger.info("Using {} GPUs".format(num_gpus)) logger.info(args) logger.info("Loaded configuration file {}".format(args.config_file)) with open(args.config_file, "r") as cf: config_str = "\n" + cf.read() logger.info(config_str) logger.info("Running with config:\n{}".format(cfg)) ###### ## prune ########### model = build_detection_model(cfg) newmodel = build_detection_model(cfg) checkpointer = CheckPointer(model, save_dir=cfg.OUTPUT_DIR) _ = checkpointer.load() model.eval() newmodel.eval() if args.pruner == 'l1normPruner': kwargs = {'pruneratio': args.pruneratio} elif args.pruner == 'SlimmingPruner': kwargs = {'pruneratio': args.pruneratio} elif args.pruner == 'AutoSlimPruner': kwargs = {'prunestep': 16, 'constrain': 200e6} pruner = prune.__dict__[args.pruner](model=model, newmodel=newmodel, args=args, **kwargs) pruner.prune() ##---------count op input = torch.randn(1, 3, 320, 320) flops, params = profile(model, inputs=(input, ), verbose=False) flops, params = clever_format([flops, params], "%.3f") flopsnew, paramsnew = profile(newmodel, inputs=(input, ), verbose=False) flopsnew, paramsnew = clever_format([flopsnew, paramsnew], "%.3f") logger.info("flops:{}->{}, params: {}->{}".format(flops, flopsnew, params, paramsnew)) save_path = os.path.join(cfg.OUTPUT_DIR, "pruned_model.pth") torch.save(newmodel, save_path)