コード例 #1
0
                        'loss_rpn_box': loss_rpn_box,
                        'loss_rcnn_cls': loss_rcnn_cls,
                        'loss_rcnn_box': loss_rcnn_box
                    }
                    for tag, value in info.items():
                        logger.scalar_summary(tag, value, step)

                loss_temp = 0
                start = time.time()

        if args.mGPUs:
            save_name = os.path.join(output_dir, 'faster_rcnn_{}_{}_{}.pth'.format(args.session, epoch, step))
            save_checkpoint({
                'session': args.session,
                'epoch': epoch + 1,
                'model': model.module.state_dict(),
                'optimizer': optimizer.state_dict(),
                'pooling_mode': cfg.POOLING_MODE,
                'class_agnostic': args.class_agnostic,
            }, save_name)
        else:
            save_name = os.path.join(output_dir, 'faster_rcnn_{}_{}_{}.pth'.format(args.session, epoch, step))
            save_checkpoint({
                'session': args.session,
                'epoch': epoch + 1,
                'model': model.state_dict(),
                'optimizer': optimizer.state_dict(),
                'pooling_mode': cfg.POOLING_MODE,
                'class_agnostic': args.class_agnostic,
            }, save_name)
        print('save model: {}'.format(save_name))
コード例 #2
0
def exp_htcn_mixed(cfg_file, output_dir, dataset_source, dataset_target, val_datasets,
                    device, net, optimizer, num_workers,
                    lr, batch_size, start_epoch, max_epochs, lr_decay_gamma, lr_decay_step,
                    resume, load_name,
                    eta, gamma, ef, class_agnostic, lc, gc, LA_ATT, MID_ATT,
                    debug, _run):

    args = Args(dataset=dataset_source, dataset_t=dataset_target, imdb_name_target=[], cfg_file=cfg_file, net=net)
    args = set_dataset_args(args)

    args_val = Args(dataset=dataset_source, dataset_t=val_datasets, imdb_name_target=[], cfg_file=cfg_file, net=net)
    args_val = set_dataset_args(args_val, test=True)


    logger = LoggerForSacred(None, ex, True)

    if cfg_file is not None:
        cfg_from_file(cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    np.random.seed(cfg.RNG_SEED)

    cfg.TRAIN.USE_FLIPPED = True
    cfg.USE_GPU_NMS = True if device == 'cuda' else False
    device = torch.device(device)

    output_dir = output_dir + "_{}".format(_run._id)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    dataloader_s, dataloader_t, imdb = init_dataloaders_1s_mixed_mt(args, batch_size, num_workers)
    val_dataloader_ts, val_imdb_ts = init_val_dataloaders_mt(args_val, 1, num_workers)

    session = 1
    fasterRCNN, lr, optimizer, session, start_epoch, _ = init_htcn_model_optimizer(lr, LA_ATT, MID_ATT, class_agnostic, device, gc,
                                                                                   imdb, lc, load_name, net, optimizer, resume,
                                                                                   session, start_epoch)

    if torch.cuda.device_count() > 1:
        fasterRCNN = nn.DataParallel(fasterRCNN)

    iters_per_epoch = int(10000 / batch_size)

    if ef:
        FL = EFocalLoss(class_num=2, gamma=gamma)
    else:
        FL = FocalLoss(class_num=2, gamma=gamma)

    total_step = 0

    for epoch in range(start_epoch, max_epochs + 1):
        # setting to train mode
        fasterRCNN.train()

        if epoch - 1 in lr_decay_step:
            adjust_learning_rate(optimizer, lr_decay_gamma)
            lr *= lr_decay_gamma

        total_step = frcnn_utils.train_htcn_one_epoch(args, FL, total_step, dataloader_s, dataloader_t, iters_per_epoch, fasterRCNN, optimizer, device, eta, logger)
        save_name = os.path.join(output_dir,
                                 'target_{}_eta_{}_local_{}_global_{}_gamma_{}_session_{}_epoch_{}_total_step_{}.pth'.format(
                                     args.dataset_t, args.eta,
                                     lc, gc, gamma,
                                     session, epoch,
                                     total_step))
        save_checkpoint({
            'session': session,
            'epoch': epoch + 1,
            'model': fasterRCNN.module.state_dict() if torch.cuda.device_count() > 1 else fasterRCNN.state_dict(),
            'optimizer': optimizer.state_dict(),
            'pooling_mode': cfg.POOLING_MODE,
            'class_agnostic': class_agnostic,
        }, save_name)
    return 0
コード例 #3
0
                    logger.add_scalars("logs_s_{}/losses".format(args.session),
                                       info,
                                       (epoch - 1) * iters_per_epoch + step)

                loss_temp = 0
                start = time.time()

        save_name = os.path.join(
            output_dir,
            'faster_rcnn_{}_{}_{}.pth'.format(args.session, epoch, step))
        save_checkpoint(
            {
                'session':
                args.session,
                'epoch':
                epoch + 1,
                'model':
                fasterRCNN.module.state_dict()
                if args.mGPUs else fasterRCNN.state_dict(),
                'optimizer':
                optimizer.state_dict(),
                'pooling_mode':
                cfg.POOLING_MODE,
                'class_agnostic':
                args.class_agnostic,
            }, save_name)
        print('save model: {}'.format(save_name))

    if args.use_tfboard:
        logger.close()
コード例 #4
0
def training_fusion():
    # initilize the tensor holder here.
    im_data1 = torch.FloatTensor(1)
    im_data2 = torch.FloatTensor(1)

    im_info = torch.FloatTensor(1)
    num_boxes = torch.LongTensor(1)
    gt_boxes = torch.FloatTensor(1)

    # ship to cuda
    if args.cuda:
        im_data1 = im_data1.cuda()
        im_data2 = im_data2.cuda()

        im_info = im_info.cuda()
        num_boxes = num_boxes.cuda()
        gt_boxes = gt_boxes.cuda()

    # make variable
    im_data1 = Variable(im_data1)
    im_data2 = Variable(im_data2)

    im_info = Variable(im_info)
    num_boxes = Variable(num_boxes)
    gt_boxes = Variable(gt_boxes)

    if args.cuda:
        cfg.CUDA = True

    # initilize the network here.
    if args.net == 'vgg16f':
        fasterRCNN = vgg16f(imdb.classes,
                            pretrained=True,
                            class_agnostic=args.class_agnostic,
                            fusion_mode=args.fusion_mode)

    elif args.net == 'vgg16c':
        fasterRCNN = vgg16c(imdb.classes,
                            pretrained=True,
                            class_agnostic=args.class_agnostic)

    elif args.net == 'res101':
        fasterRCNN = resnet(imdb.classes,
                            101,
                            pretrained=True,
                            class_agnostic=args.class_agnostic)
    elif args.net == 'res50':
        fasterRCNN = resnet(imdb.classes,
                            50,
                            pretrained=True,
                            class_agnostic=args.class_agnostic)
    elif args.net == 'res152':
        fasterRCNN = resnet(imdb.classes,
                            152,
                            pretrained=True,
                            class_agnostic=args.class_agnostic)
    else:
        print("network is not defined")
        pdb.set_trace()

    fasterRCNN.create_architecture()

    lr = cfg.TRAIN.LEARNING_RATE
    lr = args.lr
    # tr_momentum = cfg.TRAIN.MOMENTUM
    # tr_momentum = args.momentum

    params = []
    for key, value in dict(fasterRCNN.named_parameters()).items():
        if value.requires_grad:
            if 'bias' in key:
                params += [{'params': [value], 'lr': lr * (cfg.TRAIN.DOUBLE_BIAS + 1), \
                            'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
            else:
                params += [{
                    'params': [value],
                    'lr': lr,
                    'weight_decay': cfg.TRAIN.WEIGHT_DECAY
                }]

    if args.cuda:
        fasterRCNN.cuda()

    if args.optimizer == "adam":
        lr = lr * 0.1
        optimizer = torch.optim.Adam(params)

    elif args.optimizer == "sgd":
        optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM)

    if args.resume:
        load_name = os.path.join(
            output_dir,
            'faster_rcnn_{}_{}_{}.pth'.format(args.checksession,
                                              args.checkepoch,
                                              args.checkpoint))
        print("loading checkpoint %s" % (load_name))
        checkpoint = torch.load(load_name)
        args.session = checkpoint['session']
        args.start_epoch = checkpoint['epoch']
        fasterRCNN.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr = optimizer.param_groups[0]['lr']
        if 'pooling_mode' in checkpoint.keys():
            cfg.POOLING_MODE = checkpoint['pooling_mode']
        print("loaded checkpoint %s" % (load_name))

    if args.mGPUs:
        fasterRCNN = nn.DataParallel(fasterRCNN)

    iters_per_epoch = int(train_size / args.batch_size)

    # tfboard
    if args.use_tfboard:
        from tensorboardX import SummaryWriter
        logger = SummaryWriter("logs")
        #TODO
        #logger.add_graph(fasterRCNN, (im_data1, im_data2, im_info, gt_boxes, num_boxes))
        #TODO
    if args.net == 'vgg16f':
        for epoch in range(args.start_epoch, args.max_epochs + 1):
            # setting to train mode
            fasterRCNN.train()
            loss_temp = 0
            start = time.time()

            if epoch % (args.lr_decay_step + 1) == 0:
                adjust_learning_rate(optimizer, args.lr_decay_gamma)
                lr *= args.lr_decay_gamma

            data_iter = iter(dataloader)
            for step in range(iters_per_epoch):
                data = next(data_iter)

                im_data1.resize_(data[0].size()).copy_(data[0])
                im_data2.resize_(data[1].size()).copy_(data[1])
                im_info.resize_(data[2].size()).copy_(data[2])
                gt_boxes.resize_(data[3].size()).copy_(data[3])
                num_boxes.resize_(data[4].size()).copy_(data[4])

                fasterRCNN.zero_grad()
                rois, cls_prob, bbox_pred, \
                rpn_loss_cls, rpn_loss_box, \
                RCNN_loss_cls, RCNN_loss_bbox, \
                rois_label = fasterRCNN(im_data1, im_data2, im_info, gt_boxes, num_boxes)

                loss = rpn_loss_cls.mean() + rpn_loss_box.mean() \
                       + RCNN_loss_cls.mean() + RCNN_loss_bbox.mean()
                loss_temp += loss.item()

                # backward
                optimizer.zero_grad()
                loss.backward()
                if args.net == "vgg16":
                    clip_gradient(fasterRCNN, 10.)
                optimizer.step()

                if step % args.disp_interval == 0:
                    end = time.time()
                    if step > 0:
                        loss_temp /= (args.disp_interval + 1)

                    if args.mGPUs:
                        loss_rpn_cls = rpn_loss_cls.mean().item()
                        loss_rpn_box = rpn_loss_box.mean().item()
                        loss_rcnn_cls = RCNN_loss_cls.mean().item()
                        loss_rcnn_box = RCNN_loss_bbox.mean().item()
                        fg_cnt = torch.sum(rois_label.data.ne(0))
                        bg_cnt = rois_label.data.numel() - fg_cnt
                    else:
                        loss_rpn_cls = rpn_loss_cls.item()
                        loss_rpn_box = rpn_loss_box.item()
                        loss_rcnn_cls = RCNN_loss_cls.item()
                        loss_rcnn_box = RCNN_loss_bbox.item()
                        fg_cnt = torch.sum(rois_label.data.ne(0))
                        bg_cnt = rois_label.data.numel() - fg_cnt

                    Log.info("[session %d][epoch %2d][iter %4d/%4d] loss: %.4f, lr: %.2e" \
                          % (args.session, epoch, step, iters_per_epoch, loss_temp, lr))
                    Log.info("\t\t\tfg/bg=(%d/%d), time cost: %f" %
                             (fg_cnt, bg_cnt, end - start))
                    Log.info("\t\t\trpn_cls: %.4f, rpn_box: %.4f, rcnn_cls: %.4f, rcnn_box %.4f" \
                          % (loss_rpn_cls, loss_rpn_box, loss_rcnn_cls, loss_rcnn_box))
                    if args.use_tfboard:
                        info = {
                            'loss': loss_temp,
                            'loss_rpn_cls': loss_rpn_cls,
                            'loss_rpn_box': loss_rpn_box,
                            'loss_rcnn_cls': loss_rcnn_cls,
                            'loss_rcnn_box': loss_rcnn_box
                        }
                        logger.add_scalars(
                            "logs_s_{}/losses".format(args.session), info,
                            (epoch - 1) * iters_per_epoch + step)

                    loss_temp = 0
                    start = time.time()

            save_name = os.path.join(
                output_dir,
                'faster_rcnn_{}_{}_{}.pth'.format(args.session, epoch, step))

            save_checkpoint(
                {
                    'session':
                    args.session,
                    'epoch':
                    epoch + 1,
                    'model':
                    fasterRCNN.module.state_dict()
                    if args.mGPUs else fasterRCNN.state_dict(),
                    'optimizer':
                    optimizer.state_dict(),
                    'pooling_mode':
                    cfg.POOLING_MODE,
                    'class_agnostic':
                    args.class_agnostic,
                }, save_name)
            print('save model: {}'.format(save_name))
    elif args.net == 'vgg16c':
        for epoch in range(args.start_epoch, args.max_epochs + 1):
            # setting to train mode
            fasterRCNN.train()
            loss_temp = 0
            start = time.time()

            if epoch % (args.lr_decay_step + 1) == 0:
                adjust_learning_rate(optimizer, args.lr_decay_gamma)
                lr *= args.lr_decay_gamma

            data_iter = iter(dataloader)
            for step in range(iters_per_epoch):
                data = next(data_iter)

                im_data1.resize_(data[0].size()).copy_(data[0])
                im_data2.resize_(data[1].size()).copy_(data[1])
                im_info.resize_(data[2].size()).copy_(data[2])
                gt_boxes.resize_(data[3].size()).copy_(data[3])
                num_boxes.resize_(data[4].size()).copy_(data[4])

                fasterRCNN.zero_grad()
                rois, cls_prob, bbox_pred, \
                rpn_loss_cls1, rpn_loss_box1, \
                rpn_loss_cls2, rpn_loss_box2, \
                RCNN_loss_cls, RCNN_loss_bbox, \
                rois_label = fasterRCNN(im_data1, im_data2, im_info, gt_boxes, num_boxes)

                loss = rpn_loss_cls1.mean() + rpn_loss_box1.mean() \
                        + rpn_loss_cls2.mean() + rpn_loss_box2.mean() \
                        + RCNN_loss_cls.mean() + RCNN_loss_bbox.mean()
                loss_temp += loss.item()

                # backward
                optimizer.zero_grad()
                loss.backward()
                if args.net == "vgg16":
                    clip_gradient(fasterRCNN, 10.)
                optimizer.step()

                if step % args.disp_interval == 0:
                    end = time.time()
                    if step > 0:
                        loss_temp /= (args.disp_interval + 1)

                    if args.mGPUs:
                        loss_rpn_cls1 = rpn_loss_cls1.mean().item()
                        loss_rpn_cls2 = rpn_loss_cls2.mean().item()
                        loss_rpn_box1 = rpn_loss_box1.mean().item()
                        loss_rpn_box2 = rpn_loss_box2.mean().item()
                        loss_rcnn_cls = RCNN_loss_cls.mean().item()
                        loss_rcnn_box = RCNN_loss_bbox.mean().item()
                        fg_cnt = torch.sum(rois_label.data.ne(0))
                        bg_cnt = rois_label.data.numel() - fg_cnt
                    else:
                        loss_rpn_cls1 = rpn_loss_cls1.item()
                        loss_rpn_cls2 = rpn_loss_cls2.item()
                        loss_rpn_box1 = rpn_loss_box1.item()
                        loss_rpn_box2 = rpn_loss_box2.item()
                        loss_rcnn_cls = RCNN_loss_cls.item()
                        loss_rcnn_box = RCNN_loss_bbox.item()
                        fg_cnt = torch.sum(rois_label.data.ne(0))
                        bg_cnt = rois_label.data.numel() - fg_cnt

                    Log.info("[session %d][epoch %2d][iter %4d/%4d] loss: %.4f, lr: %.2e" \
                             % (args.session, epoch, step, iters_per_epoch, loss_temp, lr))
                    Log.info("\t\t\tfg/bg=(%d/%d), time cost: %f" %
                             (fg_cnt, bg_cnt, end - start))
                    Log.info("\t\t\trpn_cls1: %.4f,rpn_cls2: %.4f, rpn_box1: %.4f, rpn_box2: %.4f,rcnn_cls: %.4f, rcnn_box %.4f" \
                             % (loss_rpn_cls1, loss_rpn_cls2,loss_rpn_box1,loss_rpn_box2, loss_rcnn_cls, loss_rcnn_box))
                    if args.use_tfboard:
                        info = {
                            'loss': loss_temp,
                            'loss_rpn_cls1': loss_rpn_cls1,
                            'loss_rpn_cls2': loss_rpn_cls2,
                            'loss_rpn_box1': loss_rpn_box1,
                            'loss_rpn_box2': loss_rpn_box2,
                            'loss_rcnn_cls': loss_rcnn_cls,
                            'loss_rcnn_box': loss_rcnn_box
                        }
                        logger.add_scalars(
                            "logs_s_{}/losses".format(args.session), info,
                            (epoch - 1) * iters_per_epoch + step)

                    loss_temp = 0
                    start = time.time()

            save_name = os.path.join(
                output_dir,
                'faster_rcnn_{}_{}_{}.pth'.format(args.session, epoch, step))

            save_checkpoint(
                {
                    'session':
                    args.session,
                    'epoch':
                    epoch + 1,
                    'model':
                    fasterRCNN.module.state_dict()
                    if args.mGPUs else fasterRCNN.state_dict(),
                    'optimizer':
                    optimizer.state_dict(),
                    'pooling_mode':
                    cfg.POOLING_MODE,
                    'class_agnostic':
                    args.class_agnostic,
                }, save_name)
            print('save model: {}'.format(save_name))
    #logger.add_graph(fasterRCNN, (im_data1, im_data2, im_info, gt_boxes, num_boxes))

    if args.use_tfboard:
        logger.close()