コード例 #1
0
    def forward(self, im_data, im_info, gt_boxes, num_boxes):
        batch_size = im_data.size(0)

        im_info = im_info.data
        gt_boxes = gt_boxes.data
        num_boxes = num_boxes.data

        # feed image data to base model to obtain base feature map
        # Bottom-up
        c1 = self.RCNN_layer0(im_data)
        c2 = self.RCNN_layer1(c1)
        c3 = self.RCNN_layer2(c2)
        c4 = self.RCNN_layer3(c3)
        c5 = self.RCNN_layer4(c4)
        # Top-down
        p5 = self.RCNN_toplayer(c5)
        p4 = self._upsample_add(p5, self.RCNN_latlayer1(c4))
        p4 = self.RCNN_smooth1(p4)
        p3 = self._upsample_add(p4, self.RCNN_latlayer2(c3))
        p3 = self.RCNN_smooth2(p3)
        p2 = self._upsample_add(p3, self.RCNN_latlayer3(c2))
        p2 = self.RCNN_smooth3(p2)

        p6 = self.maxpool2d(p5)

        rpn_feature_maps = [p2, p3, p4, p5, p6]
        mrcnn_feature_maps = [p2, p3, p4, p5]

        rois, rpn_loss_cls, rpn_loss_bbox = self.RCNN_rpn(
            rpn_feature_maps, im_info, gt_boxes, num_boxes)

        # if it is training phrase, then use ground trubut bboxes for refining
        if self.training:
            roi_data = self.RCNN_proposal_target(rois, gt_boxes, num_boxes)
            rois, rois_label, gt_assign, rois_target, rois_inside_ws, rois_outside_ws = roi_data

            ## NOTE: additionally, normalize proposals to range [0, 1],
            #        this is necessary so that the following roi pooling
            #        is correct on different feature maps
            # rois[:, :, 1::2] /= im_info[0][1]
            # rois[:, :, 2::2] /= im_info[0][0]

            rois = rois.view(-1, 5)
            rois_label = rois_label.view(-1).long()
            gt_assign = gt_assign.view(-1).long()
            pos_id = rois_label.nonzero().squeeze()
            gt_assign_pos = gt_assign[pos_id]
            rois_label_pos = rois_label[pos_id]
            rois_label_pos_ids = pos_id

            rois_pos = Variable(rois[pos_id])
            rois = Variable(rois)
            rois_label = Variable(rois_label)

            rois_target = Variable(rois_target.view(-1, rois_target.size(2)))
            rois_inside_ws = Variable(
                rois_inside_ws.view(-1, rois_inside_ws.size(2)))
            rois_outside_ws = Variable(
                rois_outside_ws.view(-1, rois_outside_ws.size(2)))
        else:
            ## NOTE: additionally, normalize proposals to range [0, 1],
            #        this is necessary so that the following roi pooling
            #        is correct on different feature maps
            # rois[:, :, 1::2] /= im_info[0][1]
            # rois[:, :, 2::2] /= im_info[0][0]

            rois_label = None
            gt_assign = None
            rois_target = None
            rois_inside_ws = None
            rois_outside_ws = None
            rpn_loss_cls = 0
            rpn_loss_bbox = 0
            rois = rois.view(-1, 5)
            pos_id = torch.arange(0, rois.size(0)).long().type_as(rois).long()
            rois_label_pos_ids = pos_id
            rois_pos = Variable(rois[pos_id])
            rois = Variable(rois)

        # pooling features based on rois, output 14x14 map   (128,64,7,7)
        roi_pool_feat = self._PyramidRoI_Feat(mrcnn_feature_maps, rois,
                                              im_info)

        Use_emsemble = False
        emsemble_vgg, emsemble_detnet = [False, True]
        if Use_emsemble:
            if emsemble_vgg:
                model_vgg = Cnn()
                model_vgg = model_vgg.cuda()
                ## vgg net
                pretrained_model_vgg = '/home/lab30202/lq/ai_future/single_classsification_vgg/model_save/galxay_star_classification_vgg.pth'  # 预训练模型参数保存地址
                pretrained_dict = torch.load(pretrained_model_vgg)
                model_dict = model_vgg.state_dict()
                pretrained_dict = {
                    k: v
                    for k, v in pretrained_dict.items() if k in model_dict
                }
                model_dict.update(pretrained_dict)
                model_vgg.load_state_dict(model_dict)
                feature_map_vgg = model_vgg.convnet(im_data)
                if self.training:
                    idx_l = [x for x in range(0, 128, 1)]
                else:
                    idx_l = [x for x in range(0, 300, 1)]
                idx_l = torch.LongTensor(idx_l)
                feat = self.RCNN_roi_align(feature_map_vgg, rois[idx_l], 0.5)
                roi_pool_vgg = feat.view(feat.shape[0], -1)
                cls_score_vgg = model_vgg.fc(roi_pool_vgg)
                # cls_prob_vgg = F.softmax(cls_score_vgg,dim=1)
            if emsemble_detnet:
                ## detnet
                detnet = Detnet()
                detnet = detnet.cuda()
                # Bottom-up
                c1_det = detnet.RCNN_layer0_det(im_data)
                c2_det = detnet.RCNN_layer1_det(c1_det)
                c3_det = detnet.RCNN_layer2_det(c2_det)
                c4_det = detnet.RCNN_layer3_det(c3_det)
                c5_det = detnet.RCNN_layer4_det(c4_det)
                c6_det = detnet.RCNN_layer5_det(c5_det)

                # Top-down
                p6_det = detnet.RCNN_toplayer_det(c6_det)
                p5_det = detnet.RCNN_latlayer1_det(c5_det) + p6_det
                p4_det = detnet.RCNN_latlayer2_det(c4_det) + p5_det
                p3_det = detnet._upsample_add(
                    p4_det, detnet.RCNN_latlayer3_det(c3_det))
                p3_det = detnet.RCNN_smooth1_det(p3_det)
                p2_det = detnet._upsample_add(
                    p3_det, detnet.RCNN_latlayer4_det(c2_det))
                p2_det = detnet.RCNN_smooth2_det(p2_det)

                rpn_feature_maps_det = [p2_det, p3_det, p4_det, p5_det, p6_det]
                mrcnn_feature_maps_det = [p2_det, p3_det, p4_det, p5_det]
                rois_det, rpn_loss_cls_det, rpn_loss_bbox_det = self.RCNN_rpn(
                    rpn_feature_maps_det, im_info, gt_boxes, num_boxes)
                if self.training:
                    roi_data_det = self.RCNN_proposal_target(
                        rois_det, gt_boxes, num_boxes)
                    rois_det, rois_label_det, gt_assign_det, rois_target_det, rois_inside_ws_det, rois_outside_ws_det = roi_data_det
                    rois_det = rois_det.view(-1, 5)
                    rois_label_det = rois_label_det.view(-1).long()
                    gt_assign_det = gt_assign_det.view(-1).long()
                    pos_id_det = rois_label_det.nonzero().squeeze()
                    gt_assign_pos_det = gt_assign_det[pos_id_det]
                    rois_label_pos_det = rois_label_det[pos_id_det]
                    rois_label_pos_ids_det = pos_id_det

                    rois_pos_det = Variable(rois_det[pos_id_det])
                    rois_det = Variable(rois_det)
                    rois_label_det = Variable(rois_label_det)

                    rois_target_det = Variable(
                        rois_target_det.view(-1, rois_target_det.size(2)))
                    rois_inside_ws_det = Variable(
                        rois_inside_ws_det.view(-1,
                                                rois_inside_ws_det.size(2)))
                    rois_outside_ws_det = Variable(
                        rois_outside_ws_det.view(-1,
                                                 rois_outside_ws_det.size(2)))
                else:
                    rois_label_det = None
                    gt_assign_det = None
                    rois_target_det = None
                    rois_inside_ws_det = None
                    rois_outside_ws_det = None
                    rpn_loss_cls_det = 0
                    rpn_loss_bbox_det = 0
                    rois_det = rois_det.view(-1, 5)
                    pos_id_det = torch.arange(
                        0, rois_det.size(0)).long().type_as(rois_det).long()
                    rois_label_pos_ids_det = pos_id_det
                    rois_pos_det = Variable(rois_det[pos_id_det])
                    rois_det = Variable(rois_det)

                feat_det = self._PyramidRoI_Feat(mrcnn_feature_maps_det, rois,
                                                 im_info)
                if emsemble_detnet:
                    pooled_feat_det = detnet._head_to_tail(feat_det)
                    cls_score_det = self.RCNN_cls_score(pooled_feat_det)
                else:
                    roi_pool_det = feat_det.view(feat_det.shape[0], -1)
                    cls_score_det = model_vgg.fc(roi_pool_det)

        pooled_feat = self._head_to_tail(roi_pool_feat)

        # compute bbox offset
        bbox_pred = self.RCNN_bbox_pred(pooled_feat)
        if self.training and not self.class_agnostic:
            # select the corresponding columns according to roi labels
            bbox_pred_view = bbox_pred.view(bbox_pred.size(0),
                                            int(bbox_pred.size(1) / 4), 4)
            bbox_pred_select = torch.gather(
                bbox_pred_view, 1,
                rois_label.long().view(rois_label.size(0), 1,
                                       1).expand(rois_label.size(0), 1, 4))
            bbox_pred = bbox_pred_select.squeeze(1)

        # compute object classification probability
        cls_score = self.RCNN_cls_score(pooled_feat)
        # cls_prob = F.softmax(cls_score,dim=1)

        if Use_emsemble:
            if emsemble_detnet and emsemble_vgg:
                cls_score_liner = 0.5 * cls_score + 0.3 * cls_score_vgg + 0.2 * cls_score_det
                cls_score = model_vgg.fc_new(cls_score_liner)
                cls_prob = F.softmax(cls_score, dim=1)
            elif emsemble_vgg and not emsemble_detnet:
                cls_score_liner = cls_score + cls_score_vgg
                cls_score = model_vgg.fc_new(cls_score_liner)
                cls_prob = F.softmax(cls_score, dim=1)
            elif emsemble_detnet and not emsemble_vgg:
                cls_score_liner = cls_score + cls_score_det
                cls_score = detnet.fc_add(cls_score_liner)
                cls_prob = F.softmax(cls_score, dim=1)
        else:
            cls_score = self.RCNN_cls_score(pooled_feat)
            cls_prob = F.softmax(cls_score, dim=1)

        RCNN_loss_cls = 0
        RCNN_loss_bbox = 0

        if self.training:
            # loss (cross entropy) for object classification
            Use_focal_loss = True
            Use_label_smoothing = False
            Use_Giou_loss = False
            if not Use_focal_loss:
                if Use_label_smoothing:
                    # criteria = LabelSmoothSoftmaxCE(label_smoothing=0.1)
                    criteria = LabelSmoothSoftmaxCE(lb_pos=0.9, lb_neg=5e-3)
                    RCNN_loss_cls = criteria(cls_score, rois_label)
                else:
                    RCNN_loss_cls = F.cross_entropy(cls_score, rois_label)
            else:
                FL = FocalLoss(class_num=self.n_classes, alpha=1, gamma=2)
                RCNN_loss_cls = FL(cls_score, rois_label)
                RCNN_loss_cls = RCNN_loss_cls.type(torch.FloatTensor).cuda()

            # loss (l1-norm) for bounding box regression
            if Use_Giou_loss:
                rois1 = rois.view(batch_size, -1, rois.size(1))
                boxes = rois1.data[:, :, 1:5]
                bbox_pred1 = bbox_pred.view(batch_size, -1, bbox_pred.size(1))
                box_deltas = bbox_pred1.data
                # if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
                #     # Optionally normalize targets by a precomputed mean and stdev
                #     box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \
                #                  + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda()
                #     box_deltas = box_deltas.view(1, -1, 4 * len(self.classes))

                pred_boxes = bbox_transform_inv(boxes, box_deltas, 1)
                pred_boxes = clip_boxes(pred_boxes, im_info.data, 1)
                pred_boxes /= im_info[0][2].cuda()
                # RCNN_loss_bbox = generalized_iou_loss(rois_target,bbox_pred)
                _, _, RCNN_loss_bbox = Giou_np(pred_boxes, boxes)
            else:
                RCNN_loss_bbox = _smooth_l1_loss(bbox_pred, rois_target,
                                                 rois_inside_ws,
                                                 rois_outside_ws)

        rois = rois.view(batch_size, -1, rois.size(1))
        cls_prob = cls_prob.view(batch_size, -1, cls_prob.size(1))
        bbox_pred = bbox_pred.view(batch_size, -1, bbox_pred.size(1))

        if self.training:
            rois_label = rois_label.view(batch_size, -1)
            rpn_loss_cls = torch.unsqueeze(rpn_loss_cls, 0)
            rpn_loss_bbox = torch.unsqueeze(rpn_loss_bbox, 0)
            RCNN_loss_cls = torch.unsqueeze(RCNN_loss_cls, 0)
            RCNN_loss_bbox = torch.unsqueeze(RCNN_loss_bbox, 0)

        return rois, cls_prob, bbox_pred, rpn_loss_cls, rpn_loss_bbox, RCNN_loss_cls, RCNN_loss_bbox, rois_label
コード例 #2
0
        args.session = checkpoint['session']
        args.start_epoch = checkpoint['epoch']
        fasterRCNN.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr = optimizer.param_groups[0]['lr']
        if 'pooling_mode' in checkpoint.keys():
            cfg.POOLING_MODE = checkpoint['pooling_mode']
        print("loaded checkpoint %s" % (load_name))

    if args.mGPUs:
        fasterRCNN = nn.DataParallel(fasterRCNN)
    iters_per_epoch = int(10000 / args.batch_size)
    if args.ef:
        FL = EFocalLoss(class_num=2, gamma=args.gamma)
    else:
        FL = FocalLoss(class_num=2, gamma=args.gamma)

    if args.use_tfboard:
        from tensorboardX import SummaryWriter

        logger = SummaryWriter("logs")
    count_iter = 0
    for epoch in range(args.start_epoch, args.max_epochs + 1):
        # setting to train mode
        fasterRCNN.train()
        loss_temp = 0
        start = time.time()

        if epoch % (args.lr_decay_step + 1) == 0:
            adjust_learning_rate(optimizer, args.lr_decay_gamma)
            lr *= args.lr_decay_gamma
コード例 #3
0
def exp_htcn_mixed(cfg_file, output_dir, dataset_source, dataset_target, val_datasets,
                    device, net, optimizer, num_workers,
                    lr, batch_size, start_epoch, max_epochs, lr_decay_gamma, lr_decay_step,
                    resume, load_name,
                    eta, gamma, ef, class_agnostic, lc, gc, LA_ATT, MID_ATT,
                    debug, _run):

    args = Args(dataset=dataset_source, dataset_t=dataset_target, imdb_name_target=[], cfg_file=cfg_file, net=net)
    args = set_dataset_args(args)

    args_val = Args(dataset=dataset_source, dataset_t=val_datasets, imdb_name_target=[], cfg_file=cfg_file, net=net)
    args_val = set_dataset_args(args_val, test=True)


    logger = LoggerForSacred(None, ex, True)

    if cfg_file is not None:
        cfg_from_file(cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    np.random.seed(cfg.RNG_SEED)

    cfg.TRAIN.USE_FLIPPED = True
    cfg.USE_GPU_NMS = True if device == 'cuda' else False
    device = torch.device(device)

    output_dir = output_dir + "_{}".format(_run._id)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    dataloader_s, dataloader_t, imdb = init_dataloaders_1s_mixed_mt(args, batch_size, num_workers)
    val_dataloader_ts, val_imdb_ts = init_val_dataloaders_mt(args_val, 1, num_workers)

    session = 1
    fasterRCNN, lr, optimizer, session, start_epoch, _ = init_htcn_model_optimizer(lr, LA_ATT, MID_ATT, class_agnostic, device, gc,
                                                                                   imdb, lc, load_name, net, optimizer, resume,
                                                                                   session, start_epoch)

    if torch.cuda.device_count() > 1:
        fasterRCNN = nn.DataParallel(fasterRCNN)

    iters_per_epoch = int(10000 / batch_size)

    if ef:
        FL = EFocalLoss(class_num=2, gamma=gamma)
    else:
        FL = FocalLoss(class_num=2, gamma=gamma)

    total_step = 0

    for epoch in range(start_epoch, max_epochs + 1):
        # setting to train mode
        fasterRCNN.train()

        if epoch - 1 in lr_decay_step:
            adjust_learning_rate(optimizer, lr_decay_gamma)
            lr *= lr_decay_gamma

        total_step = frcnn_utils.train_htcn_one_epoch(args, FL, total_step, dataloader_s, dataloader_t, iters_per_epoch, fasterRCNN, optimizer, device, eta, logger)
        save_name = os.path.join(output_dir,
                                 'target_{}_eta_{}_local_{}_global_{}_gamma_{}_session_{}_epoch_{}_total_step_{}.pth'.format(
                                     args.dataset_t, args.eta,
                                     lc, gc, gamma,
                                     session, epoch,
                                     total_step))
        save_checkpoint({
            'session': session,
            'epoch': epoch + 1,
            'model': fasterRCNN.module.state_dict() if torch.cuda.device_count() > 1 else fasterRCNN.state_dict(),
            'optimizer': optimizer.state_dict(),
            'pooling_mode': cfg.POOLING_MODE,
            'class_agnostic': class_agnostic,
        }, save_name)
    return 0