コード例 #1
0
ファイル: train.py プロジェクト: AlisonZW/pytorch_tutorial
# 构建MyDataset实例
#train_data = RMBDataset(data_dir=train_dir, transform=train_transform)
#valid_data = RMBDataset(data_dir=valid_dir, transform=valid_transform)
train_data = BongosDataset(data_dir=train_dir, transform=train_transform)
valid_data = BongosDataset(data_dir=valid_dir, transform=valid_transform)

# 构建DataLoder
train_loader = DataLoader(dataset=train_data,
                          batch_size=BATCH_SIZE,
                          shuffle=True)
valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE)

# ============================ step 2/5 模型 ============================

#net = LeNet(classes=2)
net = VGGNet(num_classes=2)
net.initialize_weights()
net = net.cuda()

# ============================ step 3/5 损失函数 ============================
criterion = nn.CrossEntropyLoss()
criterion = nn.CrossEntropyLoss().cuda()

# ============================ step 4/5 优化器 ============================
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9)  # 选择优化器
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10,
                                            gamma=0.1)  # 设置学习率下降策略

# ============================ step 5/5 训练 ============================
train_curve = list()
valid_curve = list()
コード例 #2
0
    elif (args.dataset == 'cifar100'):
        print("| Preparing CIFAR-100 dataset...")
        sys.stdout.write("| ")
        trainset = torchvision.datasets.CIFAR100(root='./data', train=True, download=True, transform=transform_train)
        testset = torchvision.datasets.CIFAR100(root='./data', train=False, download=True, transform=transform_test)
        num_classes = 100

    trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.bs, shuffle=True, num_workers=2)
    testloader = torch.utils.data.DataLoader(testset, batch_size=args.bs, shuffle=False, num_workers=2)


    # Model
    print('\n[Phase 2] : Model setup')
    print('| Building net type [' + args.net + ']...')
    if args.net == 'vgg16':
        net = VGGNet(num_classes, args.drop_p, False, args.feat_dim, args.conv == 5)
    else:
        print('Error : Network should be either [ResNet34]')
        sys.exit(0)

    net.init_weights()
    net.to(device)

    # Training
    print('\n[Phase 3] : Training model')
    print('| Training Epochs = ' + str(args.num_epochs))
    print('| Initial Learning Rate = ' + str(args.lr))

    optimizer = optim.SGD(net.parameters(), lr=cf.learning_rate(args.lr, 1), momentum=0.9, weight_decay=args.wd)

    elapsed_time = 0
コード例 #3
0
                                                  test_size=0.2,
                                                  random_state=42)

lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.transform(testY)

aug = ImageDataGenerator(rotation_range=30,
                         width_shift_range=0.1,
                         height_shift_range=0.1,
                         shear_range=0.2,
                         zoom_range=0.2,
                         horizontal_flip=True,
                         fill_mode="nearest")

model = VGGNet.build(width=64, height=64, depth=3, classes=len(lb.classes_))

INIT_LR = 0.05
EPOCHS = 70
BS = 32

print("[INFO] training network...")
opt = SGD(lr=INIT_LR, decay=INIT_LR / EPOCHS)
model.compile(loss="categorical_crossentropy",
              optimizer=opt,
              metrics=["accuracy"])

H = model.fit_generator(aug.flow(trainX, trainY, batch_size=BS),
                        validation_data=(testX, testY),
                        steps_per_epoch=len(trainX) // BS,
                        epochs=EPOCHS)
コード例 #4
0
    trainloader = torch.utils.data.DataLoader(trainset,
                                              batch_size=args.bs,
                                              shuffle=True,
                                              num_workers=2)
    testloader = torch.utils.data.DataLoader(testset,
                                             batch_size=args.bs,
                                             shuffle=False,
                                             num_workers=2)

    # Model
    print('\n[Phase 2] : Model setup')
    print('| Building net type [' + args.net + ']...')
    if args.net == 'vgg16':
        #net = ResNet(34, num_classes)
        net = VGGNet(num_classes, args.drop_p, args.drop_last_only,
                     args.feat_dim, args.conv == 5)
    else:
        print('Error : Network should be either [ResNet34]')
        sys.exit(0)

    net.init_weights()
    net.to(device)

    # Training
    print('\n[Phase 3] : Training model')
    print('| Training Epochs = ' + str(args.num_epochs))
    print('| Initial Learning Rate = ' + str(args.lr))

    optimizer = optim.SGD(net.parameters(),
                          lr=cf.learning_rate(args.lr, 1),
                          momentum=0.9,
コード例 #5
0
ファイル: train.py プロジェクト: sethips/gender-identifier-ML
trainY = to_categorical(trainY, num_classes=2)
testY = to_categorical(testY, num_classes=2)

# augmenting datset
aug = ImageDataGenerator(rotation_range=50,
                         width_shift_range=0.2,
                         height_shift_range=0.2,
                         shear_range=0.3,
                         zoom_range=0.4,
                         horizontal_flip=True,
                         vertical_flip=True,
                         fill_mode="nearest")

# build model
model = VGGNet.build(width=img_dims[0],
                     height=img_dims[1],
                     depth=img_dims[2],
                     classes=2)

# compile the model
opt = sgd(lr=lr, decay=lr / epochs)
model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"])

# train the model
H = model.fit_generator(aug.flow(trainX, trainY, batch_size=batch_size),
                        validation_data=(testX, testY),
                        steps_per_epoch=len(trainX) // batch_size,
                        epochs=epochs,
                        verbose=1)

# save the model to disk
model.save(args.model)
コード例 #6
0
                                                transform=transform_test)
        num_classes = 100

    testloader = torch.utils.data.DataLoader(testset,
                                             batch_size=args.bs,
                                             shuffle=False,
                                             num_workers=2)

    # Model
    print('\n[Phase 2] : Model setup')
    print('| Building net type [' + args.net + ']...')
    if args.net == 'resnet34':
        net = ResNet(34, num_classes, 0.5)
    elif args.net == 'densenet':
        net = DenseNet3(100, num_classes, 12, 0.5, True, 0.2)
    elif args.net == 'vgg16':
        net = VGGNet(num_classes, 0.5, False, 2048, True)
    else:
        print('Error : Network should be either [ResNet34]')
        sys.exit(0)

    checkpoint = torch.load(args.model_path)
    net.load_state_dict(checkpoint['model'])
    net.to(device)

    avg = 0

    for i in range(10):
        avg += test(net, testloader)

    print(avg / 10)
コード例 #7
0
import tensorflow as tf
import gc

from model.vggnet import VGGNet
from util import train

# Declare Static Variables
vgg11_log_dir = './vgg/vgg11'
vgg13_log_dir = './vgg/vgg13'

input_shape = (32, 32, 3)
n_class = 100

# Build VGG11

pretrained_vgg = VGGNet(11)
pretrained_vgg.build(input_shape, n_class)

# Pretrain VGG11
with pretrained_vgg.graph.as_default() as graph:
    loss = graph.get_tensor_by_name('loss:0')
    lr = tf.placeholder_with_default(1e-2, (), name='learning_rate')
    global_step = tf.train.get_or_create_global_step()

    with tf.variable_scope('optimizer'):
        tf.train.MomentumOptimizer(lr, 0.9).minimize(loss, global_step)

    sess = tf.Session(graph=graph)
    sess = train(sess, os.path.join(vgg11_log_dir, 'log'))

with pretrained_vgg.graph.as_default() as graph:
コード例 #8
0
ファイル: train_hero.py プロジェクト: fabianoswald/fruit_hero
lb = LabelBinarizer()
labels = lb.fit_transform(labels)

# partition the data into training and testing splits using 80% of
# the data for training and the remaining 20% for testing
(trainX, testX, trainY, testY) = train_test_split(data,
	labels, test_size=0.2, random_state=42)

# construct the image generator for data augmentation
aug = ImageDataGenerator(rotation_range=25, width_shift_range=0.1,
	height_shift_range=0.1, shear_range=0.2, zoom_range=0.2,
	horizontal_flip=True, fill_mode="nearest")

# initialize the model
print("[INFO] compiling model...")
model = VGGNet.build(width=IMAGE_DIMS[1], height=IMAGE_DIMS[0],
	depth=IMAGE_DIMS[2], classes=len(lb.classes_))
opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS)
model.compile(loss="categorical_crossentropy", optimizer=opt,
	metrics=["accuracy"])

# train the network
print("[INFO] training network...")
H = model.fit_generator(
	aug.flow(trainX, trainY, batch_size=BS),
	validation_data=(testX, testY),
	steps_per_epoch=len(trainX) // BS,
	epochs=EPOCHS, verbose=1)

# save the model to disk
print("[INFO] serializing network...")
model.save(args["model"])