def __init__(self, weights): game = hlt.Game() game.ready("DecisionTreeBot") m = model.HaliteModel(weights=weights) self.m = m self.game = game
def __init__(self, weights): # Get the initial game state game = hlt.Game() game.ready(os.path.basename(weights)) # During init phase: initialize the model and compile it my_model = model.HaliteModel(weights=weights) self.my_model = my_model self.game = game
def __init__(self, weights): # Get the initial game state game = hlt.Game() logging.info("Successfully created bot! My Player ID is {}.".format(game.my_id)) game.ready("SVM-" + os.path.basename(weights)) # During init phase: initialize the model and compile it my_model = model.HaliteModel(weights=weights) self.my_model = my_model self.game = game
def main(): bot = model.HaliteModel(weights="out/dt.svc") dot_data = tree.export_graphviz(bot.model, out_file="out/dt.dot", feature_names=FEATURE_NAMES, class_names=TARGET_NAMES, filled=True, rounded=True, special_characters=True) print( "Dot file generated at out/dt.dot. Please run util/render.sh to generate a png file." )
#!/usr/bin/env python3 import model #m = model.HaliteModel() #m.train_on_files('replays', 'aggressive') #m.save(file_name='aggressive.svc') m = model.HaliteModel() m.train_on_files('replays', 'aggressive') m.save(file_name='aggressive.svc') m = model.HaliteModel() m.train_on_files('replays', 'passive') m.save(file_name='passive.svc')
def main(): m = model.HaliteModel() m.train_on_folder("./training") m.save(file_name="out/dt.svc") print("Training complete. SVC file at out/dt.svc") print("call ./run_game.sh to test bot")