コード例 #1
0
import torch
import numpy as np
import matplotlib.pyplot as plt

import model
import data

cinn = model.MNIST_cINN(0)
cinn.cuda()
state_dict = {
    k: v
    for k, v in torch.load('output/mnist_cinn.pt').items()
    if 'tmp_var' not in k
}
cinn.load_state_dict(state_dict)

cinn.eval()


def show_samples(label):
    '''produces and shows cINN samples for a given label (0-9)'''

    N_samples = 100
    l = torch.cuda.LongTensor(N_samples)
    l[:] = label

    z = 1.0 * torch.randn(N_samples, model.ndim_total).cuda()

    with torch.no_grad():
        samples = cinn.reverse_sample(z, l).cpu().numpy()
        samples = data.unnormalize(samples)
コード例 #2
0
from time import time

from tqdm import tqdm
import torch
import torch.nn
import torch.optim
import numpy as np

import model
import data

cinn = model.MNIST_cINN(5e-4)
cinn.cuda()
scheduler = torch.optim.lr_scheduler.MultiStepLR(cinn.optimizer,
                                                 milestones=[20, 40],
                                                 gamma=0.1)

N_epochs = 60
t_start = time()
nll_mean = []

print('Epoch\tBatch/Total \tTime \tNLL train\tNLL val\tLR')
for epoch in range(N_epochs):
    for i, (x, l) in enumerate(data.train_loader):
        x, l = x.cuda(), l.cuda()
        z, log_j = cinn(x, l)

        nll = torch.mean(z**2) / 2 - torch.mean(log_j) / model.ndim_total
        nll.backward()
        torch.nn.utils.clip_grad_norm_(cinn.trainable_parameters, 10.)
        nll_mean.append(nll.item())
コード例 #3
0
ファイル: train.py プロジェクト: yqGANs/FrEIA
from time import time

from tqdm import tqdm
import torch
import torch.optim
import numpy as np

import model
import data

cinn = model.MNIST_cINN(1e-3)
cinn.cuda()
scheduler = torch.optim.lr_scheduler.MultiStepLR(cinn.optimizer,
                                                 milestones=[40, 80],
                                                 gamma=0.1)

N_epochs = 120
t_start = time()
nll_mean = []

print('Epoch\tBatch/Total \tTime \tNLL train\tNLL val\tLR')
for epoch in range(N_epochs):
    for i, (x, l) in enumerate(data.train_loader):
        x, l = x.cuda(), l.cuda()
        z, log_j = cinn(x, l)

        nll = torch.mean(z**2) / 2 - torch.mean(log_j) / model.ndim_total
        nll.backward()
        nll_mean.append(nll.item())
        cinn.optimizer.step()
        cinn.optimizer.zero_grad()