コード例 #1
0
def val():
    num_test = 10000
    data_dir = '/home/rong/something_for_deep/cifar-10-batches-bin'
    train_log_dir = './logs/train'

    image_batch, label_batch = input_data.read_cifar10(data_dir,
                                                       is_train=False,
                                                       batch_size=BATCH_SIZE,
                                                       shuffle=False)
    vgg16 = model.VGG16()
    logits = vgg16.build(image_batch, NUM_CLASSES, False)
    saver = tf.train.Saver()
    correct_per_batch = tools.num_correct_prediction(logits, label_batch)

    with tf.Session() as sess:
        print('Reading checkpoints')
        ckpt = tf.train.get_checkpoint_state(train_log_dir)
        if ckpt and ckpt.model_checkpoint_path:
            global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                '-')[-1]
            saver.restore(sess, ckpt.model_checkpoint_path)
            print('Loading success, global_step is %s' % global_step)
        else:
            print('No checkpoint file found')
            return

        saver.restore(sess, './logs/train/model.ckpt-8000')
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        try:
            print('\nEvaluating......')
            num_step = int(math.floor(num_test / BATCH_SIZE))
            num_sample = num_step * BATCH_SIZE
            step = 0
            total_correct = 0
            while step < num_step and not coord.should_stop():
                batch_correct = sess.run(correct_per_batch)
                total_correct += np.sum(batch_correct)
                step += 1
                if step % 10 == 0:
                    print('Testing samples: %d' % (step * BATCH_SIZE))
                    print('Correct predictions: %d' % total_correct)
                    print('Average accuracy: %.2f%%' % (total_correct /
                                                        (step * BATCH_SIZE)))
            print('Total testing samples: %d' % num_sample)
            print('Total correct predictions: %d' % total_correct)
            print('Average accuracy: %.2f%%' %
                  (100 * total_correct / num_sample))
        except Exception as e:
            coord.request_stop(e)
        finally:
            coord.request_stop()
            coord.join(threads)
コード例 #2
0
def main(args, model_name, trainloader, testloader):
    n_classes = args["dataset"]["n_classes"]
    net = model.VGG16(n_classes, True)

    optimizer = torch.optim.SGD(params=net.parameters(),
                                lr=lr,
                                momentum=momentum,
                                weight_decay=weight_decay)

    criterion = nn.CrossEntropyLoss(reduction="none").cuda()
    net = torch.nn.DataParallel(net).to(device)

    train_dp(model_name, model_path, mode, net, criterion, optimizer,
             trainloader, testloader, n_epochs, noise)