def main(): print("Starting run (v{})".format(__version__)) init_directories() model_name = "model_1" model = create_initial_model(name=model_name) while True: model = load_latest_model() best_model = load_best_model() train(model, game_model_name=best_model.name) evaluate(best_model, model) K.clear_session()
def main(): init_directories() model_name = "model_1" model = create_initial_model(name=model_name) while True: model = load_latest_model() best_model = load_model(os.path.join(conf['MODEL_DIR'], conf['BEST_MODEL']), custom_objects={'loss': loss}) train(model, game_model_name=best_model.name) evaluate(best_model, model)
def setUp(self): init_directories() model_name = "model_1" model = create_initial_model(name=model_name) best_model = load_best_model() if best_model.name == model.name: train(model, game_model_name=best_model.name) evaluate(best_model, model) # We save wether or not it was a better model full_filename = os.path.join(conf['MODEL_DIR'], conf['BEST_MODEL']) model.save(full_filename) else: model = best_model self.model = model
def main(): config = tf.ConfigProto() config.gpu_options.allow_growth = True K.set_session(tf.Session(config=config)) init_directories() model_name = "model_1" model = create_initial_model(name=model_name) while True: best_model = load_best_model() self_play(best_model, n_games=10, mcts_simulations=conf['MCTS_SIMULATIONS']) K.clear_session()