labelIndexBatch = Variable(torch.LongTensor(opt.batchSize, 1, 300, 300)) # Initialize network encoder_normal = model.encoder() decoder_normal = model.decoder() model_root_normal = '/datasets/cse152-252-sp20-public/unet_checkpoints/unet_original_zq' epoch_id_normal = 181 encoder_normal.load_state_dict( torch.load('%s/encoder_%d.pth' % (model_root_normal, epoch_id_normal))) decoder_normal.load_state_dict( torch.load('%s/decoder_%d.pth' % (model_root_normal, epoch_id_normal))) encoder_normal = encoder_normal.eval() decoder_normal = decoder_normal.eval() encoder_dilation = model.encoderDilation() decoder_dilation = model.decoderDilation() model_root_dilation = '/datasets/cse152-252-sp20-public/unet_checkpoints/unet_original_zq_dilation' epoch_id_dilation = 180 encoder_dilation.load_state_dict( torch.load('%s/encoder_%d.pth' % (model_root_dilation, epoch_id_dilation))) decoder_dilation.load_state_dict( torch.load('%s/decoder_%d.pth' % (model_root_dilation, epoch_id_dilation))) encoder_dilation = encoder_dilation.eval() decoder_dilation = decoder_dilation.eval() encoder_spp = model.encoderDilation() decoder_spp = model.decoderDilation(isSpp=True) model_root_spp = '/datasets/cse152-252-sp20-public/unet_checkpoints/unet_original_zq_spp' epoch_id_spp = 180 encoder_spp.load_state_dict( torch.load('%s/encoder_%d.pth' % (model_root_spp, epoch_id_spp)))
os.system('mkdir %s' % opt.experiment ) os.system('cp *.py %s' % opt.experiment ) if torch.cuda.is_available() and opt.noCuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") # Initialize image batch imBatch = Variable(torch.FloatTensor(opt.batchSize, 3, 300, 300) ) labelBatch = Variable(torch.FloatTensor(opt.batchSize, opt.numClasses, 300, 300) ) maskBatch = Variable(torch.FloatTensor(opt.batchSize, 1, 300, 300) ) labelIndexBatch = Variable(torch.LongTensor(opt.batchSize, 1, 300, 300) ) # Initialize network if opt.isDilation: encoder = model.encoderDilation() decoder = model.decoderDilation() elif opt.isSpp: encoder = model.encoderSPP() decoder = model.decoderSPP() else: encoder = model.encoder() decoder = model.decoder() encoder.load_state_dict(torch.load('%s/encoder_%d.pth' % (opt.modelRoot, opt.epochId) ) ) decoder.load_state_dict(torch.load('%s/decoder_%d.pth' % (opt.modelRoot, opt.epochId) ) ) encoder = encoder.eval() decoder = decoder.eval() # Move network and containers to gpu if not opt.noCuda: imBatch = imBatch.cuda(opt.gpuId )
# Initialize image batch imBatch = Variable( torch.FloatTensor(opt.batchSize, 3, opt.imHeight, opt.imWidth)) labelBatch = Variable( torch.FloatTensor(opt.batchSize, opt.numClasses, opt.imHeight, opt.imWidth)) maskBatch = Variable( torch.FloatTensor(opt.batchSize, 1, opt.imHeight, opt.imWidth)) labelIndexBatch = Variable( torch.LongTensor(opt.batchSize, 1, opt.imHeight, opt.imWidth)) # Initialize network if opt.isDilation: encoder = model.encoderDilation() decoder = model.decoderDilation() # decoder = model.decoder() elif opt.isSpp: encoder = model.encoderDilation() decoder = model.decoderDilation(isSpp=True) else: encoder = model.encoder() decoder = model.decoder() if opt.isPretrained: model.loadPretrainedWeight(encoder, isOutput=True) # Move network and containers to gpu if not opt.noCuda: imBatch = imBatch.cuda(opt.gpuId) labelBatch = labelBatch.cuda(opt.gpuId) labelIndexBatch = labelIndexBatch.cuda(opt.gpuId)