def main(): mode = sys.argv[1] if mode == 'predict': output_name = sys.argv[2] model_name = sys.argv[3] print '---------------------------------------------' print 'Predicting new images' print '---------------------------------------------' pred_array, pred_file = dp.CNNDataPreProcess.predict_prep('predict') pred_pre = dp.CNNDataPreProcess.cnn_preprocess(pred_array) pred_result = model.pred_model(pred_pre, model_name) model.prediction(pred_result, pred_file, output_name) else: print '---------------------------------------------' print 'Load image, black_white them, and resize them' print '---------------------------------------------' if mode == 'train': training_step = int(sys.argv[2]) model_name = sys.argv[3] train_sample, train_label = (dp.CNNDataPreProcess.train_eval_prep( 'train_organized', 'train_disorganized', 'train')) print '---------------------------------------------' print 'Train model' print '---------------------------------------------' model.train_model(train_sample, train_label, training_step, model_name) if mode == 'eval': model_name = sys.argv[2] eval_sample, eval_label = (dp.CNNDataPreProcess.train_eval_prep( 'eval_organized', 'eval_disorganized', 'eval')) print '---------------------------------------------' print 'Evaluate model' print '---------------------------------------------' print '---------------------------------------------' print 'Evaluation Accuracy' print '---------------------------------------------' print model.eval_model(eval_sample, eval_label, model_name)
data_model, data_test, label_model, label_test = train_test_split( data, label, test_size=0.2, random_state=2020) # 五折交叉验证 kf = KFold(n_splits=5, shuffle=True, random_state=2020) for train_index, valid_index in kf.split(data_model): # 生成训练集和验证集 data_train = data_model.copy() data_valid = data_model.copy() data_train.drop(data_train.index[valid_index], inplace=True) data_valid.drop(data_valid.index[train_index], inplace=True) # 得到label label_train = label_model.drop(label_model.index[valid_index]) label_valid = label_model.drop(label_model.index[train_index]) gbm_model, evals_result = train_model(data_train, label_train, data_valid, label_valid) score = eval_model(data_valid, label_valid) # 全训练集建模 print("全训练集建模") gbm_model, evals_result = train_model(data_model, label_model, data_test, label_test) # 模型特征重要性画图 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False lgb.plot_importance(gbm_model) plt.show() # 测试集评测 eval_model(data_test, label_test)
default=model.DEFAULT_VALID_DATA_ROOT_DIR, help='validating data root directory, default: ' + model.DEFAULT_VALID_DATA_ROOT_DIR) parser.add_argument( '-batch-size', type=int, default=64, help='batch size for validating, default: 64') parser.add_argument( '-model', type=str, default=model.DEFAULT_MODEL, help='trained model name, default: ' + model.DEFAULT_MODEL) parser.add_argument( '-device', type=str, default="cuda:0", help='cuda:0 or cpu, default: cuda:0') if __name__ == '__main__': args = parser.parse_args() if (not os.path.exists(args.root_dir)) or (not os.path.isdir( args.root_dir)): logging.error(args.root_dir + ' is not director or not exists.') sys.exit(-1) data = model.valid_data_loader(args.root_dir, args.batch_size) net = model.load_model(args.device, args.model) model.eval_model(args.device, net, data)
def train( dim_word_desc=400, # word vector dimensionality dim_word_q=400, dim_word_ans=600, dim_proj=300, dim=400, # the number of LSTM units encoder_desc='lstm', encoder_desc_word='lstm', encoder_desc_sent='lstm', use_dq_sims=False, eyem=None, learn_h0=False, use_desc_skip_c_g=False, debug=False, encoder_q='lstm', patience=10, max_epochs=5000, dispFreq=100, decay_c=0., alpha_c=0., clip_c=-1., lrate=0.01, n_words_q=49145, n_words_desc=115425, n_words_ans=409, pkl_train_files=None, pkl_valid_files=None, maxlen=2000, # maximum length of the description optimizer='rmsprop', batch_size=2, vocab=None, valid_batch_size=16, use_elu_g=False, saveto='model.npz', model_dir=None, ms_nlayers=3, validFreq=1000, saveFreq=1000, # save the parameters after every saveFreq updates datasets=[None], truncate=400, momentum=0.9, use_bidir=False, cost_mask=None, valid_datasets=[ '/u/yyu/stor/caglar/rc-data/cnn/cnn_test_data.h5', '/u/yyu/stor/caglar/rc-data/cnn/cnn_valid_data.h5' ], dropout_rate=0.5, use_dropout=True, reload_=True, **opt_ds): ensure_dir_exists(model_dir) mpath = os.path.join(model_dir, saveto) mpath_best = os.path.join(model_dir, prfx("best", saveto)) mpath_last = os.path.join(model_dir, prfx("last", saveto)) mpath_stats = os.path.join(model_dir, prfx("stats", saveto)) # Model options model_options = locals().copy() model_options['use_sent_reps'] = opt_ds['use_sent_reps'] stats = defaultdict(list) del model_options['eyem'] del model_options['cost_mask'] if cost_mask is not None: cost_mask = sharedX(cost_mask) # reload options and parameters if reload_: print "Reloading the model." if os.path.exists(mpath_best): print "Reloading the best model from %s." % mpath_best with open(os.path.join(mpath_best, '%s.pkl' % mpath_best), 'rb') as f: models_options = pkl.load(f) params = init_params(model_options) params = load_params(mpath_best, params) elif os.path.exists(mpath): print "Reloading the model from %s." % mpath with open(os.path.join(mpath, '%s.pkl' % mpath), 'rb') as f: models_options = pkl.load(f) params = init_params(model_options) params = load_params(mpath, params) else: raise IOError("Couldn't open the file.") else: print "Couldn't reload the models initializing from scratch." params = init_params(model_options) if datasets[0]: print "Short dataset", datasets[0] print 'Loading data' print 'Building model' if pkl_train_files is None or pkl_valid_files is None: train, valid, test = load_data(path=datasets[0], valid_path=valid_datasets[0], test_path=valid_datasets[1], batch_size=batch_size, **opt_ds) else: train, valid, test = load_pkl_data(train_file_paths=pkl_train_files, valid_file_paths=pkl_valid_files, batch_size=batch_size, vocab=vocab, eyem=eyem, **opt_ds) tparams = init_tparams(params) trng, use_noise, inps_d, \ opt_ret, \ cost, errors, ent_errors, ent_derrors, probs = \ build_model(tparams, model_options, prepare_data if not opt_ds['use_sent_reps'] \ else prepare_data_sents, valid, cost_mask=cost_mask) alphas = opt_ret['dec_alphas'] if opt_ds['use_sent_reps']: inps = [inps_d["desc"], \ inps_d["word_mask"], \ inps_d["q"], \ inps_d['q_mask'], \ inps_d['ans'], \ inps_d['wlen'], inps_d['slen'], inps_d['qlen'],\ inps_d['ent_mask'] ] else: inps = [inps_d["desc"], \ inps_d["word_mask"], \ inps_d["q"], \ inps_d['q_mask'], \ inps_d['ans'], \ inps_d['wlen'], \ inps_d['qlen'], \ inps_d['ent_mask']] outs = [cost, errors, probs, alphas] if ent_errors: outs += [ent_errors] if ent_derrors: outs += [ent_derrors] # before any regularizer print 'Building f_log_probs...', f_log_probs = theano.function(inps, outs, profile=profile) print 'Done' # Apply weight decay on the feed-forward connections if decay_c > 0.: decay_c = theano.shared(numpy.float32(decay_c), name='decay_c') weight_decay = 0. for kk, vv in tparams.iteritems(): if "logit" in kk or "ff" in kk: weight_decay += (vv**2).sum() weight_decay *= decay_c cost += weight_decay # after any regularizer print 'Computing gradient...', grads = safe_grad(cost, itemlist(tparams)) print 'Done' # Gradient clipping: if clip_c > 0.: g2 = get_norms(grads) for p, g in grads.iteritems(): grads[p] = tensor.switch(g2 > (clip_c**2), (g / tensor.sqrt(g2 + 1e-8)) * clip_c, g) inps.pop() if optimizer.lower() == "adasecant": learning_rule = Adasecant(delta_clip=25.0, use_adagrad=True, grad_clip=0.25, gamma_clip=0.) elif optimizer.lower() == "rmsprop": learning_rule = RMSPropMomentum(init_momentum=momentum) elif optimizer.lower() == "adam": learning_rule = Adam() elif optimizer.lower() == "adadelta": learning_rule = AdaDelta() lr = tensor.scalar(name='lr') print 'Building optimizers...', learning_rule = None if learning_rule: f_grad_shared, f_update = learning_rule.get_funcs(learning_rate=lr, grads=grads, inp=inps, cost=cost, errors=errors) else: f_grad_shared, f_update = eval(optimizer)(lr, tparams, grads, inps, cost, errors) print 'Done' print 'Optimization' history_errs = [] # reload history if reload_ and os.path.exists(mpath): history_errs = list(numpy.load(mpath)['history_errs']) best_p = None bad_count = 0 if validFreq == -1: validFreq = len(train[0]) / batch_size if saveFreq == -1: saveFreq = len(train[0]) / batch_size best_found = False uidx = 0 estop = False train_cost_ave, train_err_ave, \ train_gnorm_ave = reset_train_vals() for eidx in xrange(max_epochs): n_samples = 0 if train.done: train.reset() for d_, q_, a, em in train: n_samples += len(a) uidx += 1 use_noise.set_value(1.) if opt_ds['use_sent_reps']: # To mask the description and the question. d, d_mask, q, q_mask, dlen, slen, qlen = prepare_data_sents( d_, q_) if d is None: print 'Minibatch with zero sample under length ', maxlen uidx -= 1 continue ud_start = time.time() cost, errors, gnorm, pnorm = f_grad_shared( d, d_mask, q, q_mask, a, dlen, slen, qlen) else: d, d_mask, q, q_mask, dlen, qlen = prepare_data(d_, q_) if d is None: print 'Minibatch with zero sample under length ', maxlen uidx -= 1 continue ud_start = time.time() cost, errors, gnorm, pnorm = f_grad_shared( d, d_mask, q, q_mask, a, dlen, qlen) upnorm = f_update(lrate) ud = time.time() - ud_start # Collect the running ave train stats. train_cost_ave = running_ave(train_cost_ave, cost) train_err_ave = running_ave(train_err_ave, errors) train_gnorm_ave = running_ave(train_gnorm_ave, gnorm) if numpy.isnan(cost) or numpy.isinf(cost): print 'NaN detected' import ipdb ipdb.set_trace() if numpy.mod(uidx, dispFreq) == 0: print 'Epoch ', eidx, ' Update ', uidx, \ ' Cost ', cost, ' UD ', ud, \ ' UpNorm ', upnorm[0].tolist(), \ ' GNorm ', gnorm, \ ' Pnorm ', pnorm, 'Terrors ', errors if numpy.mod(uidx, saveFreq) == 0: print 'Saving...', if best_p is not None and best_found: numpy.savez(mpath_best, history_errs=history_errs, **best_p) pkl.dump(model_options, open('%s.pkl' % mpath_best, 'wb')) else: params = unzip(tparams) numpy.savez(mpath, history_errs=history_errs, **params) pkl.dump(model_options, open('%s.pkl' % mpath, 'wb')) pkl.dump(stats, open("%s.pkl" % mpath_stats, 'wb')) print 'Done' print_param_norms(tparams) if numpy.mod(uidx, validFreq) == 0: use_noise.set_value(0.) if valid.done: valid.reset() valid_costs, valid_errs, valid_probs, \ valid_alphas, error_ent, error_dent = eval_model(f_log_probs, prepare_data if not opt_ds['use_sent_reps'] \ else prepare_data_sents, model_options, valid, use_sent_rep=opt_ds['use_sent_reps']) valid_alphas_ = numpy.concatenate( [va.argmax(0) for va in valid_alphas.tolist()], axis=0) valid_err = valid_errs.mean() valid_cost = valid_costs.mean() valid_alpha_ent = -negentropy(valid_alphas) mean_valid_alphas = valid_alphas_.mean() std_valid_alphas = valid_alphas_.std() mean_valid_probs = valid_probs.argmax(1).mean() std_valid_probs = valid_probs.argmax(1).std() history_errs.append([valid_cost, valid_err]) stats['train_err_ave'].append(train_err_ave) stats['train_cost_ave'].append(train_cost_ave) stats['train_gnorm_ave'].append(train_gnorm_ave) stats['valid_errs'].append(valid_err) stats['valid_costs'].append(valid_cost) stats['valid_err_ent'].append(error_ent) stats['valid_err_desc_ent'].append(error_dent) stats['valid_alphas_mean'].append(mean_valid_alphas) stats['valid_alphas_std'].append(std_valid_alphas) stats['valid_alphas_ent'].append(valid_alpha_ent) stats['valid_probs_mean'].append(mean_valid_probs) stats['valid_probs_std'].append(std_valid_probs) if uidx == 0 or valid_err <= numpy.array( history_errs)[:, 1].min(): best_p = unzip(tparams) bad_counter = 0 best_found = True else: bst_found = False if numpy.isnan(valid_err): import ipdb ipdb.set_trace() print "============================" print '\t>>>Valid error: ', valid_err, \ ' Valid cost: ', valid_cost print '\t>>>Valid pred mean: ', mean_valid_probs, \ ' Valid pred std: ', std_valid_probs print '\t>>>Valid alphas mean: ', mean_valid_alphas, \ ' Valid alphas std: ', std_valid_alphas, \ ' Valid alpha negent: ', valid_alpha_ent, \ ' Valid error ent: ', error_ent, \ ' Valid error desc ent: ', error_dent print "============================" print "Running average train stats " print '\t>>>Train error: ', train_err_ave, \ ' Train cost: ', train_cost_ave, \ ' Train grad norm: ', train_gnorm_ave print "============================" train_cost_ave, train_err_ave, \ train_gnorm_ave = reset_train_vals() print 'Seen %d samples' % n_samples if estop: break if best_p is not None: zipp(best_p, tparams) use_noise.set_value(0.) valid.reset() valid_cost, valid_error, valid_probs, \ valid_alphas, error_ent = eval_model(f_log_probs, prepare_data if not opt_ds['use_sent_reps'] \ else prepare_data_sents, model_options, valid, use_sent_rep=opt_ds['use_sent_rep']) print " Final eval resuts: " print 'Valid error: ', valid_error.mean() print 'Valid cost: ', valid_cost.mean() print '\t>>>Valid pred mean: ', valid_probs.mean(), \ ' Valid pred std: ', valid_probs.std(), \ ' Valid error ent: ', error_ent params = copy.copy(best_p) numpy.savez(mpath_last, zipped_params=best_p, history_errs=history_errs, **params) return valid_err, valid_cost
def train(dim_word_desc=400,# word vector dimensionality dim_word_q=400, dim_word_ans=600, dim_proj=300, dim=400,# the number of LSTM units encoder_desc='lstm', encoder_desc_word='lstm', encoder_desc_sent='lstm', use_dq_sims=False, eyem=None, learn_h0=False, use_desc_skip_c_g=False, debug=False, encoder_q='lstm', patience=10, max_epochs=5000, dispFreq=100, decay_c=0., alpha_c=0., clip_c=-1., lrate=0.01, n_words_q=49145, n_words_desc=115425, n_words_ans=409, pkl_train_files=None, pkl_valid_files=None, maxlen=2000, # maximum length of the description optimizer='rmsprop', batch_size=2, vocab=None, valid_batch_size=16, use_elu_g=False, saveto='model.npz', model_dir=None, ms_nlayers=3, validFreq=1000, saveFreq=1000, # save the parameters after every saveFreq updates datasets=[None], truncate=400, momentum=0.9, use_bidir=False, cost_mask=None, valid_datasets=['/u/yyu/stor/caglar/rc-data/cnn/cnn_test_data.h5', '/u/yyu/stor/caglar/rc-data/cnn/cnn_valid_data.h5'], dropout_rate=0.5, use_dropout=True, reload_=True, **opt_ds): ensure_dir_exists(model_dir) mpath = os.path.join(model_dir, saveto) mpath_best = os.path.join(model_dir, prfx("best", saveto)) mpath_last = os.path.join(model_dir, prfx("last", saveto)) mpath_stats = os.path.join(model_dir, prfx("stats", saveto)) # Model options model_options = locals().copy() model_options['use_sent_reps'] = opt_ds['use_sent_reps'] stats = defaultdict(list) del model_options['eyem'] del model_options['cost_mask'] if cost_mask is not None: cost_mask = sharedX(cost_mask) # reload options and parameters if reload_: print "Reloading the model." if os.path.exists(mpath_best): print "Reloading the best model from %s." % mpath_best with open(os.path.join(mpath_best, '%s.pkl' % mpath_best), 'rb') as f: models_options = pkl.load(f) params = init_params(model_options) params = load_params(mpath_best, params) elif os.path.exists(mpath): print "Reloading the model from %s." % mpath with open(os.path.join(mpath, '%s.pkl' % mpath), 'rb') as f: models_options = pkl.load(f) params = init_params(model_options) params = load_params(mpath, params) else: raise IOError("Couldn't open the file.") else: print "Couldn't reload the models initializing from scratch." params = init_params(model_options) if datasets[0]: print "Short dataset", datasets[0] print 'Loading data' print 'Building model' if pkl_train_files is None or pkl_valid_files is None: train, valid, test = load_data(path=datasets[0], valid_path=valid_datasets[0], test_path=valid_datasets[1], batch_size=batch_size, **opt_ds) else: train, valid, test = load_pkl_data(train_file_paths=pkl_train_files, valid_file_paths=pkl_valid_files, batch_size=batch_size, vocab=vocab, eyem=eyem, **opt_ds) tparams = init_tparams(params) trng, use_noise, inps_d, \ opt_ret, \ cost, errors, ent_errors, ent_derrors, probs = \ build_model(tparams, model_options, prepare_data if not opt_ds['use_sent_reps'] \ else prepare_data_sents, valid, cost_mask=cost_mask) alphas = opt_ret['dec_alphas'] if opt_ds['use_sent_reps']: inps = [inps_d["desc"], \ inps_d["word_mask"], \ inps_d["q"], \ inps_d['q_mask'], \ inps_d['ans'], \ inps_d['wlen'], inps_d['slen'], inps_d['qlen'],\ inps_d['ent_mask'] ] else: inps = [inps_d["desc"], \ inps_d["word_mask"], \ inps_d["q"], \ inps_d['q_mask'], \ inps_d['ans'], \ inps_d['wlen'], \ inps_d['qlen'], \ inps_d['ent_mask']] outs = [cost, errors, probs, alphas] if ent_errors: outs += [ent_errors] if ent_derrors: outs += [ent_derrors] # before any regularizer print 'Building f_log_probs...', f_log_probs = theano.function(inps, outs, profile=profile) print 'Done' # Apply weight decay on the feed-forward connections if decay_c > 0.: decay_c = theano.shared(numpy.float32(decay_c), name='decay_c') weight_decay = 0. for kk, vv in tparams.iteritems(): if "logit" in kk or "ff" in kk: weight_decay += (vv ** 2).sum() weight_decay *= decay_c cost += weight_decay # after any regularizer print 'Computing gradient...', grads = safe_grad(cost, itemlist(tparams)) print 'Done' # Gradient clipping: if clip_c > 0.: g2 = get_norms(grads) for p, g in grads.iteritems(): grads[p] = tensor.switch(g2 > (clip_c**2), (g / tensor.sqrt(g2 + 1e-8)) * clip_c, g) inps.pop() if optimizer.lower() == "adasecant": learning_rule = Adasecant(delta_clip=25.0, use_adagrad=True, grad_clip=0.25, gamma_clip=0.) elif optimizer.lower() == "rmsprop": learning_rule = RMSPropMomentum(init_momentum=momentum) elif optimizer.lower() == "adam": learning_rule = Adam() elif optimizer.lower() == "adadelta": learning_rule = AdaDelta() lr = tensor.scalar(name='lr') print 'Building optimizers...', learning_rule = None if learning_rule: f_grad_shared, f_update = learning_rule.get_funcs(learning_rate=lr, grads=grads, inp=inps, cost=cost, errors=errors) else: f_grad_shared, f_update = eval(optimizer)(lr, tparams, grads, inps, cost, errors) print 'Done' print 'Optimization' history_errs = [] # reload history if reload_ and os.path.exists(mpath): history_errs = list(numpy.load(mpath)['history_errs']) best_p = None bad_count = 0 if validFreq == -1: validFreq = len(train[0]) / batch_size if saveFreq == -1: saveFreq = len(train[0]) / batch_size best_found = False uidx = 0 estop = False train_cost_ave, train_err_ave, \ train_gnorm_ave = reset_train_vals() for eidx in xrange(max_epochs): n_samples = 0 if train.done: train.reset() for d_, q_, a, em in train: n_samples += len(a) uidx += 1 use_noise.set_value(1.) if opt_ds['use_sent_reps']: # To mask the description and the question. d, d_mask, q, q_mask, dlen, slen, qlen = prepare_data_sents(d_, q_) if d is None: print 'Minibatch with zero sample under length ', maxlen uidx -= 1 continue ud_start = time.time() cost, errors, gnorm, pnorm = f_grad_shared(d, d_mask, q, q_mask, a, dlen, slen, qlen) else: d, d_mask, q, q_mask, dlen, qlen = prepare_data(d_, q_) if d is None: print 'Minibatch with zero sample under length ', maxlen uidx -= 1 continue ud_start = time.time() cost, errors, gnorm, pnorm = f_grad_shared(d, d_mask, q, q_mask, a, dlen, qlen) upnorm = f_update(lrate) ud = time.time() - ud_start # Collect the running ave train stats. train_cost_ave = running_ave(train_cost_ave, cost) train_err_ave = running_ave(train_err_ave, errors) train_gnorm_ave = running_ave(train_gnorm_ave, gnorm) if numpy.isnan(cost) or numpy.isinf(cost): print 'NaN detected' import ipdb; ipdb.set_trace() if numpy.mod(uidx, dispFreq) == 0: print 'Epoch ', eidx, ' Update ', uidx, \ ' Cost ', cost, ' UD ', ud, \ ' UpNorm ', upnorm[0].tolist(), \ ' GNorm ', gnorm, \ ' Pnorm ', pnorm, 'Terrors ', errors if numpy.mod(uidx, saveFreq) == 0: print 'Saving...', if best_p is not None and best_found: numpy.savez(mpath_best, history_errs=history_errs, **best_p) pkl.dump(model_options, open('%s.pkl' % mpath_best, 'wb')) else: params = unzip(tparams) numpy.savez(mpath, history_errs=history_errs, **params) pkl.dump(model_options, open('%s.pkl' % mpath, 'wb')) pkl.dump(stats, open("%s.pkl" % mpath_stats, 'wb')) print 'Done' print_param_norms(tparams) if numpy.mod(uidx, validFreq) == 0: use_noise.set_value(0.) if valid.done: valid.reset() valid_costs, valid_errs, valid_probs, \ valid_alphas, error_ent, error_dent = eval_model(f_log_probs, prepare_data if not opt_ds['use_sent_reps'] \ else prepare_data_sents, model_options, valid, use_sent_rep=opt_ds['use_sent_reps']) valid_alphas_ = numpy.concatenate([va.argmax(0) for va in valid_alphas.tolist()], axis=0) valid_err = valid_errs.mean() valid_cost = valid_costs.mean() valid_alpha_ent = -negentropy(valid_alphas) mean_valid_alphas = valid_alphas_.mean() std_valid_alphas = valid_alphas_.std() mean_valid_probs = valid_probs.argmax(1).mean() std_valid_probs = valid_probs.argmax(1).std() history_errs.append([valid_cost, valid_err]) stats['train_err_ave'].append(train_err_ave) stats['train_cost_ave'].append(train_cost_ave) stats['train_gnorm_ave'].append(train_gnorm_ave) stats['valid_errs'].append(valid_err) stats['valid_costs'].append(valid_cost) stats['valid_err_ent'].append(error_ent) stats['valid_err_desc_ent'].append(error_dent) stats['valid_alphas_mean'].append(mean_valid_alphas) stats['valid_alphas_std'].append(std_valid_alphas) stats['valid_alphas_ent'].append(valid_alpha_ent) stats['valid_probs_mean'].append(mean_valid_probs) stats['valid_probs_std'].append(std_valid_probs) if uidx == 0 or valid_err <= numpy.array(history_errs)[:, 1].min(): best_p = unzip(tparams) bad_counter = 0 best_found = True else: bst_found = False if numpy.isnan(valid_err): import ipdb; ipdb.set_trace() print "============================" print '\t>>>Valid error: ', valid_err, \ ' Valid cost: ', valid_cost print '\t>>>Valid pred mean: ', mean_valid_probs, \ ' Valid pred std: ', std_valid_probs print '\t>>>Valid alphas mean: ', mean_valid_alphas, \ ' Valid alphas std: ', std_valid_alphas, \ ' Valid alpha negent: ', valid_alpha_ent, \ ' Valid error ent: ', error_ent, \ ' Valid error desc ent: ', error_dent print "============================" print "Running average train stats " print '\t>>>Train error: ', train_err_ave, \ ' Train cost: ', train_cost_ave, \ ' Train grad norm: ', train_gnorm_ave print "============================" train_cost_ave, train_err_ave, \ train_gnorm_ave = reset_train_vals() print 'Seen %d samples' % n_samples if estop: break if best_p is not None: zipp(best_p, tparams) use_noise.set_value(0.) valid.reset() valid_cost, valid_error, valid_probs, \ valid_alphas, error_ent = eval_model(f_log_probs, prepare_data if not opt_ds['use_sent_reps'] \ else prepare_data_sents, model_options, valid, use_sent_rep=opt_ds['use_sent_rep']) print " Final eval resuts: " print 'Valid error: ', valid_error.mean() print 'Valid cost: ', valid_cost.mean() print '\t>>>Valid pred mean: ', valid_probs.mean(), \ ' Valid pred std: ', valid_probs.std(), \ ' Valid error ent: ', error_ent params = copy.copy(best_p) numpy.savez(mpath_last, zipped_params=best_p, history_errs=history_errs, **params) return valid_err, valid_cost
print(f'Epoch {epoch + 1}/{EPOCHS}') print('----------') train_acc, train_loss, train_cfs_matrix = m.train_epoch( model, train_dataloader, loss_function, optimizer, device, output_type, len(articles_train) ) val_acc, val_loss, val_cfs_matrix, _ = m.eval_model( model, val_dataloader, loss_function, device, output_type, len(articles_val) ) train_recall, train_precision, train_F1_score = result.classification_report(train_cfs_matrix) val_recall, val_precision, val_F1_score = result.classification_report(val_cfs_matrix) print("#Train") print(f'loss : {round(float(train_loss),7)} \naccuracy : {round(float(train_acc),7)}') print(f'Recall : {round(train_recall, 5)} Precision : {round(train_precision, 5)} F1_score : {round(train_F1_score, 5)}') print("Confusion Matrix") print(train_cfs_matrix) print() print("#Validation") print(f'loss : {round(float(val_loss),7)} \naccuracy : {round(float(val_acc),7)}') print(f'Recall : {round(val_recall, 5)} Precision : {round(val_precision, 5)} F1_score : {round(val_F1_score, 5)}')
sentences = parse_datasets(file_path, train_o_matic_file_path, sew_dir_path, output_file_path, mapping_file) if params["grid_search"]: hyper_params = { 'window': [5, 10], 'alpha': [1e-3, 1e-5, 1e-6], 'sample': [1e-4, 1e-5, 1e-6], 'negative': list(range(1, 10)), } grid_output = 'grid_search.json' best_grid, _ = grid_search(tab_file_path, hyper_params, sentences, grid_output) logging.info(f"Best params are: {best_grid}") else: w2v_model = build_model(sentences, params["window"], params["sample"]) train_model(w2v_model, sentences, params["epochs"], model_path) spearman_correlation = eval_model(w2v_model, tab_file_path) print(f"Spearman corr is: {spearman_correlation}") keys = w2v_model.wv.vocab.keys()[:5] embeddings_en_2d, word_clusters = fetch_clusters_2d( w2v_model, keys, 10) tsne_plot_similar_words('Similar Sense Embeddings', keys, embeddings_en_2d, word_clusters, 0.7, 'similar_words.png')
def eval(self, tab_file_path): return eval_model(self.model, tab_file_path)