コード例 #1
0
 def ff_true():
     feature_fastrcnn = resnet_conv5(
         roi_resized, config.RESNET_NUM_BLOCK[-1])  # nxcx7x7
     feature_gap = GlobalAvgPooling('gap',
                                    feature_fastrcnn,
                                    data_format='channels_first')
     fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs(
         'fastrcnn', feature_gap, config.NUM_CLASS)
     # Return C5 feature to be shared with mask branch
     return feature_fastrcnn, fastrcnn_label_logits, fastrcnn_box_logits
コード例 #2
0
ファイル: train.py プロジェクト: wu-yy/tensorpack
 def ff_true():
     feature_fastrcnn = resnet_conv5(roi_resized, config.RESNET_NUM_BLOCK[-1])    # nxcx7x7
     feature_gap = GlobalAvgPooling('gap', feature_fastrcnn, data_format='channels_first')
     fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs('fastrcnn', feature_gap, config.NUM_CLASS)
     # Return C5 feature to be shared with mask branch
     return feature_fastrcnn, fastrcnn_label_logits, fastrcnn_box_logits
コード例 #3
0
ファイル: train.py プロジェクト: tobyma/tensorpack
    def build_graph(self, *inputs):
        is_training = get_current_tower_context().is_training
        if cfg.MODE_MASK:
            image, anchor_labels, anchor_boxes, gt_boxes, gt_labels, gt_masks = inputs
        else:
            image, anchor_labels, anchor_boxes, gt_boxes, gt_labels = inputs
        image = self.preprocess(image)  # 1CHW

        featuremap = resnet_c4_backbone(image,
                                        cfg.BACKBONE.RESNET_NUM_BLOCK[:3])
        rpn_label_logits, rpn_box_logits = rpn_head('rpn', featuremap, 1024,
                                                    cfg.RPN.NUM_ANCHOR)

        fm_anchors, anchor_labels, anchor_boxes = self.narrow_to_featuremap(
            featuremap, get_all_anchors(), anchor_labels, anchor_boxes)
        anchor_boxes_encoded = encode_bbox_target(anchor_boxes, fm_anchors)

        image_shape2d = tf.shape(image)[2:]  # h,w
        pred_boxes_decoded = decode_bbox_target(
            rpn_box_logits, fm_anchors)  # fHxfWxNAx4, floatbox
        proposal_boxes, proposal_scores = generate_rpn_proposals(
            tf.reshape(pred_boxes_decoded, [-1, 4]),
            tf.reshape(rpn_label_logits,
                       [-1]), image_shape2d, cfg.RPN.TRAIN_PRE_NMS_TOPK
            if is_training else cfg.RPN.TEST_PRE_NMS_TOPK,
            cfg.RPN.TRAIN_POST_NMS_TOPK
            if is_training else cfg.RPN.TEST_POST_NMS_TOPK)

        if is_training:
            # sample proposal boxes in training
            rcnn_boxes, rcnn_labels, fg_inds_wrt_gt = sample_fast_rcnn_targets(
                proposal_boxes, gt_boxes, gt_labels)
        else:
            # The boxes to be used to crop RoIs.
            # Use all proposal boxes in inference
            rcnn_boxes = proposal_boxes

        boxes_on_featuremap = rcnn_boxes * (1.0 / cfg.RPN.ANCHOR_STRIDE)
        roi_resized = roi_align(featuremap, boxes_on_featuremap, 14)

        feature_fastrcnn = resnet_conv5(
            roi_resized, cfg.BACKBONE.RESNET_NUM_BLOCK[-1])  # nxcx7x7
        # Keep C5 feature to be shared with mask branch
        feature_gap = GlobalAvgPooling('gap',
                                       feature_fastrcnn,
                                       data_format='channels_first')
        fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs(
            'fastrcnn', feature_gap, cfg.DATA.NUM_CLASS)

        if is_training:
            # rpn loss
            rpn_label_loss, rpn_box_loss = rpn_losses(anchor_labels,
                                                      anchor_boxes_encoded,
                                                      rpn_label_logits,
                                                      rpn_box_logits)

            # fastrcnn loss
            matched_gt_boxes = tf.gather(gt_boxes, fg_inds_wrt_gt)

            fg_inds_wrt_sample = tf.reshape(tf.where(rcnn_labels > 0),
                                            [-1])  # fg inds w.r.t all samples
            fg_sampled_boxes = tf.gather(rcnn_boxes, fg_inds_wrt_sample)
            fg_fastrcnn_box_logits = tf.gather(fastrcnn_box_logits,
                                               fg_inds_wrt_sample)

            fastrcnn_label_loss, fastrcnn_box_loss = self.fastrcnn_training(
                image, rcnn_labels, fg_sampled_boxes, matched_gt_boxes,
                fastrcnn_label_logits, fg_fastrcnn_box_logits)

            if cfg.MODE_MASK:
                # maskrcnn loss
                fg_labels = tf.gather(rcnn_labels, fg_inds_wrt_sample)
                # In training, mask branch shares the same C5 feature.
                fg_feature = tf.gather(feature_fastrcnn, fg_inds_wrt_sample)
                mask_logits = maskrcnn_upXconv_head(
                    'maskrcnn', fg_feature, cfg.DATA.NUM_CATEGORY,
                    num_convs=0)  # #fg x #cat x 14x14

                target_masks_for_fg = crop_and_resize(
                    tf.expand_dims(gt_masks, 1),
                    fg_sampled_boxes,
                    fg_inds_wrt_gt,
                    14,
                    pad_border=False)  # nfg x 1x14x14
                target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1,
                                                 'sampled_fg_mask_targets')
                mrcnn_loss = maskrcnn_loss(mask_logits, fg_labels,
                                           target_masks_for_fg)
            else:
                mrcnn_loss = 0.0

            wd_cost = regularize_cost(
                '(?:group1|group2|group3|rpn|fastrcnn|maskrcnn)/.*W',
                l2_regularizer(cfg.TRAIN.WEIGHT_DECAY),
                name='wd_cost')

            total_cost = tf.add_n([
                rpn_label_loss, rpn_box_loss, fastrcnn_label_loss,
                fastrcnn_box_loss, mrcnn_loss, wd_cost
            ], 'total_cost')

            add_moving_summary(total_cost, wd_cost)
            return total_cost
        else:
            final_boxes, final_labels = self.fastrcnn_inference(
                image_shape2d, rcnn_boxes, fastrcnn_label_logits,
                fastrcnn_box_logits)

            if cfg.MODE_MASK:
                roi_resized = roi_align(
                    featuremap, final_boxes * (1.0 / cfg.RPN.ANCHOR_STRIDE),
                    14)
                feature_maskrcnn = resnet_conv5(
                    roi_resized, cfg.BACKBONE.RESNET_NUM_BLOCK[-1])
                mask_logits = maskrcnn_upXconv_head(
                    'maskrcnn', feature_maskrcnn, cfg.DATA.NUM_CATEGORY,
                    0)  # #result x #cat x 14x14
                indices = tf.stack([
                    tf.range(tf.size(final_labels)),
                    tf.to_int32(final_labels) - 1
                ],
                                   axis=1)
                final_mask_logits = tf.gather_nd(mask_logits,
                                                 indices)  # #resultx14x14
                tf.sigmoid(final_mask_logits, name='final_masks')
コード例 #4
0
ファイル: train.py プロジェクト: tobyma/tensorpack
    def build_graph(self, *inputs):
        is_training = get_current_tower_context().is_training
        if cfg.MODE_MASK:
            image, anchor_labels, anchor_boxes, gt_boxes, gt_labels, gt_masks = inputs
        else:
            image, anchor_labels, anchor_boxes, gt_boxes, gt_labels = inputs
        image = self.preprocess(image)     # 1CHW

        featuremap = resnet_c4_backbone(image, cfg.BACKBONE.RESNET_NUM_BLOCK[:3])
        rpn_label_logits, rpn_box_logits = rpn_head('rpn', featuremap, 1024, cfg.RPN.NUM_ANCHOR)

        fm_anchors, anchor_labels, anchor_boxes = self.narrow_to_featuremap(
            featuremap, get_all_anchors(), anchor_labels, anchor_boxes)
        anchor_boxes_encoded = encode_bbox_target(anchor_boxes, fm_anchors)

        image_shape2d = tf.shape(image)[2:]     # h,w
        pred_boxes_decoded = decode_bbox_target(rpn_box_logits, fm_anchors)  # fHxfWxNAx4, floatbox
        proposal_boxes, proposal_scores = generate_rpn_proposals(
            tf.reshape(pred_boxes_decoded, [-1, 4]),
            tf.reshape(rpn_label_logits, [-1]),
            image_shape2d,
            cfg.RPN.TRAIN_PRE_NMS_TOPK if is_training else cfg.RPN.TEST_PRE_NMS_TOPK,
            cfg.RPN.TRAIN_POST_NMS_TOPK if is_training else cfg.RPN.TEST_POST_NMS_TOPK)

        if is_training:
            # sample proposal boxes in training
            rcnn_boxes, rcnn_labels, fg_inds_wrt_gt = sample_fast_rcnn_targets(
                proposal_boxes, gt_boxes, gt_labels)
        else:
            # The boxes to be used to crop RoIs.
            # Use all proposal boxes in inference
            rcnn_boxes = proposal_boxes

        boxes_on_featuremap = rcnn_boxes * (1.0 / cfg.RPN.ANCHOR_STRIDE)
        roi_resized = roi_align(featuremap, boxes_on_featuremap, 14)

        feature_fastrcnn = resnet_conv5(roi_resized, cfg.BACKBONE.RESNET_NUM_BLOCK[-1])    # nxcx7x7
        # Keep C5 feature to be shared with mask branch
        feature_gap = GlobalAvgPooling('gap', feature_fastrcnn, data_format='channels_first')
        fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs('fastrcnn', feature_gap, cfg.DATA.NUM_CLASS)

        if is_training:
            # rpn loss
            rpn_label_loss, rpn_box_loss = rpn_losses(
                anchor_labels, anchor_boxes_encoded, rpn_label_logits, rpn_box_logits)

            # fastrcnn loss
            matched_gt_boxes = tf.gather(gt_boxes, fg_inds_wrt_gt)

            fg_inds_wrt_sample = tf.reshape(tf.where(rcnn_labels > 0), [-1])   # fg inds w.r.t all samples
            fg_sampled_boxes = tf.gather(rcnn_boxes, fg_inds_wrt_sample)
            fg_fastrcnn_box_logits = tf.gather(fastrcnn_box_logits, fg_inds_wrt_sample)

            fastrcnn_label_loss, fastrcnn_box_loss = self.fastrcnn_training(
                image, rcnn_labels, fg_sampled_boxes,
                matched_gt_boxes, fastrcnn_label_logits, fg_fastrcnn_box_logits)

            if cfg.MODE_MASK:
                # maskrcnn loss
                fg_labels = tf.gather(rcnn_labels, fg_inds_wrt_sample)
                # In training, mask branch shares the same C5 feature.
                fg_feature = tf.gather(feature_fastrcnn, fg_inds_wrt_sample)
                mask_logits = maskrcnn_upXconv_head(
                    'maskrcnn', fg_feature, cfg.DATA.NUM_CATEGORY, num_convs=0)   # #fg x #cat x 14x14

                target_masks_for_fg = crop_and_resize(
                    tf.expand_dims(gt_masks, 1),
                    fg_sampled_boxes,
                    fg_inds_wrt_gt, 14,
                    pad_border=False)  # nfg x 1x14x14
                target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets')
                mrcnn_loss = maskrcnn_loss(mask_logits, fg_labels, target_masks_for_fg)
            else:
                mrcnn_loss = 0.0

            wd_cost = regularize_cost(
                '(?:group1|group2|group3|rpn|fastrcnn|maskrcnn)/.*W',
                l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), name='wd_cost')

            total_cost = tf.add_n([
                rpn_label_loss, rpn_box_loss,
                fastrcnn_label_loss, fastrcnn_box_loss,
                mrcnn_loss,
                wd_cost], 'total_cost')

            add_moving_summary(total_cost, wd_cost)
            return total_cost
        else:
            final_boxes, final_labels = self.fastrcnn_inference(
                image_shape2d, rcnn_boxes, fastrcnn_label_logits, fastrcnn_box_logits)

            if cfg.MODE_MASK:
                roi_resized = roi_align(featuremap, final_boxes * (1.0 / cfg.RPN.ANCHOR_STRIDE), 14)
                feature_maskrcnn = resnet_conv5(roi_resized, cfg.BACKBONE.RESNET_NUM_BLOCK[-1])
                mask_logits = maskrcnn_upXconv_head(
                    'maskrcnn', feature_maskrcnn, cfg.DATA.NUM_CATEGORY, 0)   # #result x #cat x 14x14
                indices = tf.stack([tf.range(tf.size(final_labels)), tf.to_int32(final_labels) - 1], axis=1)
                final_mask_logits = tf.gather_nd(mask_logits, indices)   # #resultx14x14
                tf.sigmoid(final_mask_logits, name='final_masks')