def getAdministratorInfo(): new = False #boolean to allow for using new/load old data socketChat = False #boolean to allow for socket convo adminIn = input( "Would you like to train the agent on new data/create a new agent? (y/n) " ) #adminIn = 'y' if adminIn == 'y': new = True if new: data.read() config.createModel() model.create(config.training, config.output) print("Model created") else: data.load() config.createModel() model.load() print("Model loaded") socket = input( "Would you like to watch a conversation with another chatbot? (y/n) ") if socket == 'y': socketChat = True if socketChat: config.socketchat = True else: config.socketchat = False
def __init__(self): super().__init__() self.cache = CacheML(self.disk) self.ts = 0 self.accbmps_proc = {} self.accbmp = AccBmp() model.load()
def login(): model.load() account = view.get_acct() pin = view.get_pin() if pin == model.pin_check(account, pin): mainmenu(account) else: view.bad_input()
def run(): model.load() while True: user_account = login_menu( ) # returns the logged in user or None for quit if user_account == None: # login menu returns None if 'quit' is selected break else: main_menu( user_account ) # when the user exits the main menu they will go back to login
def create_account(): while True: model.load() view.create_account() account = random.randint(1, 10000) first_name = view.first_name() last_name = view.last_name() create_pin = view.create_pin() model.create_acct(account, first_name, last_name, create_pin) view.new_account(account) model.save() return
def eval(args): # load model model = get_model(args, 0, args.r, from_ckpt=True, train=False) model.load(args.logname) # from default checkpoint if args.wav_file_list: with open(args.wav_file_list) as f: for line in f: try: print line.strip() upsample_wav(line.strip(), args, model) except EOFError: print 'WARNING: Error reading file:', line.strip()
def run(): model.load() server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) bytes2boxes_pb2_grpc.add_Bytes2BoxesServicer_to_server( Bytes2Boxes(), server) server.add_insecure_port('[::]:%i' % args.port) server.start() print('started image2boxes service on port %i' % args.port) try: while True: time.sleep(_ONE_DAY_IN_SECONDS) except KeyboardInterrupt: server.stop(0)
def create_model(self): import model, rnn if 'model_path' in self.train_info and os.path.exists( self.train_info['model_path']): model = model.AudioModel(rnn.BatchRNNLayers, config=None) model.load(self.train_info['model_path']) else: model = model.AudioModel(rnn.BatchRNNLayers, config=self.args.__dict__) if torch.cuda.is_available(): if self.args.gpu == -1: model = torch.nn.DataParallel(model).cuda() else: model = model.cuda() return model
def run(): # Load the model. model.load(args.pretrained_model_path) # Initialize the server. server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) image2faces_pb2_grpc.add_Image2FacesServicer_to_server( Image2Faces(), server) server.add_insecure_port('[::]:%i' % args.port) server.start() print('started image2faces service on port %i' % args.port) # Start infinite loop. try: while True: time.sleep(_ONE_DAY_IN_SECONDS) except KeyboardInterrupt: server.stop(0)
def generate_text(input_keywords): path = os.getcwd() parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument('--data-dir', type=str, default=path, help='data directory containing input.txt') parser.add_argument('--seed', type=str, default=input_keywords, help='seed string for sampling') parser.add_argument('--length', type=int, default=int(1.5 * len(input_keywords)), help='length of the sample to generate' ) #change the '8' to change number of words parser.add_argument('--diversity', type=float, default=0.01, help='Sampling diversity') args, unknown = parser.parse_known_args() model = load(args.data_dir) del args.data_dir sentence = model.sample(**vars(args)) return sentence
def show_unit_tasks(path, parameters, env): group_container = parameters['groups'] group_path = model.parent(path)+'/'+group_container groups = model.load(group_path) person_groups = {} for g in groups: model.traverse(group_path+'/'+g, lambda (path, task, d): collect_persons(g, path, person_groups), all_nodes=True ) persons = set() for group in person_groups.values(): for p in group: persons.add(p) dates, slots, s = prepare_people_tasks( persons ) schedules = {} for i in s: schedules[i[0]]=i group_schedules = [] for g in person_groups.keys(): group_sched = [ g, len(slots)*[0.0], 0, 0, {'url': group_path+'/'+g+'/planning/'} ] for _, person in person_groups[g]: group_sched[1] = [ group_sched[1][i] + schedules[person][1][i] for i in range(0,len(slots)) ] group_sched[2] += schedules[person][2] group_sched[3] += schedules[person][3] n = len(person_groups[g])*1.0 group_sched[1] = [ i/n for i in group_sched[1] ] group_sched[2] /= n group_sched[3] /= n group_schedules.append(group_sched) return visualize.render(dates, slots, sorted(group_schedules), variables={'qs':urlparse.parse_qs(env['QUERY_STRING']), 'context':'/', 'path':path, 'sum':True, 'url': path+'/', 'refreshable': False }), "text/html"
def test_normal(self): mdl = model.load('models/oneanim', 60) self.assertIsNotNone(mdl['default']) anim = mdl['default'] self.assertTrue(anim.loop) self.assertEquals(anim.ticks_per_frame, 20) self.assertEquals(len(anim.frames), 3)
def receive(theModel, src, tag): weights = model.save(theModel) # will be overwritten for i in range(len(weights)): dist.recv(tensor=weights[i], src=src, tag=tag * 100 + i) theModel = model.load(weights, theModel) print("Model received from", src) return theModel
def test_model_on_static_examples(model_fname, training_examples_fname, m=0): modelInstance = model.load(model_fname) # n = model9x9['n'] W = modelInstance['W'] b = modelInstance['b'] trainingExamples = training.read_training_examples(m, fname=training_examples_fname) if m == 0: m = trainingExamples['X'].shape[1] for i in range(1000): # i = round(np.random.rand() * m) x = trainingExamples['X'].T[i] nextPosition = position.transform_vector_into_position(x) position.print_position(nextPosition) print(' predicted ') x = position.transform_position_into_vector(nextPosition) movement = model.predict(W, b, x) position.print_movement(movement) print(' expected ') y = trainingExamples['Y'].T[i] position.print_movement(y.reshape(9, 1)) raw_input("Press Enter to continue...")
def show_loginmenu(): #When the user logs in, and is prompted what todo account = input('Enter Account #: ') pin_num = input("Enter Pin #: ") # check if account number is in the json file if not account.isnumeric(): print("Invalid input. Account Number must have numeric values") return if not pin_num.isnumeric(): print("Invalid input. Pin # must have numeric values!") return data = model.load() if account in data and pin_num in data[account][ "pin_num"]: #checks account num and pin number in data print("Please choose an option:") print("1. Withdraw") print("2. Deposit") print("3. Check Balance") print("4. Exit") option = input() while option not in ['1', '2', '3', '4']: option = input( "Sorry, that's an invalid option! Please choose 1, 2 or 3: ") if option == '1': model.withdraw(account) elif option == '2': model.deposit(account) elif option == '3': model.balance(account) elif option == '4': return
def main(): dictionary = data.Corpus(args.data, cuda=args.cuda, yield_sentences=True, rng=None).dictionary if False: # Old way of loading a model with open(args.model, 'rb') as f: mdl = torch.load(f) print(mdl) else: mdl = model.load(args.model) mdl.softmax = nn.Softmax() mdl = mdl.cuda() if args.cuda else mdl.cpu() mdl.eval() sampler = Sampler(dictionary, mdl) seed_texts = [] if args.seed_text != '': seed_texts += [args.seed_text] if args.seed_file: with codecs.open(args.seed_file, 'r', 'utf-8') as f: seed_texts += [line.strip() for line in f] if seed_texts == []: seed_texts += [''] for seed_text in seed_texts: if args.print_seed_text: print(seed_text) if not args.seed_without_eos: seed_text = '<eos> ' + seed_text + ' <eos>' constraints = eval(args.constraint_list) tokenizer_fn = lambda s: dictionary.words_to_ids( data.tokenize(s, add_bos=False, add_eos=False), cuda=args.cuda) for c in constraints: if type(c) is SeedTextDictConstraint: c.set_seed_text(seed_text, tokenizer_fn, dictionary) if args.num_words: # Generate N words out_file = sys.stdout out_string = sampler.string(seed_text, args.prefix_text, args.num_words, constraints=constraints) for i, word in enumerate(out_string): out_file.write(word + ('\n' if i % 20 == 19 else ' ')) if i % 20 != 19: print('') else: # Beam search on sentences for batch in sampler.sentences(seed_text, args.prefix_text, constraints=constraints): for sent_tokens in batch: #print( "len = %d, %s" % (len(sent_tokens), ' '.join(sent_tokens)) ) print(' '.join(sent_tokens))
def run(): model.load() server = grpc.server(futures.ThreadPoolExecutor(max_workers=10), options=[('grpc.max_send_message_length', _MAX_MESSAGE_LENGTH), ('grpc.max_receive_message_length', _MAX_MESSAGE_LENGTH)]) image2pose_pb2_grpc.add_Image2PoseServicer_to_server(Image2Pose(), server) server.add_insecure_port('[::]:%i' % args.port) server.start() print('started image2pose service on port %i' % args.port) try: while True: time.sleep(_ONE_DAY_IN_SECONDS) except KeyboardInterrupt: server.stop(0)
def train_model_scenario_3(n, model_fname, training_examples_fname, m=0, alpha=0.001, beta=0.9, iterations=10000): debug = False modelInstance = model.load(model_fname) W = modelInstance['W'] b = modelInstance['b'] # (W, b) = model.initializeWeights(n) vdW = np.zeros(W.shape) vdb = np.zeros(b.shape) ex = training.read_training_examples(m, fname=training_examples_fname) X = ex['X'] # assert X.shape == (9, 500) Y = ex['Y'] # assert Y.shape == (9, 500) # L is a number of NN layers # (L = 3 for a model 9x18x18x9) L = len(n) - 1 assert len(W) == L for i in range(0, iterations): # (dW, db) = model.calcGradients(W, b, X, Y) (dW, db, _) = model.back_propagation(n, W, b, X, Y) vdW = beta * vdW + (1 - beta) * dW vdb = beta * vdb + (1 - beta) * db # model.updateWeights(W, dW, b, db, alpha) W = W - alpha * vdW b = b - alpha * vdb if i % 30 == 0: print('iteration ' + str(i)) (aL, _) = model.forward_propagation(W, b, X) cost = model.cost_function(Y, aL) # cost = model.costFunction(Y, A[L]) # print('alpha') # print(alpha) print('cost') print(cost) if debug: if i > 0 and i % 3000 == 0: is_back_prop_correct = model.check_back_propagation(n, W, b, X, Y) if not is_back_prop_correct: print("BP is not correct") exit() if i % 1000 == 0: model.save(n, W, b, model_fname) print('------ end -------') model.save(n, W, b, model_fname)
def spy_on_training_process(model_fname): model_instance = model.load(model_fname) n = model_instance['n'] W = model_instance['W'] b = model_instance['b'] vdW = np.zeros(W.shape) vdb = np.zeros(b.shape) alpha0 = 0.3 beta=0.9 iterations = 100000 decay_rate = 4.0 / iterations pos_trains = 0 x_to_investigate = None for i in range(0, iterations): make_movement_fn = lambda x: model.predict2(W, b, x) ex = make_training_examples(make_movement_fn) X = ex['X'] Y = ex['Y'] x = X[:, 0].reshape(9, 1) if x_to_investigate == None: x_to_investigate = x position_to_investigate = x_to_investigate.reshape(3, 3) if (x == x_to_investigate).all(): position.print_position(position_to_investigate) (_, _, aLbefore) = model.predict3(W, b, x_to_investigate) (dW, db, _) = model.back_propagation(n, W, b, X, Y) alpha = alpha0 / (1.0 + decay_rate * i) vdW = beta * vdW + (1 - beta) * dW vdb = beta * vdb + (1 - beta) * db W = W - alpha * dW b = b - alpha * db if i > 0 and i % 1000 == 0: model.save(n, W, b, model_fname) print('========saved=======') if (x == x_to_investigate).all(): pos_trains += 1 position.print_position(position_to_investigate) (_, _, aLafter) = model.predict3(W, b, x_to_investigate) print('\niteration: %d, position trained times: %d' % (i, pos_trains)) y = Y[:, 0].reshape(9, 1) table = np.concatenate((aLbefore, aLafter, y), axis = 1) print(table)
def hello_world(): print('request received') model = load() content = request.get_json() query = content['query'] # TODO try-except blocks to check that everything is correct print('returning ans') output = {'answer': infer(model, query)} return jsonify(output)
def process(self, image_array): model = model.load('my_model.h5') digit = prep.crop_image(image_array) digit = prep.crop_image(digit) digit = prep.center_image(digit) digit = prep.resize_image(digit) digit = prep.min_max_scaler(digit) digit = prep.reshape_array(digit) digit = model.predict(digit) return digit
def handle(env, start_response, handler, m=None): path = get_path(env) if len(path) > 0 and not path[-1] == '/': start_response('302 Redirect', [('Location', model.normalize(path) + "/")]) return path = model.normalize(path) try: d = model.describe(path) qs = urlparse.parse_qs(env['QUERY_STRING']) if not m and 'cache' in d: if 'r' in qs and qs['r'][0] == '1': if d['cache'] == 'normal': model.invalidate_cache(path) if d['cache'] == 'parent': model.invalidate_cache(model.parent(path)) if d and d['type'] == 'render' and env['REQUEST_METHOD'] == 'GET': parameters = {} if 'parameters' in d: parameters = d['parameters'] content, mime = render_handlers[d['function']](path, parameters, env) start_response('200 OK', [('Content-Type', mime), ('Content-Length', str(len(content)))]) return content if not m: m = model.load(path) content, redirect = handler(path, d, m, env) if redirect: redirect = model.normalize(redirect) close = '' if 'c' in qs: if qs['c'][0] == '0': close = '?c=1' if qs['c'][0] == '1': close = '?c=2' start_response('302 Redirect', [('Location', redirect + "/" + close)]) return else: start_response('200 OK', [('Content-Type', 'text/html;charset=utf-8'), ('Content-Length', str(len(content)))]) return content except model.NotFoundException as e: import traceback traceback.print_exc() raise restlite.Status, '404 Not Found' except model.ParseException as e: d = {} d.update({'e': e.errors}) d.update(e.attributes) start_response('302 Redirect', [('Location', model.normalize(path) + "/?" + urllib.urlencode(d, True))]) return
def test_wrapper(model): '''Test your code.''' test_set = data.DataSet(FLAGS.root_dir, FLAGS.dataset, 'test', FLAGS.batch_size, FLAGS.n_label, data_aug=False, shuffle=False) '''TODO: Your code here.''' model.load() tot_acc = 0.0 tot_input = 0 while test_set.has_next_batch(): test_ims, test_labels = test_set.next_batch() _, acc = model.valid(test_ims, test_labels) tot_acc += acc * len(test_ims) tot_input += len(test_ims) acc = tot_acc / tot_input print("Test Accuracy= " + "{:.3f}".format(acc)) print("Test Finished!")
def run(self): # Logic goes here model_dirs = os.listdir("model") # Traverse through the models folder and get all model names newest = 0 for model_dir in model_dirs: name_val = int(model_dir) if name_val > newest: newest = name_val print "Loading model "+str(newest) # newest will now hold the name of the newest model in the directory self.cur_model = model.load(newest) # Loading in the model
def train_model_scenario_2(n, model_fname, opponet_model_fname, alpha=0.1, iterations=5000): alpha0 = alpha decay_rate = 0.01 modelInstance = model.load(opponet_model_fname) W0 = modelInstance['W'] b0 = modelInstance['b'] if model_fname == opponet_model_fname: W = W0 b = b0 else: make_movement_fn = lambda x: model.predict2(W0, b0, x) (W, b) = model.initialize_weights(n) for i in range(0, iterations): if model_fname == opponet_model_fname: make_movement_fn = lambda x: model.predict2(W, b, x) ex = training.make_training_examples(make_movement_fn) X = ex['X'] Y = ex['Y'] # displayTrainingExamples(X, Y) # (dW, db) = model.calcGradients(W, b, X, Y) (dW, db, _) = model.back_propagation(n, W, b, X, Y) alpha = alpha0 / (1 + decay_rate * i) model.update_weights(W, dW, b, db, alpha) if i % 100 == 0: print('iteration ' + str(i)) (aL, _) = model.forward_propagation(W, b, X) cost = model.cost_function(Y, aL) print('cost') print(cost) print('alpha') print(alpha) # if i % 1000 == 0: # is_back_prop_correct = model.checkBackPropagation(n, W, b, X, Y) # if not is_back_prop_correct: # print("BP is not correct") # exit() print('------ end -------') model.save(n, W, b, model_fname)
def load(config, options=None): label = None description = None dataset = None model = None training = None if options is None: options = {} if 'base' not in options or options['base'] is None: options['base'] = os.getcwd() if not options['base'].startswith('/'): options['base'] = os.path.join(os.getcwd(), options['base']) if 'label' in config: label = config['label'] if 'description' in config: description = config['description'] if 'model' in config: model = model_utils.load(config['model'], options) if 'training' in config: training = training_utils.load(config['training'], options) if 'dataset' in config: dataset = dataset_utils.load(config['dataset'], model, training, options) if 'weightsHdf5' in config: weights_hdf5 = config['weightsHdf5'] if not weights_hdf5.startswith('/'): weights_hdf5 = os.path.join(options['base'], weights_hdf5) project = Project( label=label, description=description, weights_hdf5=weights_hdf5, dataset=dataset, model=model, training=training, options=options) if 'loadWeights' in options and options['loadWeights']: project.model.load_weights_hdf5(project.weights_hdf5) return project
def show_unit_tasks(path, parameters, env): group_container = parameters['groups'] group_path = model.parent(path) + '/' + group_container groups = model.load(group_path) person_groups = {} for g in groups: model.traverse( group_path + '/' + g, lambda (path, task, d): collect_persons(g, path, person_groups), all_nodes=True) persons = set() for group in person_groups.values(): for p in group: persons.add(p) dates, slots, s = prepare_people_tasks(persons) schedules = {} for i in s: schedules[i[0]] = i group_schedules = [] for g in person_groups.keys(): group_sched = [ g, len(slots) * [0.0], 0, 0, { 'url': group_path + '/' + g + '/planning/' } ] for _, person in person_groups[g]: group_sched[1] = [ group_sched[1][i] + schedules[person][1][i] for i in range(0, len(slots)) ] group_sched[2] += schedules[person][2] group_sched[3] += schedules[person][3] n = len(person_groups[g]) * 1.0 group_sched[1] = [i / n for i in group_sched[1]] group_sched[2] /= n group_sched[3] /= n group_schedules.append(group_sched) return visualize.render(dates, slots, sorted(group_schedules), variables={ 'qs': urlparse.parse_qs(env['QUERY_STRING']), 'context': '/', 'path': path, 'sum': True, 'url': path + '/', 'refreshable': False }), "text/html"
def main(): parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument('--data-dir', type=str, default='data/corona', help='data directory containing input.txt') parser.add_argument('--seed', type=str, default=None, help='seed string for sampling') parser.add_argument('--length', type=int, default=1000, help='length of the sample to generate') parser.add_argument('--diversity', type=float, default=1.0, help='Sampling diversity') args = parser.parse_args() model = load(args.data_dir) del args.data_dir model.sample(**vars(args))
def handle(env, start_response, handler, m=None): path = get_path(env) if len(path) > 0 and not path[-1] == '/': start_response('302 Redirect', [('Location', model.normalize(path)+"/")]) return path = model.normalize(path) try: d = model.describe(path) qs = urlparse.parse_qs(env['QUERY_STRING']) if not m and 'cache' in d: if 'r' in qs and qs['r'][0]=='1': if d['cache'] == 'normal': model.invalidate_cache(path) if d['cache'] == 'parent': model.invalidate_cache(model.parent(path)) if d and d['type'] == 'render' and env['REQUEST_METHOD'] == 'GET': parameters = {} if 'parameters' in d: parameters = d['parameters'] content, mime = render_handlers[d['function']](path, parameters, env) start_response('200 OK', [('Content-Type', mime), ('Content-Length', str(len(content)))]) return content if not m: m = model.load(path) content, redirect = handler(path, d, m, env) if redirect: redirect = model.normalize(redirect) close='' if 'c' in qs: if qs['c'][0]=='0': close='?c=1' if qs['c'][0]=='1': close='?c=2' start_response('302 Redirect', [('Location', redirect+"/"+close)]) return else: start_response('200 OK', [('Content-Type', 'text/html;charset=utf-8'), ('Content-Length', str(len(content)))]) return content except model.NotFoundException as e: import traceback traceback.print_exc() raise restlite.Status, '404 Not Found' except model.ParseException as e: d = {} d.update( { 'e': e.errors } ) d.update(e.attributes) start_response('302 Redirect', [('Location', model.normalize(path)+"/?"+urllib.urlencode(d, True))]) return
def show_team_tasks(path, parameters, env): people = model.parent(path) + '/people' person_list = model.load(people) dates, slots, s = prepare_people_tasks([(people, person) for person in person_list]) return visualize.render(dates, slots, sorted(s), variables={ 'qs': urlparse.parse_qs(env['QUERY_STRING']), 'context': '/', 'path': path, 'sum': True, 'url': path + '/', 'refreshable': True }), "text/html"
def ANNCertainty(start="2019-04-01", stop="2019-05-01", fromPickle=False, clean=True, load_model=False): if clean: filename = "ANNCertainty" else: filename = "ANNCertainty-uncleaned" if fromPickle: print("Loaded", filename) return pickle.load(open(config.DATA_PATH + "" + filename, "rb")) else: print("Making Met-ANM dataset for certaintyPlot", filename) met_df = pp.getMetData(start, stop).set_index("forecast_time") anm_df = pp.getSingleDataframe(start, "2019-05-31", fromPickle=True, clean=clean) df = anm_df.join(met_df, how="inner") if load_model: ere_wtnn = m.load(filename=filename) else: df_train = pp.getEdayData() df_full = pp.getSingleDataframe(fromPickle=True, clean=clean) df_train = df_full.join(df_train, how="inner") ere_wtnn = m.train_and_save_simple( df_train[["Wind Mean (M/S)", "weekday", "hour"]].values, df_train[["Curtailment"]].values, kfold=False, filename=filename) print("Doing ERE WT-FFNN predictions...") df["ere_wtnn_prediction"] = [ ere_wtnn.predict([[d[["wind_speed", "weekday", "hour"]].values]])[0][0] for i, d in df.iterrows() ] df["ere_wtnn_prediction_correct"] = [ int(round(d["ere_wtnn_prediction"]) == d["Curtailment"]) * 100 for i, d in df.iterrows() ] print(df["ere_wtnn_prediction_correct"].mean()) pickle.dump(df, open(config.DATA_PATH + "" + filename, "wb")) return df
def main(argv): ap = ArgumentParser(prog="snow-patrol daemon") ap.add_argument("-v", "--verbose", default=False, action="store_true", help="Turn on verbose logging.") ap.add_argument("config_path") ap.add_argument("--dry-run", action="store_true", default=False) aargs = ap.parse_args(argv) log_file = ".%s.%s.log" % (os.path.splitext( os.path.basename(__file__))[0], os.path.basename(aargs.config_path)) setup_logging(log_file, aargs.verbose, False, True, True) config = model.load(aargs.config_path) logging.debug("Running under: %s" % config) run_continuously(config, aargs.dry_run) return 0
def main(): # Training data consits of 60000 images and 60000 labels # Testing data consists of 10000 images and 10000 labels # Each image consits of 784 (28x28) pixels each of which contains a value from # 0 to 255.0 which corresponds to its darkness or lightness. # Each input needs to be a list of numpy arrays to be valid. # Load all of the data print "Loading data..." test_images = data.load_data(LIMITED) train_images = data.load_data(LIMITED, "train-images.idx3-ubyte", "train-labels.idx1-ubyte") print "Normalizing data..." X_train, Y_train = data.convert_image_data(train_images) X_test, Y_test = data.convert_image_data(test_images) X_train = np.array(X_train) Y_train = np.array(Y_train) X_test = np.array(X_test) Y_test = np.array(Y_test) if LOAD == False: print "Building the model..." _model = model.build() else: print "Loading the model..." elements = os.listdir("model") if len(elements) == 0: print "No models to load." else: _model = model.load(elements[len(elements)-1]) if TRAIN == True: print "Training the model..." model.train(_model, X_train, Y_train, X_test, Y_test) if VISUALIZE: model.visualize(_model, test_images, VISUALIZE_TO_FILE) if TRAIN == True: print "Saving the model..." model.save(_model)
def test_position(model_fname): print('\ntest model: %s' % (model_fname)) model_instance = model.load(model_fname) W = model_instance['W'] b = model_instance['b'] x = np.array([ -1,-1, 0, 0, 1, 0, 0, 0, 0, ]).reshape(9, 1) print('\n') position.print_position(position.transform_vector_into_position(x)) (aL, _) = model.forward_propagation(W, b, x) print("aL") print(aL) movement = model.predict(W, b, x) position.print_movement(movement)
def show_team_tasks(path, parameters, env): people = model.parent(path)+'/people' person_list = model.load(people) dates, slots, s = prepare_people_tasks( [ ( people, person) for person in person_list ] ) return visualize.render(dates, slots, sorted(s), variables={'qs':urlparse.parse_qs(env['QUERY_STRING']), 'context':'/', 'path':path, 'sum':True, 'url': path+'/', 'refreshable': True }), "text/html"
#!/usr/bin/env python import os, sys lib_path = os.path.abspath(os.environ['TMT_ROOT'] + '/personal/mnovak/ml_framework/lib') sys.path.append(lib_path) import model #from sklearn import tree #import StringIO, pydot name = sys.argv.pop(0) if len(sys.argv) < 2: print >> sys.stderr, "Usage: " + name + " <model_path> <params_path>" exit() model = model.Model() model.load(sys.argv[0]) model.print_params(sys.argv[1])
plot_verts.append(verts) barpath = path.Path(verts, codes) patch = patches.PathPatch(barpath, facecolor='green', edgecolor='yellow', alpha=0.5) ax.add_patch(patch) ax.set_xlim(left[0], right[-1]) ax.set_ylim(0,1.1) def animate(t): time_text.set_text("t=%d"%t) for sequence,verts in zip(plot,plot_verts): n = sequence[t] top = bottom + n verts[1::5,1] = top verts[2::5,1] = top ani = animation.FuncAnimation(fig, animate, len(sequence), repeat=False) ani.save(filename, fps=15,bitrate=1280) if __name__ == "__main__": predict = model.load(sys.argv[1]) layers = predict(load_ark(sys.argv[2])) means = [ np.sum(l > 0.5,axis=0) for l in layers ] order = [ np.argsort(-m)[:100] for m in means ] plot = [ l[:,o] for l,o in zip(layers,order) ] create_animation(plot,sys.argv[3])
def load_default_model(): trained_model_dir = os.path.join(os.path.dirname(__file__), '../trained_models') global keras_model, input_encoding, input_decoding, output_encoding, output_decoding keras_model, input_encoding, input_decoding, output_encoding, output_decoding = model.load(save_dir=trained_model_dir)
import os, sys, time import numpy as np from config import config import model from env import Environment ############################################# config.use_gpu = True ############################################# config.rl_model = "double_dqn" config.rl_model = "bootstrapped_double_dqn" config.rl_final_exploration_step = 20000 config.apply_batchnorm = False model = model.load() env = Environment() max_episode = 2000 total_steps = 0 exploration_rate = config.rl_initial_exploration dump_freq = 10 episode_rewards = 0 num_optimal_episodes = 0 sum_reward = 0 sum_loss = 0.0 save_freq = 100 bootstrapped = False if config.rl_model in ["bootstrapped_double_dqn"]:
print str(err) # will print something like "option -a not recognized" usage(name) sys.exit(2) ranking = False for o,a in optlist: if o == '--ranking': ranking = True else: assert False, "unhandled option" if len(args) < 1: usage(name) sys.exit(2) model_path = args[0] model = model.Model() model.load(model_path) #dot_data = StringIO.StringIO() #tree.export_graphviz(model.model, out_file=dot_data) #graph = pydot.graph_from_dot_data(dot_data.getvalue()) #graph.write_pdf("graph.pdf") print >> sys.stderr, "Reading the data..." in_data = VowpalWabbitData(ranking=ranking) (X_all, Y, tags_all) = in_data.read(sys.stdin) print >> sys.stderr, "Making predictions..." for X in X_all: tags = tags_all.pop(0) losses = model.predict_loss(X) for i in range(0, len(X)):