def test_decision_tree(): runner = Runner( 'model/experiment/output/decision_tree_basic_full', load_sample_data_frame(), 'arrest', decision_tree_basic, hyper_parameters=hyper_parameters ) runner.run_classification_search_experiment( 'roc_auc', sample=sample, n_iter=iterations, record_predict_proba=True ) runner = Runner( 'model/experiment/output/decision_tree_under_sampled_full', load_sample_data_frame(), 'arrest', decision_tree_basic, hyper_parameters=hyper_parameters ) runner.run_classification_search_experiment( 'roc_auc', sample=sample, n_iter=iterations, record_predict_proba=True, sampling=RandomUnderSampler() ) runner = Runner( 'model/experiment/output/decision_tree_over_sampled_full', load_sample_data_frame(), 'arrest', decision_tree_basic, hyper_parameters=hyper_parameters ) runner.run_classification_search_experiment( 'roc_auc', sample=sample, n_iter=iterations, record_predict_proba=True, sampling=SMOTE() ) runner = Runner( 'model/experiment/output/decision_tree_combine_sampled_full', load_sample_data_frame(), 'arrest', decision_tree_basic, hyper_parameters=hyper_parameters ) runner.run_classification_search_experiment( 'roc_auc', sample=sample, n_iter=iterations, record_predict_proba=True, sampling=SMOTEENN() )
def test_neural_network_basic(): runner = Runner('model/experiment/output/neural_network_basic', load_sample_data_frame(), 'violation', neural_network_basic, None) runner.run_classification_experiment(sample=sample, multiclass=True, record_predict_proba=True)
def test_gaussian_naive_bayes_basic(): runner = Runner('model/experiment/output/complement_naive_bayes_basic', load_sample_data_frame(), 'violation', gaussian_naive_bayes_basic, None) runner.run_classification_experiment(sample=sample, multiclass=True, record_predict_proba=True)
def test_lightgbm_basic(): runner = Runner('model/experiment/output/lightgbm_basic', load_sample_data_frame(), 'violation', lightgbm_basic, hyper_parameters) runner.run_classification_search_experiment('neg_log_loss', sample=sample, n_iter=iterations, multiclass=True, record_predict_proba=True)
# -*- coding: utf-8 -*- """ Test the ticket model being serviced on localhost:8080 """ __author__ = "John Hoff" __email__ = "*****@*****.**" __copyright__ = "Copyright 2019, John Hoff" __license__ = "Creative Commons Attribution-ShareAlike 4.0 International License" __version__ = "1.0.0" import json import requests from utility import use_project_path from model import load_sample_data_frame if __name__ == '__main__': use_project_path() for index, row in load_sample_data_frame().iterrows(): print(row.to_json()) headers = {'Content-type': 'application/json', 'Accept': 'text/plain'} response = requests.post('http://127.0.0.1:8080/ticketPrediction', data=row.to_json(), headers=headers) print(json.loads(response.text)) if index > 100: break