コード例 #1
0
ファイル: densenet.py プロジェクト: codealphago/yolo2-pytorch
def densenet201(config_channels, anchors, num_cls, **kwargs):
    model = DenseNet(config_channels, anchors, num_cls, num_init_features=64, growth_rate=32, block_config=(6, 12, 48, 32), **kwargs)
    if config_channels.config.getboolean('model', 'pretrained'):
        url = model_urls['densenet201']
        logging.info('use pretrained model: ' + url)
        state_dict = model.state_dict()
        for key, value in model_zoo.load_url(url).items():
            if key in state_dict:
                state_dict[key] = value
        model.load_state_dict(state_dict)
    return model
コード例 #2
0
ファイル: resnet.py プロジェクト: codealphago/yolo2-pytorch
def resnet50(config_channels, anchors, num_cls, **kwargs):
    model = ResNet(config_channels, anchors, num_cls, Bottleneck, [3, 4, 6, 3], **kwargs)
    if config_channels.config.getboolean('model', 'pretrained'):
        url = _model.model_urls['resnet50']
        logging.info('use pretrained model: ' + url)
        state_dict = model.state_dict()
        for key, value in model_zoo.load_url(url).items():
            if key in state_dict:
                state_dict[key] = value
        model.load_state_dict(state_dict)
    return model
コード例 #3
0
ファイル: train.py プロジェクト: codealphago/yolo2-pytorch
 def finetune(self, model, path):
     if os.path.isdir(path):
         path, _step, _epoch = utils.train.load_model(path)
     _state_dict = torch.load(path, map_location=lambda storage, loc: storage)
     state_dict = model.state_dict()
     ignore = utils.RegexList(self.args.ignore)
     for key, value in state_dict.items():
         try:
             if not ignore(key):
                 state_dict[key] = _state_dict[key]
         except KeyError:
             logging.warning('%s not in finetune file %s' % (key, path))
     model.load_state_dict(state_dict)
コード例 #4
0
    def __init__(self, args=args):

        #RANDOM MODEL INITIALIZATION FUNCTION
        def init_weights(m):
            if isinstance(m, torch.nn.Linear) or isinstance(
                    m, torch.nn.Conv2d):
                torch.nn.init.xavier_uniform_(m.weight.data)

        #INITIALIZE VARIABLES
        self.SR_COUNT = args.action_space
        SRMODEL_PATH = args.srmodel_path
        self.batch_size = args.batch_size
        self.TRAINING_LRPATH = glob.glob(
            os.path.join(args.training_lrpath, "*"))
        self.TRAINING_HRPATH = glob.glob(
            os.path.join(args.training_hrpath, "*"))
        self.TRAINING_LRPATH.sort()
        self.TRAINING_HRPATH.sort()
        self.PATCH_SIZE = args.patchsize
        self.patchinfo_dir = args.patchinfo
        self.TESTING_PATH = glob.glob(os.path.join(args.testing_path, "*"))
        self.LR = args.learning_rate
        self.UPSIZE = args.upsize
        self.step = 0
        self.name = args.name
        if args.name != 'none':
            self.logger = logger.Logger(
                args.name)  #create our logger for tensorboard in log directory
        else:
            self.logger = None
        self.device = torch.device(args.device)  #determine cpu/gpu

        #DEFAULT START OR START ON PREVIOUSLY TRAINED EPOCH
        if args.model_dir != "":
            self.load(args)
            print('continue training for model: ' + args.model_dir)
        else:
            self.SRmodels = []
            self.SRoptimizers = []
            self.schedulers = []
            #LOAD A COPY OF THE MODEL N TIMES
            for i in range(self.SR_COUNT):
                if args.model == 'ESRGAN':
                    model = arch.RRDBNet(3, 3, 64, 23, gc=32)
                    model.load_state_dict(torch.load(args.ESRGAN_PATH),
                                          strict=True)
                    print('ESRGAN loaded')
                elif args.model == 'random':
                    model = arch.RRDBNet(3, 3, 64, 23, gc=32)
                    model.apply(init_weights)
                    print('Model RRDB Loaded with random weights...')
                elif args.model == 'RCAN':
                    torch.manual_seed(args.seed)
                    checkpoint = utility.checkpoint(args)
                    if checkpoint.ok:
                        module = import_module('model.' + args.model.lower())
                        model = module.make_model(args).to(self.device)
                        kwargs = {}
                        model.load_state_dict(torch.load(
                            args.pre_train, **kwargs),
                                              strict=False)
                    else:
                        print('error')
                self.SRmodels.append(model)
                self.SRmodels[-1].to(self.device)
                self.SRoptimizers.append(
                    torch.optim.Adam(model.parameters(), lr=1e-4))
                self.schedulers.append(
                    torch.optim.lr_scheduler.StepLR(self.SRoptimizers[-1],
                                                    10000,
                                                    gamma=0.1))

            #self.patchinfo = np.load(self.patchinfo_dir)
            self.agent = agent.Agent(args)
コード例 #5
0
half_padding = padding / 2
output_length = sample_size - padding

print low_resolution_samples.shape

lowres_set = data.TensorDataset(
    torch.from_numpy(low_resolution_samples),
    torch.from_numpy(np.zeros(low_resolution_samples.shape[0])))
lowres_loader = torch.utils.data.DataLoader(lowres_set,
                                            batch_size=batch_size,
                                            shuffle=False)

hires_loader = lowres_loader

model = model.Net(40, 28)
model.load_state_dict(torch.load('../model/pytorch_model_12000'))
if use_gpu:
    model = model.cuda()

_loss = nn.MSELoss()

running_loss = 0.0
running_loss_validate = 0.0
reg_loss = 0.0

for i, (v1, v2) in enumerate(zip(lowres_loader, hires_loader)):
    _lowRes, _ = v1
    _highRes, _ = v2

    _lowRes = Variable(_lowRes).float()
    _highRes = Variable(_highRes).float()
コード例 #6
0
    def load(self, args):

        if args.model_dir != "":
            loadedparams = torch.load(args.model_dir, map_location=self.device)
            self.agent = agent.Agent(args, chkpoint=loadedparams)
        else:
            self.agent = agent.Agent(args)
        self.SRmodels = []
        self.SRoptimizers = []
        self.schedulers = []
        for i in range(args.action_space):

            #CREATE THE ARCH
            if args.model == 'basic':
                model = arch.RRDBNet(3,
                                     3,
                                     32,
                                     args.d,
                                     gc=8,
                                     upsize=args.upsize)
            elif args.model == 'ESRGAN':
                model = arch.RRDBNet(3, 3, 64, 23, gc=32, upsize=args.upsize)
            elif args.model == 'RCAN':
                torch.manual_seed(args.seed)
                checkpoint = utility.checkpoint(args)
                if checkpoint.ok:
                    module = import_module('model.rcan')
                    model = module.make_model(args).to(self.device)
                    kwargs = {}
                else:
                    print('error loading RCAN model. QUITING')
                    quit()

            #LOAD THE WEIGHTS
            if args.model_dir != "":
                model.load_state_dict(loadedparams["sisr" + str(i)])
                print('continuing training')
            elif args.random:
                print('random init')
            elif args.model == 'ESRGAN':
                #model.load_state_dict(torch.load(args.ESRGAN_PATH),strict=True)
                loaded_dict = torch.load(args.ESRGAN_PATH)
                model_dict = model.state_dict()
                loaded_dict = {
                    k: v
                    for k, v in loaded_dict.items() if k in model_dict
                }
                model_dict.update(loaded_dict)
                model.load_state_dict(model_dict)
            elif args.model == 'RCAN':
                print('RCAN loaded!')
                model.load_state_dict(torch.load(args.pre_train, **kwargs),
                                      strict=True)
            elif args.model == 'basic':
                if args.d == 1:
                    model.load_state_dict(torch.load(args.basicpath_d1),
                                          strict=False)
                elif args.d == 2:
                    model.load_state_dict(torch.load(args.basicpath_d2),
                                          strict=True)
                elif args.d == 4:
                    model.load_state_dict(torch.load(args.basicpath_d4),
                                          strict=True)
                elif args.d == 8:
                    model.load_state_dict(torch.load(args.basicpath_d8),
                                          strict=True)
                else:
                    print(
                        'no pretrained model available. Random initialization of basic block'
                    )

            self.SRmodels.append(model)
            self.SRmodels[-1].to(self.device)

            self.SRoptimizers.append(
                torch.optim.Adam(model.parameters(), lr=1e-5))
            scheduler = torch.optim.lr_scheduler.StepLR(self.SRoptimizers[-1],
                                                        200,
                                                        gamma=0.8)

            self.schedulers.append(scheduler)
コード例 #7
0
ファイル: main.py プロジェクト: xzwu20/SJTU-EE359
        train_inputs = train_inputs.cuda()
        train_labels = train_labels.cuda()
        test_inputs = test_inputs.cuda()
        test_labels = test_labels.cuda()

    epoch = 0
    lr = args.lr
    # network part
    model = model.network(args, input_dim=train_inputs.shape[1], class_num= args.class_num)
    print(train_inputs.shape, train_labels.shape)
    optimizer = torch.optim.Adam(model.parameters(), lr = args.lr, weight_decay = args.l2)
    # optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9)
    # optimizer = torch.optim.Adadelta(model.parameters(), lr = args.lr, weight_decay = args.l2)
    if args.load_model_path != "":
        opti_path = args.load_model_path + "_opti"
        model.load_state_dict(torch.load(args.load_model_path))
    if args.gpu:
        model.cuda()

    epoch = 0
    log_test = utils.setup_logger(0, 'test_log', os.path.join(args.log_path, 'ds_test_log.txt'))
    log_train = utils.setup_logger(0, 'train_log', os.path.join(args.log_path, 'ds_train_log.txt'))
    best_accuracy, best_f1, best_train_accuracy = 0.0, 0.0, 0.0
    early_stop_counter = 0
    loss_function = nn.CrossEntropyLoss()

    ftrain_accuracy = open((os.path.join(args.log_path, 'l2_'+str(args.l2)+'ds_train_accuracy.txt')), "w")
    floss = open((os.path.join(args.log_path, 'l2_'+str(args.l2)+'ds_loss.txt')), "w")
    ftest = open((os.path.join(args.log_path, 'l2_'+str(args.l2)+'_ds_test_accuracy.txt')), "w")
    # train
    while epoch<args.max_epoch:
コード例 #8
0
    img = cv2.imread('../wheel.jfif', 0)
    rows, cols = img.shape

    path = data.path.values
    target = data.target.values

    dataset = dataset.DrivingDataset(path, target, config.IMAGE_FOLDER,
                                     (66, 200))

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=1,
                                               shuffle=True)

    model = model.SelfDrivingModel()

    model.load_state_dict(torch.load('../models/2.h5'))

    model.eval()

    i = 0
    s_a = 0
    while (cv2.waitKey(10) != ord('q')):

        data = dataset[i]
        image = data['image']
        image = image.view(1, 3, 66, 200)
        target = data['target']
        full_img = cv2.imread(config.IMAGE_FOLDER + str(i) + ".jpg")
        rad = model.forward(image).detach().numpy()
        degree = rad * 180.0 / 3.14159265
        print(f'predicted values : {rad} , original value {target}')
コード例 #9
0
def trainClassier(params):
    def validation(test_loader, model):
        correct = 0
        total_test = 0
        cnt = 0
        cross_entropy = 0
        model.eval()
        with torch.no_grad():
            for sample_batch in test_loader:
                images, labels = sample_batch
                if params.useGPU:
                    images, labels = Variable(images.cuda()), Variable(
                        labels.cuda())
                out = model.forward(images)
                loss = torch.nn.CrossEntropyLoss()(out, labels)

                _, pred = torch.max(out, 1)
                correct += (pred == labels).sum().item()
                cross_entropy += loss
                total_test += labels.size(0)
                cnt += 1

        return correct / total_test, cross_entropy / cnt

    train_data = ImageFolder(
        root=params.processed,
        transform=transforms.Compose([
            # transforms.Grayscale(),
            transforms.Resize(380),
            transforms.RandomHorizontalFlip(),
            transforms.RandomCrop(360),
            transforms.RandomRotation(10),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
        ]))

    print(train_data.classes)
    train_loader = DataLoader(train_data,
                              batch_size=params.batchSize,
                              shuffle=True)
    testset = ImageFolder(
        root=params.val_data_set,
        transform=transforms.Compose([
            # transforms.Grayscale(),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
        ]))

    test_loader = DataLoader(testset, batch_size=4, shuffle=False)

    model = model.classifier(pre_train=True)

    if params.useGPU:
        print('gpu is available')
        model = torch.nn.DataParallel(model, device_ids=[0]).cuda()
    else:
        model = torch.nn.DataParallel(model)

    try:
        model.load_state_dict(torch.load(params.model_path))
        print('load model successfully')
    except:
        print('cannot find model')

    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), params.learningRate)

    for epoch in range(0, params.numEpochs):
        model.train()
        loss_sum = 0
        for batch_n, batch in enumerate(train_loader):
            start_time = time.time()
            inputs, labels = batch
            inputs, labels = Variable(inputs), Variable(labels)
            if params.useGPU:
                inputs, labels = Variable(inputs.cuda()), Variable(
                    labels.cuda())

            optimizer.zero_grad()
            outputs = model.forward(inputs)
            loss = criterion(outputs, labels)

            loss.backward()
            optimizer.step()

            loss_sum += loss.item()

            if batch_n % 10 == 9:
                _, pred = torch.max(outputs, 1)
                correct = (pred == labels).sum().item()
                print(
                    'Epoch: [{}/{}], batch: {}, took: {:.3f}, loss: {:.5f}, Acc: {:.5f}'
                    .format(epoch, params.numEpochs, batch_n,
                            time.time() - start_time, loss_sum / 10,
                            correct / labels.size(0)))
                loss_sum = 0

        acc, loss = validation(test_loader, model)
        print('Epoch: [{}/{}], acc: {:.5f}, loss: {:.5f}'.format(
            epoch, params.numEpochs, acc, loss))
        if epoch % 5 == 4:
            torch.save(model.state_dict(),
                       params.saved_path + str(epoch) + 'resnet34.pt')
コード例 #10
0
ファイル: train.py プロジェクト: ChainBreak/pytorch-practice
def train(model, train_loader):

    filename = "rnn_state.pt"
    try:
        state = torch.load(filename)
        model.load_state_dict(state["state_dict"])
        #optimizer.load_state_dict(state["optimizer_dict"])
    except:
        # raise
        print("Could not load model file")
        state = {}
        state["train_loss_history"] = []
        state["test_loss_history"] = []
        state["epoch"] = 0

    criterion = nn.NLLLoss()
    lr = 0.005

    print_every = 5000
    plot_every = 1000
    n_epoch = 50
    train_loss = 0.0
    count = 0
    while state["epoch"] < n_epoch:

        n_batch = len(train_loader)

        model.train()
        for i_batch, batch_data in enumerate(train_loader, 0):
            name_tensor = Variable(batch_data["name_tensor"])
            lang_tensor = Variable(batch_data["lang_tensor"])

            name_tensor = name_tensor.view(name_tensor.size()[1:])
            lang_tensor = lang_tensor.view(1)

            model.zero_grad()
            hidden = model.initHidden()
            n_letters = name_tensor.size()[0]
            for i in range(n_letters):
                output, hidden = model(name_tensor[i], hidden)

            loss = criterion(output, lang_tensor)
            loss.backward()

            train_loss += loss.data[0]

            for p in model.parameters():
                p.data.add_(-lr, p.grad.data)

            if count % plot_every == 0:
                train_loss_avg = train_loss / plot_every
                print("Epoch: %i/%i, Batch: %i/%i, Loss: %f, %s" %
                      (state["epoch"], n_epoch, i_batch, n_batch,
                       train_loss_avg, batch_data["lang"]))
                state["train_loss_history"].append(train_loss_avg)
                train_loss = 0.0
                plt.cla()
                plt.plot(state["train_loss_history"])
                plt.plot(state["test_loss_history"])
                plt.draw()
                plt.pause(0.1)

            count += 1

        print("\nEpoch: %i/%i Saved!" % (state["epoch"], n_epoch))
        state["state_dict"] = model.state_dict()
        # state["optimizer_dict"] = optimizer.state_dict()
        state["epoch"] += 1
        torch.save(state, filename)
コード例 #11
0
            "WARNING: You have a CUDA device, so you should probably run with --cuda"
        )
    else:
        torch.cuda.manual_seed(args.seed)

if args.temperature < 1e-3:
    parser.error("--temperature has to be greater or equal 1e-3")

#with open(args.checkpoint, 'rb') as f:
vocab_obj = Vocab(args.vocab_dir, 0, args.glove_file)
ntokens, emsize = vocab_obj.size()
model = model.RNNModel(vocab_obj, args.model, ntokens, emsize, args.nhid,
                       args.nlayers, args.dropout, args.dropouth,
                       args.dropouti, args.dropoute, args.wdrop, args.tied)

model.load_state_dict(torch.load('/content/drive/My Drive/lngmodel'))
model.eval()
if args.model == 'QRNN':
    model.reset()

if args.cuda:
    model.cuda()
else:
    model.cpu()

#corpus = data.Corpus(args.data)
#ntokens = len(corpus.dictionary)
hidden = model.init_hidden(1)
input = Variable(torch.rand(1, 1).mul(ntokens).long(), volatile=True)
if args.cuda:
    input.data = input.data.cuda()
コード例 #12
0
ファイル: make_submission.py プロジェクト: mop/pytorch-metric
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model', required=True)
    parser.add_argument('--dataset', default='/home/nax/Downloads/shopee-product-matching/test.csv')
    parser.add_argument('--config', default='configs/baseline.py')
    parser.add_argument('--apex', action='store_true')
    parser.add_argument('--embedding-size', type=int)
    parser.add_argument('--batch-size', type=int)
    parser.add_argument('--image-size', type=int)

    args = parser.parse_args()
    threshold = 0.9075778192639249

    config = util.load_config(args.config)
    util.update_args(args, config)

    if args.apex:
        from apex import amp

    val_dataset = data.DMLDataset(args.dataset, is_training=False, is_testing=True)
    val_loader = data_util.DataLoader(
            val_dataset,
            batch_size=args.batch_size,
            collate_fn=val_dataset.collate_fn
    )

    backbone = util.get_class_fn(config['model'])()
    backbone.eval()
    in_size = backbone(torch.rand(1, 3, 224, 224)).squeeze().size(0)
    backbone.train()

    emb = torch.nn.Linear(in_size, args.embedding_size)
    model = torch.nn.Sequential(backbone, emb)
    model.eval()

    if not args.apex:
        model = torch.nn.DataParallel(model)
    model = model.cuda()

    if args.apex:
        model = amp.initialize(model, opt_level='O1')
        model = torch.nn.DataParallel(model)

    states = torch.load(args.model)
    model.load_state_dict(states['state_dict'])
    if args.apex:
        amp.load_state_dict(states['amp'])

    model.eval()

    all_fvecs = []
    all_ids = []
    for batch in val_loader:
        all_fvecs.append(model(batch['image'].cuda()).detach().cpu().numpy())
        all_ids += batch['posting_id']
    all_fvecs = np.vstack(all_fvecs)
    all_ids = np.asarray(all_ids)
    D = cdist(all_fvecs, all_fvecs)

    preds = D <= threshold

    for i, p in enumerate(preds):
        print(','.join(list(all_ids[p])))
コード例 #13
0
    debias_model.load_state_dict(torch.load(ARGS.debias_checkpoint, map_location='cpu'))
    print('DONE.')


joint_model = joint_model.JointModel(
    debias_model=debias_model, tagging_model=tagging_model)

if CUDA:
    joint_model = joint_model.cuda()

if ARGS.checkpoint is not None and os.path.exists(ARGS.checkpoint):
    print('LOADING FROM ' + ARGS.checkpoint)
    # TODO(rpryzant): is there a way to do this more elegantly? 
    # https://pytorch.org/tutorials/beginner/saving_loading_models.html#saving-loading-model-across-devices
    if CUDA:
        joint_model.load_state_dict(torch.load(ARGS.checkpoint, map_location='cpu'))
        joint_model = joint_model.cuda()
    else:
        joint_model.load_state_dict(torch.load(ARGS.checkpoint, map_location='cpu'))
    print('...DONE')


# # # # # # # # # # # # EVAL # # # # # # # # # # # # # #
joint_model.eval()
hits, preds, golds, srcs = joint_utils.run_eval(
    joint_model, eval_dataloader, tok2id, ARGS.inference_output,
    ARGS.max_seq_len, ARGS.beam_width)

print('eval/bleu', seq2seq_utils.get_bleu(preds, golds), 0)
print('eval/true_hits', np.mean(hits), 0)
コード例 #14
0
    #         learning_rate=6e-4
    #         lr_decay=True
    #         warmup_tokens=512*20
    #         final_tokens=200*len(pretrain_dataset)*block_size
    #         num_workers=4
    #     Hyperparameters for finetuning WITH a pretrained model:
    #         max_epochs=10
    #         batch_size=256
    #         learning_rate=6e-4
    #         lr_decay=True
    #         warmup_tokens=512*20
    #         final_tokens=200*len(pretrain_dataset)*block_size
    #         num_workers=4

    if args.reading_params_path:
        model.load_state_dict(torch.load(args.reading_params_path), strict=False)
        tconf = trainer.TrainerConfig(max_epochs=10, batch_size=256, learning_rate=6e-4,
                      lr_decay=True, warmup_tokens=512*20, final_tokens=200*len(pretrain_dataset)*block_size,
                      num_workers=4)
    else:
        tconf = trainer.TrainerConfig(max_epochs=75, batch_size=256, learning_rate=6e-4,
                      lr_decay=True, warmup_tokens=512*20, final_tokens=200*len(pretrain_dataset)*block_size,
                      num_workers=4)

    finetune_dataset = dataset.NameDataset(pretrain_dataset, open(args.finetune_corpus_path, encoding="utf8").read())
    t = trainer.Trainer(model, finetune_dataset, None, tconf)
    t.train()

    torch.save(model.state_dict(), args.writing_params_path)
elif args.function == 'evaluate':
    assert args.outputs_path is not None
コード例 #15
0
os.chdir(CHEXNET_PATH)
# original saved file with DataParallel
loaded = torch.load('./pretrained/model.pth.tar')
state_dict = loaded['state_dict']
# create new OrderedDict that does not contain `module.`
# initialize and load the model
model = model.DenseNet121(N_CLASSES).cuda()
model = torch.nn.DataParallel(model).cuda()
new_state_dict = OrderedDict()
for k, v in state_dict.items():
    for layer in ['norm', 'relu', 'conv']:
        if re.search(r'.' + layer + '.[0-9]', k):
            k = k.replace('.' + layer + '.', '.' + layer)
    new_state_dict[k] = v
# load params
model.load_state_dict(new_state_dict)
model.cpu()

print('Now see converted state dict:')
print(new_state_dict.keys())

# saving model:
state = {
    'epoch': loaded['epoch'],
    'arch': loaded['arch'],
    'state_dict': model.state_dict(),
    'optimizer': loaded['optimizer'],
}
torch.save(state, './pretrained/model2.pth')
コード例 #16
0
def densenet161(config, anchors, num_cls, pretrained=False, **kwargs):
    model = DenseNet(config, anchors, num_cls, num_init_features=96, growth_rate=48, block_config=(6, 12, 36, 24), **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['densenet161']))
    return model
コード例 #17
0
ファイル: run.py プロジェクト: henriDENG/CS224N-2019
    text = open(args.finetune_corpus_path).read()
    finetune_dataset = dataset.NameDataset(pretrain_dataset, text)
    #     Hyperparameters for finetuning WITHOUT a pretrained model:
    tconf = trainer.TrainerConfig(max_epochs=75,
                                  batch_size=256,
                                  learning_rate=6e-4,
                                  lr_decay=True,
                                  warmup_tokens=512 * 20,
                                  final_tokens=200 * len(pretrain_dataset) *
                                  block_size,
                                  num_workers=4)

    #     1. If args.reading_params_path is specified, load these parameters
    #         into the model
    if args.reading_params_path is not None:
        model.load_state_dict(torch.load(args.reading_params_path))
        #     Hyperparameters for finetuning WITH a pretrained model:
        tconf = trainer.TrainerConfig(max_epochs=10,
                                      batch_size=256,
                                      learning_rate=6e-4,
                                      lr_decay=True,
                                      warmup_tokens=512 * 20,
                                      final_tokens=200 *
                                      len(pretrain_dataset) * block_size,
                                      num_workers=4)

    #     3. Save the resulting model in args.writing_params_path
    tconf.ckpt_path = args.writing_params_path
    trainer = trainer.Trainer(model, finetune_dataset, None, tconf)
    trainer.train()
コード例 #18
0
        random.shuffle(dataset)
    n_datasets = []
    for dataset in datasets:
        img = [e[0] for e in dataset]
        qst = [e[1] for e in dataset]
        ans = [e[2] for e in dataset]
        n_datasets.append((img, qst, ans))

    return tuple(n_datasets)


rel_train, rel_test, norel_train, norel_test = load_data()

try:
    os.makedirs(model_dirs)
except:
    print('directory {} already exists'.format(model_dirs))

if args.resume:
    filename = os.path.join(model_dirs, args.resume)
    if os.path.isfile(filename):
        print('==> loading checkpoint {}'.format(filename))
        checkpoint = torch.load(filename)
        model.load_state_dict(checkpoint)
        print('==> loaded checkpoint {}'.format(filename))

for epoch in range(1, args.epochs + 1):
    train(epoch, rel_train, norel_train)
    test(epoch, rel_test, norel_test)
    model.save_model(epoch)
コード例 #19
0
def train(dataset="kaggle_pna",
          train_ds="train",
          arch="couplenet",
          net="res152",
          start_epoch=1,
          max_epochs=20,
          disp_interval=100,
          save_dir="save",
          num_workers=4,
          cuda=True,
          large_scale=False,
          mGPUs=True,
          batch_size=4,
          class_agnostic=False,
          anchor_scales=4,
          optimizer="sgd",
          lr_decay_step=10,
          lr_decay_gamma=.1,
          session=1,
          resume=False,
          checksession=1,
          checkepoch=1,
          checkpoint=0,
          use_tfboard=False,
          flip_prob=0.0,
          scale=0.0,
          scale_prob=0.0,
          translate=0.0,
          translate_prob=0.0,
          angle=0.0,
          dist="cont",
          rotate_prob=0.0,
          shear_factor=0.0,
          shear_prob=0.0,
          rpn_loss_cls_wt=1,
          rpn_loss_box_wt=1,
          RCNN_loss_cls_wt=1,
          RCNN_loss_bbox_wt=1,
          **kwargs):
    print("Train Arguments: {}".format(locals()))

    # Import network definition
    if arch == 'rcnn':
        from model.faster_rcnn.resnet import resnet
    elif arch == 'rfcn':
        from model.rfcn.resnet_atrous import resnet
    elif arch == 'couplenet':
        from model.couplenet.resnet_atrous import resnet

    from roi_data_layer.pnaRoiBatchLoader import roibatchLoader
    from roi_data_layer.pna_roidb import combined_roidb

    print('Called with kwargs:')
    print(kwargs)

    # Set up logger
    if use_tfboard:
        from model.utils.logger import Logger
        # Set the logger
        logger = Logger('./logs')

    # Anchor settings: ANCHOR_SCALES: [8, 16, 32] or [4, 8, 16, 32]
    if anchor_scales == 3:
        scales = [8, 16, 32]
    elif anchor_scales == 4:
        scales = [4, 8, 16, 32]

    # Dataset related settings: MAX_NUM_GT_BOXES: 20, 30, 50
    if train_ds == "train":
        imdb_name = "pna_2018_train"
    elif train_ds == "trainval":
        imdb_name = "pna_2018_trainval"

    set_cfgs = [
        'ANCHOR_SCALES',
        str(scales), 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '30'
    ]

    import model
    model_repo_path = os.path.dirname(
        os.path.dirname(os.path.dirname(model.__file__)))

    cfg_file = "cfgs/{}_ls.yml".format(
        net) if large_scale else "cfgs/{}.yml".format(net)

    if cfg_file is not None:
        cfg_from_file(os.path.join(model_repo_path, cfg_file))
    if set_cfgs is not None:
        cfg_from_list(set_cfgs)

    train_kwargs = kwargs.pop("TRAIN", None)
    resnet_kwargs = kwargs.pop("RESNET", None)
    mobilenet_kwargs = kwargs.pop("MOBILENET", None)

    if train_kwargs is not None:
        for key, value in train_kwargs.items():
            cfg["TRAIN"][key] = value

    if resnet_kwargs is not None:
        for key, value in resnet_kwargs.items():
            cfg["RESNET"][key] = value

    if mobilenet_kwargs is not None:
        for key, value in mobilenet_kwargs.items():
            cfg["MOBILENET"][key] = value

    if kwargs is not None:
        for key, value in kwargs.items():
            cfg[key] = value

    print('Using config:')
    cfg.MODEL_DIR = os.path.abspath(cfg.MODEL_DIR)
    cfg.TRAIN_DATA_CLEAN_PATH = os.path.abspath(cfg.TRAIN_DATA_CLEAN_PATH)
    pprint.pprint(cfg)
    np.random.seed(cfg.RNG_SEED)
    print("LEARNING RATE: {}".format(cfg.TRAIN.LEARNING_RATE))

    # Warning to use cuda if available
    if torch.cuda.is_available() and not cuda:
        print(
            "WARNING: You have a CUDA device, so you should probably run with --cuda"
        )

    # Train set
    # Note: Use validation set and disable the flipped to enable faster loading.
    cfg.TRAIN.USE_FLIPPED = True
    cfg.USE_GPU_NMS = cuda
    imdb, roidb, ratio_list, ratio_index = combined_roidb(imdb_name)
    train_size = len(roidb)

    print('{:d} roidb entries'.format(len(roidb)))

    # output_dir = os.path.join(save_dir, arch, net, dataset)
    output_dir = cfg.MODEL_DIR
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    sampler_batch = sampler(train_size, batch_size)

    dataset = roibatchLoader(roidb,
                             ratio_list,
                             ratio_index,
                             batch_size,
                             imdb.num_classes,
                             training=True)

    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=batch_size,
                                             sampler=sampler_batch,
                                             num_workers=num_workers)

    # Initilize the tensor holder
    im_data = torch.FloatTensor(1)
    im_info = torch.FloatTensor(1)
    num_boxes = torch.LongTensor(1)
    gt_boxes = torch.FloatTensor(1)

    # Copy tensors in CUDA memory
    if cuda:
        im_data = im_data.cuda()
        im_info = im_info.cuda()
        num_boxes = num_boxes.cuda()
        gt_boxes = gt_boxes.cuda()

    # Make variable
    im_data = Variable(im_data)
    im_info = Variable(im_info)
    num_boxes = Variable(num_boxes)
    gt_boxes = Variable(gt_boxes)

    if cuda:
        cfg.CUDA = True

    # Initilize the network:
    if net == 'vgg16':
        # model = vgg16(imdb.classes, pretrained=True, class_agnostic=args.class_agnostic)
        print("Pretrained model is not downloaded and network is not used")
    elif net == 'res18':
        model = resnet(imdb.classes,
                       18,
                       pretrained=False,
                       class_agnostic=class_agnostic)  # TODO: Check dim error
    elif net == 'res34':
        model = resnet(imdb.classes,
                       34,
                       pretrained=False,
                       class_agnostic=class_agnostic)  # TODO: Check dim error
    elif net == 'res50':
        model = resnet(imdb.classes,
                       50,
                       pretrained=False,
                       class_agnostic=class_agnostic)  # TODO: Check dim error
    elif net == 'res101':
        model = resnet(imdb.classes,
                       101,
                       pretrained=True,
                       class_agnostic=class_agnostic)
    elif net == 'res152':
        model = resnet(imdb.classes,
                       152,
                       pretrained=True,
                       class_agnostic=class_agnostic)
    else:
        print("network is not defined")
        pdb.set_trace()

    # Create network architecture
    model.create_architecture()

    # Update model parameters
    lr = cfg.TRAIN.LEARNING_RATE
    # tr_momentum = cfg.TRAIN.MOMENTUM
    # tr_momentum = args.momentum

    params = []
    for key, value in dict(model.named_parameters()).items():
        if value.requires_grad:
            if 'bias' in key:
                params += [{'params': [value], 'lr': lr * (cfg.TRAIN.DOUBLE_BIAS + 1), \
                            'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
            else:
                params += [{
                    'params': [value],
                    'lr': lr,
                    'weight_decay': cfg.TRAIN.WEIGHT_DECAY
                }]

    # Optimizer
    if optimizer == "adam":
        lr = lr * 0.1
        optimizer = torch.optim.Adam(params)

    elif optimizer == "sgd":
        optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM)

    # Resume training
    if resume:
        load_name = os.path.join(
            output_dir, '{}_{}_{}_{}.pth'.format(arch, checksession,
                                                 checkepoch, checkpoint))
        print("loading checkpoint %s" % (load_name))
        checkpoint = torch.load(load_name)
        session = checkpoint['session'] + 1
        start_epoch = checkpoint['epoch']
        model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr = optimizer.param_groups[0]['lr']
        if 'pooling_mode' in checkpoint.keys():
            cfg.POOLING_MODE = checkpoint['pooling_mode']
        print("loaded checkpoint %s" % (load_name))

    # Train on Multiple GPUS
    if mGPUs:
        model = nn.DataParallel(model)

    # Copy network to CUDA memroy
    if cuda:
        model.cuda()

    # Training loop
    iters_per_epoch = int(train_size / batch_size)

    sys.stdout.flush()

    for epoch in range(start_epoch, max_epochs + 1):
        # remove batch re-sizing for augmentation or adjust?
        dataset.resize_batch()

        # Set model to train mode
        model.train()
        loss_temp = 0
        start = time.time()

        # Update learning rate as per decay step
        if epoch % (lr_decay_step + 1) == 0:
            adjust_learning_rate(optimizer, lr_decay_gamma)
            lr *= lr_decay_gamma

        # Get batch data and train
        data_iter = iter(dataloader)
        for step in range(iters_per_epoch):
            sys.stdout.flush()
            data = next(data_iter)

            # Apply augmentations
            aug_img_tensors, aug_bbox_tensors = apply_augmentations(
                data[0],
                data[2],
                flip_prob=flip_prob,
                scale=scale,
                scale_prob=scale_prob,
                translate=translate,
                translate_prob=translate_prob,
                angle=angle,
                dist=dist,
                rotate_prob=rotate_prob,
                shear_factor=shear_factor,
                shear_prob=shear_prob)

            # im_data.data.resize_(data[0].size()).copy_(data[0])
            im_data.data.resize_(aug_img_tensors.size()).copy_(aug_img_tensors)
            im_info.data.resize_(data[1].size()).copy_(data[1])
            # gt_boxes.data.resize_(data[2].size()).copy_(data[2])
            gt_boxes.data.resize_(
                aug_bbox_tensors.size()).copy_(aug_bbox_tensors)
            num_boxes.data.resize_(data[3].size()).copy_(data[3])

            # Compute multi-task loss
            model.zero_grad()
            rois, cls_prob, bbox_pred, \
            rpn_loss_cls, rpn_loss_box, \
            RCNN_loss_cls, RCNN_loss_bbox, \
            rois_label = model(im_data, im_info, gt_boxes, num_boxes)

            loss = rpn_loss_cls_wt * rpn_loss_cls.mean() + rpn_loss_box_wt * rpn_loss_box.mean() + \
                   RCNN_loss_cls_wt * RCNN_loss_cls.mean() + RCNN_loss_bbox_wt * RCNN_loss_bbox.mean()
            loss_temp += loss.data[0]

            # Backward pass to compute gradients and update weights
            optimizer.zero_grad()
            loss.backward()
            if net == "vgg16":
                clip_gradient(model, 10.)
            optimizer.step()

            # Display training stats on terminal
            if step % disp_interval == 0:
                end = time.time()
                if step > 0:
                    loss_temp /= disp_interval

                if mGPUs:
                    batch_loss = loss.data[0]
                    loss_rpn_cls = rpn_loss_cls.mean().data[0]
                    loss_rpn_box = rpn_loss_box.mean().data[0]
                    loss_rcnn_cls = RCNN_loss_cls.mean().data[0]
                    loss_rcnn_box = RCNN_loss_bbox.mean().data[0]
                    fg_cnt = torch.sum(rois_label.data.ne(0))
                    bg_cnt = rois_label.data.numel() - fg_cnt
                else:
                    batch_loss = loss.data[0]
                    loss_rpn_cls = rpn_loss_cls.data[0]
                    loss_rpn_box = rpn_loss_box.data[0]
                    loss_rcnn_cls = RCNN_loss_cls.data[0]
                    loss_rcnn_box = RCNN_loss_bbox.data[0]
                    fg_cnt = torch.sum(rois_label.data.ne(0))
                    bg_cnt = rois_label.data.numel() - fg_cnt

                print("[session %d][epoch %2d][iter %4d/%4d] loss: %.4f, lr: %.2e" \
                      % (session, epoch, step, iters_per_epoch, loss_temp, lr))
                print("\t\t\tfg/bg=(%d/%d), time cost: %f" %
                      (fg_cnt, bg_cnt, end - start))
                print("\t\t\t batch_loss: %.4f, rpn_cls: %.4f, rpn_box: %.4f, rcnn_cls: %.4f, rcnn_box %.4f" \
                      % (batch_loss, loss_rpn_cls, loss_rpn_box, loss_rcnn_cls, loss_rcnn_box))
                if use_tfboard:
                    info = {
                        'loss': loss_temp,
                        'loss_rpn_cls': loss_rpn_cls,
                        'loss_rpn_box': loss_rpn_box,
                        'loss_rcnn_cls': loss_rcnn_cls,
                        'loss_rcnn_box': loss_rcnn_box
                    }
                    for tag, value in info.items():
                        logger.scalar_summary(tag, value, step)

                loss_temp = 0
                start = time.time()

                # Save model at checkpoints
        if mGPUs:
            save_name = os.path.join(
                output_dir, '{}_{}_{}_{}.pth'.format(arch, session, epoch,
                                                     step))
            save_checkpoint(
                {
                    'session': session,
                    'epoch': epoch + 1,
                    'model': model.module.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'pooling_mode': cfg.POOLING_MODE,
                    'class_agnostic': class_agnostic,
                }, save_name)
        else:
            save_name = os.path.join(
                output_dir, '{}_{}_{}_{}.pth'.format(arch, session, epoch,
                                                     step))
            save_checkpoint(
                {
                    'session': session,
                    'epoch': epoch + 1,
                    'model': model.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'pooling_mode': cfg.POOLING_MODE,
                    'class_agnostic': class_agnostic,
                }, save_name)
        print('save model: {}'.format(save_name))

        end = time.time()
        delete_older_checkpoints(
            os.path.join(cfg.MODEL_DIR, "couplenet_{}_*.pth".format(i)))
        print("Run Time: ", end - start)
コード例 #20
0
def main():
    # 随机种子
    np.random.seed(666)
    torch.manual_seed(666)
    torch.cuda.manual_seed_all(666)
    random.seed(666)

    # 获取当前文件名,用于创建模型及结果文件的目录
    file_name = os.path.basename(__file__).split('.')[0]
    # 创建保存模型和结果的文件夹
    if not os.path.exists('./model/%s' % file_name):
        os.makedirs('./model/%s' % file_name)
    if not os.path.exists('./result/%s' % file_name):
        os.makedirs('./result/%s' % file_name)
    # 创建日志文件
    if not os.path.exists('./result/%s.txt' % file_name):
        with open('./result/%s.txt' % file_name, 'w') as acc_file:
            pass
    with open('./result/%s.txt' % file_name, 'a') as acc_file:
        acc_file.write('\n%s %s\n' % (time.strftime(
            "%Y-%m-%d %H:%M:%S", time.localtime(time.time())), file_name))

    # 默认使用PIL读图
    def default_loader(path):
        # return Image.open(path)
        return Image.open(path).convert('RGB')

    # 训练集图片读取
    class TrainDataset(Dataset):
        def __init__(self,
                     label_list,
                     transform=None,
                     target_transform=None,
                     loader=default_loader):
            imgs = []
            for index, row in label_list.iterrows():
                imgs.append((row['img_path'], row['label']))
            self.imgs = imgs
            self.transform = transform
            self.target_transform = target_transform
            self.loader = loader

        def __getitem__(self, index):
            filename, label = self.imgs[index]
            img = self.loader(filename)
            if self.transform is not None:
                img = self.transform(img)
            return img, label

        def __len__(self):
            return len(self.imgs)

    # 验证集图片读取
    class ValDataset(Dataset):
        def __init__(self,
                     label_list,
                     transform=None,
                     target_transform=None,
                     loader=default_loader):
            imgs = []
            for index, row in label_list.iterrows():
                imgs.append((row['img_path'], row['label']))
            self.imgs = imgs
            self.transform = transform
            self.target_transform = target_transform
            self.loader = loader

        def __getitem__(self, index):
            filename, label = self.imgs[index]
            img = self.loader(filename)
            if self.transform is not None:
                img = self.transform(img)
            return img, label

        def __len__(self):
            return len(self.imgs)

    # 测试集图片读取
    class TestDataset(Dataset):
        def __init__(self,
                     label_list,
                     transform=None,
                     target_transform=None,
                     loader=default_loader):
            imgs = []
            for index, row in label_list.iterrows():
                imgs.append((row['img_path']))
            self.imgs = imgs
            self.transform = transform
            self.target_transform = target_transform
            self.loader = loader

        def __getitem__(self, index):
            filename = self.imgs[index]
            img = self.loader(filename)
            if self.transform is not None:
                img = self.transform(img)
            return img, filename

        def __len__(self):
            return len(self.imgs)

    # 数据增强:在给定角度中随机进行旋转
    class FixedRotation(object):
        def __init__(self, angles):
            self.angles = angles

        def __call__(self, img):
            return fixed_rotate(img, self.angles)

    def fixed_rotate(img, angles):
        angles = list(angles)
        angles_num = len(angles)
        index = random.randint(0, angles_num - 1)
        return img.rotate(angles[index])

    # 训练函数
    def train(train_loader, model, criterion, optimizer, epoch):
        batch_time = AverageMeter()
        data_time = AverageMeter()
        losses = AverageMeter()
        acc = AverageMeter()

        # switch to train mode
        model.train()

        end = time.time()
        # 从训练集迭代器中获取训练数据
        for i, (images, target) in enumerate(train_loader):
            # 评估图片读取耗时
            data_time.update(time.time() - end)
            # 将图片和标签转化为tensor
            image_var = torch.tensor(images).cuda(async=True)
            label = torch.tensor(target).cuda(async=True)

            # 将图片输入网络,前传,生成预测值
            y_pred = model(image_var)
            # 计算loss
            loss = criterion(y_pred, label)
            losses.update(loss.item(), images.size(0))

            # 计算top1正确率
            prec, PRED_COUNT = accuracy(y_pred.data, target, topk=(1, 1))
            acc.update(prec, PRED_COUNT)

            # 对梯度进行反向传播,使用随机梯度下降更新网络权重
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # 评估训练耗时
            batch_time.update(time.time() - end)
            end = time.time()

            # 打印耗时与结果
            if i % print_freq == 0:
                print('Epoch: [{0}][{1}/{2}]\t'
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                      'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                      'Accuray {acc.val:.3f} ({acc.avg:.3f})'.format(
                          epoch,
                          i,
                          len(train_loader),
                          batch_time=batch_time,
                          data_time=data_time,
                          loss=losses,
                          acc=acc))

    # 验证函数
    def validate(val_loader, model, criterion):
        batch_time = AverageMeter()
        losses = AverageMeter()
        acc = AverageMeter()

        # switch to evaluate mode
        model.eval()

        end = time.time()
        for i, (images, labels) in enumerate(val_loader):
            image_var = torch.tensor(images).cuda(async=True)
            target = torch.tensor(labels).cuda(async=True)

            # 图片前传。验证和测试时不需要更新网络权重,所以使用torch.no_grad(),表示不计算梯度
            with torch.no_grad():
                y_pred = model(image_var)
                loss = criterion(y_pred, target)

            # measure accuracy and record loss
            prec, PRED_COUNT = accuracy(y_pred.data, labels, topk=(1, 1))
            losses.update(loss.item(), images.size(0))
            acc.update(prec, PRED_COUNT)

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            if i % print_freq == 0:
                print('TrainVal: [{0}/{1}]\t'
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                      'Accuray {acc.val:.3f} ({acc.avg:.3f})'.format(
                          i,
                          len(val_loader),
                          batch_time=batch_time,
                          loss=losses,
                          acc=acc))

        print(' * Accuray {acc.avg:.3f}'.format(acc=acc),
              '(Previous Best Acc: %.3f)' % best_precision,
              ' * Loss {loss.avg:.3f}'.format(loss=losses),
              'Previous Lowest Loss: %.3f)' % lowest_loss)
        return acc.avg, losses.avg

    # 测试函数
    def test(test_loader, model):
        csv_map = OrderedDict({'filename': [], 'probability': []})
        # switch to evaluate mode
        model.eval()
        for i, (images, filepath) in enumerate(tqdm(test_loader)):
            # bs, ncrops, c, h, w = images.size()
            filepath = [os.path.basename(i) for i in filepath]
            image_var = torch.tensor(images,
                                     requires_grad=False)  # for pytorch 0.4

            with torch.no_grad():
                y_pred = model(image_var)
                # 使用softmax函数将图片预测结果转换成类别概率
                smax = nn.Softmax(1)
                smax_out = smax(y_pred)

            # 保存图片名称与预测概率
            csv_map['filename'].extend(filepath)
            for output in smax_out:
                prob = ';'.join([str(i) for i in output.data.tolist()])
                csv_map['probability'].append(prob)

        result = pd.DataFrame(csv_map)
        result['probability'] = result['probability'].map(
            lambda x: [float(i) for i in x.split(';')])

        # 转换成提交样例中的格式
        sub_filename, sub_label = [], []
        for index, row in result.iterrows():
            sub_filename.append(row['filename'])
            pred_label = np.argmax(row['probability'])
            if pred_label == 0:
                sub_label.append('norm')
            else:
                sub_label.append('defect%d' % pred_label)

        # 生成结果文件,保存在result文件夹中,可用于直接提交
        submission = pd.DataFrame({
            'filename': sub_filename,
            'label': sub_label
        })
        submission.to_csv('./result/%s/submission.csv' % file_name,
                          header=None,
                          index=False)
        return

    # 保存最新模型以及最优模型
    def save_checkpoint(state,
                        is_best,
                        is_lowest_loss,
                        filename='./model/%s/checkpoint.pth.tar' % file_name):
        torch.save(state, filename)
        if is_best:
            shutil.copyfile(filename,
                            './model/%s/model_best.pth.tar' % file_name)
        if is_lowest_loss:
            shutil.copyfile(filename,
                            './model/%s/lowest_loss.pth.tar' % file_name)

    # 用于计算精度和时间的变化
    class AverageMeter(object):
        """Computes and stores the average and current value"""
        def __init__(self):
            self.reset()

        def reset(self):
            self.val = 0
            self.avg = 0
            self.sum = 0
            self.count = 0

        def update(self, val, n=1):
            self.val = val
            self.sum += val * n
            self.count += n
            self.avg = self.sum / self.count

    # 学习率衰减:lr = lr / lr_decay
    def adjust_learning_rate():
        nonlocal lr
        lr = lr / lr_decay
        return optim.Adam(model.parameters(),
                          lr,
                          weight_decay=weight_decay,
                          amsgrad=True)

    # 计算top K准确率
    def accuracy(y_pred, y_actual, topk=(1, )):
        """Computes the precision@k for the specified values of k"""
        final_acc = 0
        maxk = max(topk)
        # for prob_threshold in np.arange(0, 1, 0.01):
        PRED_COUNT = y_actual.size(0)
        PRED_CORRECT_COUNT = 0
        prob, pred = y_pred.topk(maxk, 1, True, True)
        # prob = np.where(prob > prob_threshold, prob, 0)
        for j in range(pred.size(0)):
            if int(y_actual[j]) == int(pred[j]):
                PRED_CORRECT_COUNT += 1
        if PRED_COUNT == 0:
            final_acc = 0
        else:
            final_acc = PRED_CORRECT_COUNT / PRED_COUNT
        return final_acc * 100, PRED_COUNT

    # 程序主体

    # 设定GPU ID
    os.environ["CUDA_VISIBLE_DEVICES"] = '0, 1 , 2, 3'
    # 小数据集上,batch size不易过大。如出现out of memory,应调小batch size
    batch_size = 24
    # 进程数量,最好不要超过电脑最大进程数,尽量能被batch size整除。windows下报错可以改为workers=0
    workers = 12

    # epoch数量,分stage进行,跑完一个stage后降低学习率进入下一个stage
    stage_epochs = [20, 10, 10]
    # 初始学习率
    lr = 1e-4
    # 学习率衰减系数 (new_lr = lr / lr_decay)
    lr_decay = 5
    # 正则化系数
    weight_decay = 1e-4

    # 参数初始化
    stage = 0
    start_epoch = 0
    total_epochs = sum(stage_epochs)
    best_precision = 0
    lowest_loss = 100

    # 设定打印频率,即多少step打印一次,用于观察loss和acc的实时变化
    # 打印结果中,括号前面为实时loss和acc,括号内部为epoch内平均loss和acc
    print_freq = 1
    # 验证集比例
    val_ratio = 0.12
    # 是否只验证,不训练
    evaluate = False
    # 是否从断点继续跑
    resume = False
    # 创建inception_v4模型
    model = model.v4(num_classes=12)
    model = torch.nn.DataParallel(model).cuda()

    # optionally resume from a checkpoint
    if resume:
        checkpoint_path = './model/%s/checkpoint.pth.tar' % file_name
        if os.path.isfile(checkpoint_path):
            print("=> loading checkpoint '{}'".format(checkpoint_path))
            checkpoint = torch.load(checkpoint_path)
            start_epoch = checkpoint['epoch'] + 1
            best_precision = checkpoint['best_precision']
            lowest_loss = checkpoint['lowest_loss']
            stage = checkpoint['stage']
            lr = checkpoint['lr']
            model.load_state_dict(checkpoint['state_dict'])
            # 如果中断点恰好为转换stage的点,需要特殊处理
            if start_epoch in np.cumsum(stage_epochs)[:-1]:
                stage += 1
                optimizer = adjust_learning_rate()
                model.load_state_dict(
                    torch.load('./model/%s/model_best.pth.tar' %
                               file_name)['state_dict'])
            print("=> loaded checkpoint (epoch {})".format(
                checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(resume))

    # 读取训练图片列表
    all_data = pd.read_csv('data/label.csv')
    # 分离训练集和测试集,stratify参数用于分层抽样
    train_data_list, val_data_list = train_test_split(
        all_data,
        test_size=val_ratio,
        random_state=666,
        stratify=all_data['label'])
    # 读取测试图片列表
    test_data_list = pd.read_csv('data/test.csv')

    # 图片归一化,由于采用ImageNet预训练网络,因此这里直接采用ImageNet网络的参数
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    # 训练集图片变换,输入网络的尺寸为384*384
    train_data = TrainDataset(
        train_data_list,
        transform=transforms.Compose([
            transforms.Resize((400, 400)),
            transforms.ColorJitter(0.15, 0.15, 0.15, 0.075),
            transforms.RandomHorizontalFlip(),
            transforms.RandomGrayscale(),
            # transforms.RandomRotation(20),
            FixedRotation([0, 90, 180, 270]),
            transforms.RandomCrop(384),
            transforms.ToTensor(),
            normalize,
        ]))

    # 验证集图片变换
    val_data = ValDataset(val_data_list,
                          transform=transforms.Compose([
                              transforms.Resize((400, 400)),
                              transforms.CenterCrop(384),
                              transforms.ToTensor(),
                              normalize,
                          ]))

    # 测试集图片变换
    test_data = TestDataset(test_data_list,
                            transform=transforms.Compose([
                                transforms.Resize((400, 400)),
                                transforms.CenterCrop(384),
                                transforms.ToTensor(),
                                normalize,
                            ]))

    # 生成图片迭代器
    train_loader = DataLoader(train_data,
                              batch_size=batch_size,
                              shuffle=True,
                              pin_memory=True,
                              num_workers=workers)
    val_loader = DataLoader(val_data,
                            batch_size=batch_size * 2,
                            shuffle=False,
                            pin_memory=False,
                            num_workers=workers)
    test_loader = DataLoader(test_data,
                             batch_size=batch_size * 2,
                             shuffle=False,
                             pin_memory=False,
                             num_workers=workers)

    # 使用交叉熵损失函数
    criterion = nn.CrossEntropyLoss().cuda()

    # 优化器,使用带amsgrad的Adam
    optimizer = optim.Adam(model.parameters(),
                           lr,
                           weight_decay=weight_decay,
                           amsgrad=True)

    if evaluate:
        validate(val_loader, model, criterion)
    else:
        # 开始训练
        for epoch in range(start_epoch, total_epochs):
            # train for one epoch
            train(train_loader, model, criterion, optimizer, epoch)
            # evaluate on validation set
            precision, avg_loss = validate(val_loader, model, criterion)

            # 在日志文件中记录每个epoch的精度和loss
            with open('./result/%s.txt' % file_name, 'a') as acc_file:
                acc_file.write('Epoch: %2d, Precision: %.8f, Loss: %.8f\n' %
                               (epoch, precision, avg_loss))

            # 记录最高精度与最低loss,保存最新模型与最佳模型
            is_best = precision > best_precision
            is_lowest_loss = avg_loss < lowest_loss
            best_precision = max(precision, best_precision)
            lowest_loss = min(avg_loss, lowest_loss)
            state = {
                'epoch': epoch,
                'state_dict': model.state_dict(),
                'best_precision': best_precision,
                'lowest_loss': lowest_loss,
                'stage': stage,
                'lr': lr,
            }
            save_checkpoint(state, is_best, is_lowest_loss)

            # 判断是否进行下一个stage
            if (epoch + 1) in np.cumsum(stage_epochs)[:-1]:
                stage += 1
                optimizer = adjust_learning_rate()
                model.load_state_dict(
                    torch.load('./model/%s/model_best.pth.tar' %
                               file_name)['state_dict'])
                print('Step into next stage')
                with open('./result/%s.txt' % file_name, 'a') as acc_file:
                    acc_file.write(
                        '---------------Step into next stage----------------\n'
                    )

    # 记录线下最佳分数
    with open('./result/%s.txt' % file_name, 'a') as acc_file:
        acc_file.write('* best acc: %.8f  %s\n' %
                       (best_precision, os.path.basename(__file__)))
    with open('./result/best_acc.txt', 'a') as acc_file:
        acc_file.write(
            '%s  * best acc: %.8f  %s\n' %
            (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(
                time.time())), best_precision, os.path.basename(__file__)))

    # 读取最佳模型,预测测试集,并生成可直接提交的结果文件
    best_model = torch.load('./model/%s/model_best.pth.tar' % file_name)
    model.load_state_dict(best_model['state_dict'])
    test(test_loader=test_loader, model=model)

    # 释放GPU缓存
    torch.cuda.empty_cache()
コード例 #21
0
def train_model(dataloaders,
                model,
                criterion,
                optimizer,
                scheduler,
                num_epochs,
                save_epoch,
                save_name='model',
                save_path='./pkl'):
    isReduceLROnPlateau = False
    if isinstance(scheduler, lr_scheduler.ReduceLROnPlateau):
        isReduceLROnPlateau = True
    since = time.time()

    best_model_wts = None
    best_loss = float("inf")

    trainLoss = []
    valLoss = []
    lrs = []
    epochs = []
    plt.ion()
    for epoch in range(1, num_epochs + 1):
        epochs += [epoch]
        lrs += [optimizer.param_groups[0]['lr']]

        # train:
        model.train()
        running_loss = 0.0
        data_size = 0
        for inputs, labels in dataloaders['train']:
            inputs = inputs.to(device)
            labels = labels.to(device)
            optimizer.zero_grad()
            torch.set_grad_enabled(True)
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            # statistics
            data_size += inputs.size(0)
            running_loss += loss.item() * inputs.size(
                0)  # 本次Iterate*样本数=本次的总样本loss(防止最后一个batch大小不同,或train与val的不同)

        epoch_loss = running_loss / data_size  # 一个epoch的平均loss
        trainLoss += [epoch_loss]

        # validation:
        model.eval()
        running_loss = 0.0
        data_size = 0
        for inputs, labels in dataloaders['val']:
            inputs = inputs.to(device)
            labels = labels.to(device)
            torch.set_grad_enabled(False)
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            # statistics
            data_size += inputs.size(0)
            running_loss += loss.item() * inputs.size(
                0)  # 本次Iterate*样本数=本次的总样本loss(防止最后一个batch大小不同,或train与val的不同)

        epoch_loss = running_loss / data_size  # 一个epoch的平均loss
        valLoss += [epoch_loss]

        # auto update lr
        if scheduler:
            if isReduceLROnPlateau:
                scheduler.step(epoch_loss)
            else:
                scheduler.step()

        # show each epoch
        if args.show_each_epoch:
            print('Epoch {}/{}\n{}'.format(epoch, num_epochs, '-' * 10))
            print(
                'train_loss: {:.4f}\n  val_loss: {:.4f}\nlearning_rate: {:.4f}\n'
                .format(trainLoss[-1], valLoss[-1],
                        optimizer.param_groups[0]['lr']))  # 一个epoch更新

        # deep copy the model(lav loss)
        if valLoss[-1] < best_loss:
            best_loss = valLoss[-1]
            best_model_wts = copy.deepcopy(model.state_dict())
            if not os.path.exists(save_path):
                os.makedirs(save_path)
            torch.save(
                model, '{}/{}_{}-trainLoss_{:.4f}-valLoss_{:.4f}.pkl'.format(
                    save_path, save_name, epoch, trainLoss[-1], valLoss[-1]))

    # printHistory(epochs,trainLoss,valLoss,lrs)

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Loss: {:4f}'.format(best_loss))

    # load best model weights
    model.load_state_dict(best_model_wts)
    if not os.path.exists('{}/best/'.format(save_path)):
        os.makedirs('{}/best/'.format(save_path))
    torch.save(model, '{}/best/{}.pkl'.format(save_path, save_name))
    return model
コード例 #22
0
def trainDetector(params):
    def compute_iou(box1, box2):
        '''Compute the intersection over union of two boxes, each box is [x1,y1,x2,y2].
        Args:
        box1: (tensor) bounding boxes, sized [4].
        box2: (tensor) bounding boxes, sized [4].
        Return:
        (tensor) iou.
        '''
        xmin1, ymin1, xmax1, ymax1 = box1
        xmin2, ymin2, xmax2, ymax2 = box2
        xx1 = np.max([xmin1, xmin2])
        yy1 = np.max([ymin1, ymin2])
        xx2 = np.min([xmax1, xmax2])
        yy2 = np.min([ymax1, ymax2])

        area1 = ((xmax1 - xmin1) * (ymax1 - ymin1))
        area2 = ((xmax2 - xmin2) * (ymax2 - ymin2))
        inter_area = (np.max([0, xx2 - xx1])) * (np.max([0, yy2 - yy1]))
        iou = inter_area / (area1 + area2 - inter_area + 1e-6)
        return iou

    class PDdata(torch.utils.data.Dataset):
        def __init__(self, mode=0, is_aug=True):
            self.mode = mode
            self.is_aug = is_aug
            if mode == 0:  # 0 for train
                self.img_path = params.data_dir
                self.anno_path = params.addi_path
            elif mode == 1:  # 1 for validation
                self.img_path = params.val_data_set
                self.anno_path = params.addi_path
            with open(self.anno_path, 'r') as f:
                self.bbox = json.load(f)["bbox"]
            self.map = [i for i in self.bbox.keys()]

        def __len__(self):
            return len(self.bbox)

        def __getitem__(self, item):
            '''
            return:
                img: (C, H, W)
                labels (H, W)
                affine (4, H, W) --- dim0: [xmin, ymin, xmax, ymax]
                bbax [xmin, ymin, xmax, ymax]
            '''
            img = cv2.imread(self.img_path + '/' + self.map[item] + '.png')
            img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            if self.is_aug:
                img = transforms.ColorJitter(contrast=1)(img)
            img = transforms.ToTensor()(img)
            img = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])(img)
            # img = torch.unsqueeze(img, 0)

            # compute labels and Affine for img
            x, y, width, height = self.bbox[self.map[item]]
            bbox = torch.tensor([x, y, x + width, y + height])
            labels = torch.LongTensor(12, 12).zero_()
            affine = torch.zeros(4, 12, 12)
            x = x / 32
            y = y / 32
            width = width / 32
            height = height / 32
            box2 = torch.tensor([x, y, x + width, y + height])
            for i in range(12):
                for j in range(12):
                    box1 = torch.zeros(4)
                    box1[0] = j - width / 2
                    box1[1] = i - height / 2
                    box1[2] = j + width / 2
                    box1[3] = i + height / 2
                    if compute_iou(box1, box2) >= 0.5:
                        labels[i][j] = 1.0
                        affine[0][i][j] = x - j
                        affine[1][i][j] = y - i
                        affine[2][i][j] = x + width - j
                        affine[3][i][j] = y + height - i

            return img, labels, affine, bbox

    def validation(model, test_loader):
        model.eval()

        iou_sum = 0
        cnt = 0
        for batch_n, (inputs, labels, _, bboxes) in enumerate(test_loader):
            if params.useGPU:
                inputs, labels, bboxes = \
                    Variable(inputs.cuda()), Variable(
                        labels.cuda()), Variable(bboxes.cuda())
            else:
                inputs, labels, bboxes = \
                    Variable(inputs), Variable(labels), Variable(bboxes)

            xProb, xAffine = model(inputs)
            a, b, c, d = torch.where(xProb == torch.max(xProb[:, 1, :, :]))
            print(xProb[a, b, c, d])
            affine = xAffine[0, :, c[0], d[0]]
            ymin = float(-0.5 * affine[0] - 0.5 * affine[1] + affine[4] +
                         c[0]) * 32
            xmin = float(-0.5 * affine[2] - 0.5 * affine[3] + affine[5] +
                         d[0]) * 32
            ymax = float(0.5 * affine[0] + 0.5 * affine[1] + affine[4] +
                         c[0]) * 32
            xmax = float(0.5 * affine[0] + 0.5 * affine[3] + affine[5] +
                         d[0]) * 32
            bbox_pred = torch.tensor([xmin, ymin, xmax, ymax])
            iou = compute_iou(bbox_pred, bboxes[0])
            iou_sum += iou
            cnt += 1

        return iou_sum / cnt

    train_data = PDdata()
    trian_loader = DataLoader(train_data, params.batchSize, shuffle=True)
    test_data = PDdata(mode=1, is_aug=False)
    test_loader = DataLoader(test_data, 1, shuffle=False)
    model = model.PlateDetector()

    if params.useGPU:
        print('gpu is available')
        model = torch.nn.DataParallel(model, device_ids=[0]).cuda()

    try:
        model.load_state_dict(torch.load(
            os.path.join(params.model_path, "99PD.pt")),
                              strict=False)
        print('load pretrained model successfully')
    except:
        print('fail to load pretrained model')
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=params.learningRate,
                                 weight_decay=0.0005)
    loss1 = nn.NLLLoss()
    loss2 = nn.L1Loss()
    for epoch in range(0, params.numEpochs):
        model.train()
        loss_sum = 0
        for batch_n, (inputs, labels, affines, _) in enumerate(trian_loader):
            start_time = time.time()
            if params.useGPU:
                inputs, labels, affines = \
                    Variable(inputs.cuda()), Variable(
                        labels.cuda()), Variable(affines.cuda())
            else:
                inputs, labels, affines = \
                    Variable(inputs), Variable(labels), Variable(affines)
            optimizer.zero_grad()
            xProb, xAffine = model(inputs)

            loc_loss = loss1(xProb, labels)
            mask = torch.unsqueeze(labels, 1)
            ymin = (-0.5 * xAffine[:, 0, :, :].unsqueeze(1) -
                    0.5 * xAffine[:, 1, :, :].unsqueeze(1) +
                    xAffine[:, 4, :, :].unsqueeze(1)) * mask
            xmin = (-0.5 * xAffine[:, 2, :, :].unsqueeze(1) -
                    0.5 * xAffine[:, 3, :, :].unsqueeze(1) +
                    xAffine[:, 5, :, :].unsqueeze(1)) * mask
            ymax = (0.5 * xAffine[:, 0, :, :].unsqueeze(1) +
                    0.5 * xAffine[:, 1, :, :].unsqueeze(1) +
                    xAffine[:, 4, :, :].unsqueeze(1)) * mask
            xmax = (0.5 * xAffine[:, 2, :, :].unsqueeze(1) +
                    0.5 * xAffine[:, 3, :, :].unsqueeze(1) +
                    xAffine[:, 5, :, :].unsqueeze(1)) * mask
            affine_box = torch.cat((xmin, ymin, xmax, ymax), dim=1)
            affine_loss = loss2(affine_box, affines)
            loss = loc_loss + affine_loss

            loss.backward()
            optimizer.step()
            loss_sum += loss
            if batch_n % 10 == 9:
                print('Epoch: [{}/{}], batch: {}, took: {:.3f}, loss: {:.5f}'.
                      format(epoch, params.numEpochs, batch_n,
                             time.time() - start_time, loss_sum / 10))
                loss_sum = 0

        if epoch % 5 == 4:
            torch.save(model.state_dict(),
                       params.saved_path + str(epoch) + 'PD.pt')

        iou = validation(model, test_loader)
        print('Epoch: [{}/{}], aver_iou: {:.5}'.format(epoch, params.numEpochs,
                                                       iou))
コード例 #23
0
ファイル: eval.py プロジェクト: chinmay0301/PS-FCN-Chinmay
from argParser import optionsTest
import torchvision as tv

args = optionsTest().parse()
torch.manual_seed(args.seed)

print('Instantiating test model')
in_c = 3 + args.in_light * 3
model = model.PS_FCN_run(args.use_BN, in_c)

print('Loading Saved Model')
saved_model = torch.load(args.model_path)
if args.cuda:
    saved_model = saved_model.cuda()
    model = model.cuda()
model.load_state_dict(saved_model.state_dict())

test_set = DiLiGenT_main(args, 'test')
test_loader = torch.utils.data.DataLoader(test_set,
                                          batch_size=args.test_batch,
                                          num_workers=args.workers,
                                          pin_memory=args.cuda,
                                          shuffle=False)

model.eval()
print('---- Testing for %d images - DiLiGent Dataset ----' %
      (len(test_loader)))

err_mean = 0
with torch.no_grad():
    for i, sample in enumerate(test_loader):
コード例 #24
0
                                     valid_batch_size=config.VALID_BATCH_SIZE,
                                     test_batch_size=config.TEST_BATCH_SIZE)

# Accessing the process_data_for_model method of Preprocess class
training_loader, valid_loader, testing_loader = Preprocess.process_data_for_model(
)

#################################################################################
model = model.DistillBERTClass()  # Creating the model shape
model.to(device)

# Loading back the model from checkpoint
checkpoint = torch.load(
    config.checkpoint_path,
    map_location=device)  # Loading the model from check point
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
model.to(device)  # Loading model to GPU

# Validation on test data
# Creating the loss function
# Optimizer is not needed since its for prediction
loss_function = torch.nn.CrossEntropyLoss()

test_loss, test_accu, y_test_actual, y_test_predicted, y_test_predicted_prob_list = valid(
    model=model, testing_loader=testing_loader, loss_fn=loss_function)

print("Loss on test data = %0.2f%%" % test_loss)
print("Accuracy on test data = %0.2f%%" % test_accu)

test_confusion_matrix_df, classification_report = utility.report(
コード例 #25
0
def load_model():
    with open(model_path, 'rb') as f:
        model.load_state_dict(torch.load(f))
コード例 #26
0
import torch
from torch.autograd import Variable
import torch.nn as nn

import torchvision.transforms as transforms
import cv2
import numpy as np
import predict as pt
import time
import model

model = model.YoloModel().cuda()
model = torch.nn.DataParallel(model).cuda()
model.load_state_dict(torch.load('yolo.h5'))
# cap = cv2.VideoCapture('http://172.16.1.226:8081')
cap = cv2.VideoCapture('test.avi')
if not cap.isOpened():
    print('not open')

while (1):
    now = time.time()
    ret, origin = cap.read()
    if not ret:
        break
    origin = cv2.resize(origin, (1024, 768))
    h, w, _ = origin.shape
    frame = cv2.resize(origin, (224, 224))
    result = pt.predict_gpu_img(model, frame)
    for left_up, right_bottom, class_name, _, prob in result:
        if prob > .6:
            x1 = int(left_up[0] * w / 224.)
コード例 #27
0
ファイル: test.py プロジェクト: timatim/PigIdentification
    args = parser.parse_args()

    # set random seed
    torch.manual_seed(args.seed)

    # read test data
    print("Loading test data...")
    test_loader = data_loader.make_dataloader(args.test_dir, batch_size=1)
    file_names = sorted([
        s.split('.')[0]
        for s in os.listdir(os.path.join(args.test_dir, 'frames'))
    ])

    # read model
    print("Loading trained model...")
    model = model.CNN()
    model.load_state_dict(
        torch.load(args.model, map_location=lambda storage, loc: storage))

    model.eval()

    print("Generating predictions...")
    for i, (data, labels) in tqdm(enumerate(test_loader)):
        print(file_names[i])
        data = Variable(data)
        output = torch.exp(model(data)).data.squeeze()

        with open(args.output, 'a') as f:
            for j in range(30):
                f.write("%s, %d, %.8f\n" % (file_names[i], j + 1, output[j]))
コード例 #28
0
ファイル: main.py プロジェクト: pkulzb/EthicsInDialogue
    loc = '/home/ml/ksinha4/word_vectors/conceptnet/numberbatch-en-17.06.txt'
    embeddings = corpus.get_word_embeddings(
        loc, save_name='concept_embeddings.mod')
    # embeddings = corpus.load_embeddings('concept_embeddings.mod')

print embeddings[corpus.dictionary.word2idx['man']]

model = model.RNNModel(args.model, ntokens, args.emsize,
                       args.nhid, args.nlayers, args.dropout, args.tied, embeddings=embeddings, use_embeddings=True)
if args.cuda:
    model.cuda()

if args.load:
    print 'Loading model {}'.format(args.load)
    prev_model = torch.load(open(args.load))
    model.load_state_dict(prev_model.state_dict())
    print 'Model loaded'

criterion = nn.CrossEntropyLoss()

###############################################################################
# Training code
###############################################################################


def repackage_hidden(h):
    """Wraps hidden states in new Variables, to detach them from their history."""
    if type(h) == Variable:
        return Variable(h.data)
    else:
        return tuple(repackage_hidden(v) for v in h)
コード例 #29
0
        print('-' * 89)
        # Save the model if the validation loss is the best we've seen so far.
        if not best_val_loss or val_loss < best_val_loss and args.rank <= 0:
            with open(args.save, 'wb') as f:
                torch.save(model.state_dict(), f)
            best_val_loss = val_loss
        torch.cuda.synchronize()

except KeyboardInterrupt:
    print('-' * 89)
    print('Exiting from training early')

# Load the best saved model.
if os.path.exists(args.save):
    with open(args.save, 'rb') as f:
        model.load_state_dict(torch.load(f))

if not args.no_weight_norm and args.rank <= 0:
    remove_weight_norm(rnn_model)
    with open(args.save, 'wb') as f:
        torch.save(model.state_dict(), f)

torch.cuda.synchronize()

if test_data is not None:
    # Run on test data.
    test_loss = evaluate(test_data)
    print('=' * 89)
    print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
        test_loss, math.exp(test_loss)))
    print('=' * 89)
コード例 #30
0
import torch
import sys, os.path, glob
import pandas as pd

import model

csv_file = 'millionlive_idol_dict.csv'
weights_file = 'clcnn_50.pkl'
max_length = 110

device = torch.device('cpu')
model = model.CLCNN(max_length=max_length)
model.load_state_dict(torch.load(weights_file, map_location=device))
model.eval()

# Generate an idol dictionary
idol_data_frame = pd.read_csv(csv_file)
idol_df = idol_data_frame.set_index('id')
idol_dict = idol_df['idol_name'].to_dict()

def string_to_codepoint(_str, max_length=max_length):
    _encoded_str = [ord(_x) for _x in str(_str).strip()]
    _encoded_str = _encoded_str[:max_length]
    _str_len = len(str(_str)) # String length
    if _str_len < max_length: # If string length is less than a num of max_length, do zero padding
        _encoded_str += ([0] * (max_length - _str_len))
    
    return _encoded_str

def predict(model, input_str):
    model = model.eval()
コード例 #31
0
# create model
model = model.GenModel(args.encoder_dim, args.input_dim, args.input_nf,
                       args.coarse_feat_dim, args.refine_feat_dim,
                       args.num_hierarchy_levels, not args.no_pass_occ,
                       not args.no_pass_feats, args.use_skip_sparse,
                       args.use_skip_dense).cuda()
optimizer = torch.optim.Adam(model.parameters(),
                             lr=args.lr,
                             weight_decay=args.weight_decay)
if args.retrain:
    print('loading model:', args.retrain)
    checkpoint = torch.load(args.retrain)
    args.start_epoch = args.start_epoch if args.start_epoch != 0 else checkpoint[
        'epoch']
    model.load_state_dict(checkpoint['state_dict'])  #, strict=False)
    optimizer.load_state_dict(checkpoint['optimizer'])
last_epoch = -1 if not args.retrain else args.start_epoch - 1
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                            step_size=args.decay_lr,
                                            gamma=0.5,
                                            last_epoch=last_epoch)

# data files
train_files, val_files = data_util.get_train_files(args.data_path,
                                                   args.train_file_list,
                                                   args.val_file_list)
_OVERFIT = False
if len(train_files) == 1:
    _OVERFIT = True
    args.use_loss_masking = False
コード例 #32
0
if args.seed >= 0:
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)

#if args.temperature < 1e-3:
#    parser.error("--temperature has to be greater or equal 1e-3")

model = model.RNNModel(args.model, args.data_size, args.emsize, args.nhid,
                       args.nlayers, args.dropout, args.tied).cuda()

if args.fp16:
    model.half()
with open(args.load_model, 'rb') as f:
    sd = torch.load(f)
try:
    model.load_state_dict(sd)
except:
    apply_weight_norm(model.rnn)
    model.load_state_dict(sd)
    remove_weight_norm(model)


def get_neuron_and_polarity(sd, neuron):
    """return a +/- 1 indicating the polarity of the specified neuron in the module"""
    if neuron == -1:
        neuron = None
    if 'classifier' in sd:
        sd = sd['classifier']
        if 'weight' in sd:
            weight = sd['weight']
        else:
コード例 #33
0
def distill(model, buffer, config, criterion, train_loader, valid_loader, id):
    model = copy.deepcopy(model)

    run_config = config['run_config']
    param_config = config['param_config']
    log_config = config['log_config']

    model.train()
    eval_trainloader = copy.deepcopy(train_loader)

    buff_imgs, buff_trgs = next(iter(DataLoader(buffer, batch_size=len(buffer))))
    buff_imgs, buff_trgs = buff_imgs.to(run_config['device']), buff_trgs.to(run_config['device'])

    buff_imgs.requires_grad = True

    init_valid = DataLoader(ModelInitDataset(model, 10), batch_size=1, collate_fn=lambda x: x)
    init_loader = DataLoader(ModelInitDataset(model, -1), batch_size=1, collate_fn=lambda x: x)
    init_iter = iter(init_loader)

    buff_opt = torch.optim.SGD([buff_imgs], lr=param_config['meta_lr'], )

    lr_list = []
    lr_opts = []
    for _ in range(param_config['inner_steps']):
        lr = np.log(np.exp([param_config[
                                'model_lr']]) - 1)  # Inverse of softplus (so that the starting learning rate is actually the specified one)
        lr = torch.tensor(lr, requires_grad=True, device=run_config['device'])
        lr_list.append(lr)
        lr_opts.append(torch.optim.SGD([lr], param_config['lr_lr'], ))

    for i in range(param_config['outer_steps']):
        for step, (ds_imgs, ds_trgs) in enumerate(train_loader):
            try:
                init_batch = next(init_iter)
            except StopIteration:
                init_iter = iter(init_loader); init_batch = next(init_iter)

            ds_imgs = ds_imgs.to(run_config['device'])
            ds_trgs = ds_trgs.to(run_config['device'])

            acc_loss = None
            epoch_loss = [None for _ in range(param_config['inner_steps'])]

            for r, sigma in enumerate(init_batch):
                model.load_state_dict(sigma)
                model_opt = torch.optim.SGD(model.parameters(), lr=1)
                with higher.innerloop_ctx(model, model_opt) as (fmodel, diffopt):
                    for j in range(param_config['inner_steps']):
                        buff_out = fmodel(buff_imgs)
                        buff_loss = criterion(buff_out, buff_trgs)
                        buff_loss = buff_loss * torch.log(1 + torch.exp(lr_list[j]))
                        diffopt.step(buff_loss)

                        # Update the buffer (actually we just record the loss and update it outside the inner loop)
                        ds_out = fmodel(ds_imgs)
                        ds_loss = criterion(ds_out, ds_trgs)

                        epoch_loss[j] = epoch_loss[j] + ds_loss if epoch_loss[j] is not None else ds_loss
                        acc_loss = acc_loss + ds_loss if acc_loss is not None else ds_loss

                        # Metrics (20 samples of loss and accuracy at the last inner step)
                        if (((step + i * len(train_loader)) % int(
                                round(len(train_loader) * param_config['outer_steps'] * 0.1)) == \
                             int(round(len(train_loader) * param_config['outer_steps'] * 0.1)) - 1) or (
                                    step + i * len(train_loader)) == 0) \
                                and j == param_config['inner_steps'] - 1 and r == 0:

                            lrs = [np.log(np.exp(lr.item()) + 1) for lr in lr_list]
                            lrs_log = {f'Learning rate {i} - {id}': lr for (i, lr) in enumerate(lrs)}
                            train_loss, train_accuracy = test_distill(init_valid, lrs, [buff_imgs, buff_trgs], model,
                                                                      criterion, eval_trainloader, run_config)
                            test_loss, test_accuracy = test_distill(init_valid, lrs, [buff_imgs, buff_trgs], model,
                                                                    criterion, valid_loader, run_config)
                            metrics = {f'Distill train loss {id}': train_loss,
                                       f'Distill train accuracy {id}': train_accuracy,
                                       f'Distill test loss {id}': test_loss,
                                       f'Distill test accuracy {id}': test_accuracy,
                                       f'Distill step {id}': step + i * len(train_loader)}

                            if log_config['wandb']:
                                wandb.log({**metrics, **lrs_log})

                            if log_config['print']:
                                print(metrics)

            # Update the lrs
            for j in range(param_config['inner_steps']):
                lr_opts[j].zero_grad()
                grad, = autograd.grad(epoch_loss[j], lr_list[j], retain_graph=True)
                lr_list[j].grad = grad
                lr_opts[j].step()

            buff_opt.zero_grad()
            acc_loss.backward()
            buff_opt.step()

    aux = []
    buff_imgs, buff_trgs = buff_imgs.detach().cpu(), buff_trgs.detach().cpu()
    for i in range(buff_imgs.size(0)):
        aux.append([buff_imgs[i], buff_trgs[i]])
    lr_list = [np.log(1 + np.exp(lr.item())) for lr in lr_list]

    return Buffer(aux, len(aux), ), lr_list