コード例 #1
0
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0)
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
    #   sess = tf.compat.v1.Session()
    #   K.set_session(sess)
    tf.compat.v1.keras.backend.set_session(sess)
    data_dirs = args.data_dirs
    output_representation = args.output_representation
    sample_rate = args.sample_rate
    print("sample rate", sample_rate)
    batch_size = args.batch_size
    classes = get_classes(wanted_only=True)
    model_settings = prepare_model_settings(
        label_count=len(prepare_words_list(classes)),
        sample_rate=sample_rate,
        clip_duration_ms=800,
        window_size_ms=30.0,
        window_stride_ms=10.0,
        dct_coefficient_count=80,
        num_log_mel_features=60,
        output_representation=output_representation)

    print(model_settings)

    ap = AudioProcessor(data_dirs=data_dirs,
                        wanted_words=classes,
                        silence_percentage=13.0,
                        unknown_percentage=60.0,
                        validation_percentage=10.0,
                        testing_percentage=10.0,
                        model_settings=model_settings,
                        output_representation=output_representation)
コード例 #2
0
    gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=1.0)
    # sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(gpu_options=gpu_options))
    sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(
        device_count={'GPU': 0}))
    data_dirs = args.data_dirs
    output_representation = args.output_representation
    sample_rate = args.sample_rate
    batch_size = args.batch_size
    classes = get_classes(wanted_only=True)
    wanted_words = prepare_words_list(get_classes(wanted_only=True))
    with open("ml/labels/conv_labels.txt", "w") as labels:
        for label in wanted_words:
            labels.write('%s\n' % label)
    model_settings = prepare_model_settings(
        label_count=len(prepare_words_list(classes)),
        sample_rate=sample_rate,
        clip_duration_ms=1000,
        output_representation=output_representation)

    print(model_settings)

    ap = AudioProcessor(data_dirs=data_dirs,
                        wanted_words=classes,
                        silence_percentage=13.0,
                        unknown_percentage=60.0,
                        validation_percentage=10.0,
                        testing_percentage=0.0,
                        model_settings=model_settings,
                        output_representation=output_representation)
    train_gen = data_gen(ap, sess, batch_size=batch_size, mode='training')
    data = next(train_gen)
コード例 #3
0
ファイル: train.py プロジェクト: indranig/examples
print('input args: ', args)

if __name__ == '__main__':
  gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0)
  sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
  K.set_session(sess)
  data_dirs = args.data_dirs
  output_representation = args.output_representation
  sample_rate = args.sample_rate
  batch_size = args.batch_size
  classes = get_classes(wanted_only=True)
  model_settings = prepare_model_settings(
      label_count=len(prepare_words_list(classes)),
      sample_rate=sample_rate,
      clip_duration_ms=1000,
      window_size_ms=30.0,
      window_stride_ms=10.0,
      dct_coefficient_count=80,
      num_log_mel_features=60,
      output_representation=output_representation)

  print(model_settings)

  ap = AudioProcessor(
      data_dirs=data_dirs,
      wanted_words=classes,
      silence_percentage=13.0,
      unknown_percentage=60.0,
      validation_percentage=10.0,
      testing_percentage=0.0,
      model_settings=model_settings,
コード例 #4
0
ファイル: train.py プロジェクト: GeorgyZhou/TSRC
def main(_):
  # We want to see all the logging messages for this tutorial.
  tf.logging.set_verbosity(tf.logging.INFO)

  # Start a new TensorFlow session.
  sess = tf.InteractiveSession()

  # Begin by making sure we have the training data we need. If you already have
  # training data of your own, use `--data_url= ` on the command line to avoid
  # downloading.
  model_settings = model.prepare_model_settings(
      len(input_data.prepare_words_list(FLAGS.wanted_words.split(','))),
      FLAGS.sample_rate, FLAGS.clip_duration_ms, FLAGS.window_size_ms,
      FLAGS.window_stride_ms, FLAGS.dct_coefficient_count)
  audio_processor = input_data.AudioProcessor(
      FLAGS.data_url, FLAGS.data_dir, FLAGS.silence_percentage,
      FLAGS.unknown_percentage,
      FLAGS.wanted_words.split(','), FLAGS.validation_percentage,
      FLAGS.testing_percentage, model_settings)
  fingerprint_size = model_settings['fingerprint_size']
  label_count = model_settings['label_count']
  time_shift_samples = int((FLAGS.time_shift_ms * FLAGS.sample_rate) / 1000)
  # Figure out the learning rates for each training phase. Since it's often
  # effective to have high learning rates at the start of training, followed by
  # lower levels towards the end, the number of steps and learning rates can be
  # specified as comma-separated lists to define the rate at each stage. For
  # example --how_many_training_steps=10000,3000 --learning_rate=0.001,0.0001
  # will run 13,000 training loops in total, with a rate of 0.001 for the first
  # 10,000, and 0.0001 for the final 3,000.
  training_steps_list = list(map(int, FLAGS.how_many_training_steps.split(',')))
  learning_rates_list = list(map(float, FLAGS.learning_rate.split(',')))
  if len(training_steps_list) != len(learning_rates_list):
    raise Exception(
        '--how_many_training_steps and --learning_rate must be equal length '
        'lists, but are %d and %d long instead' % (len(training_steps_list),
                                                   len(learning_rates_list)))

  fingerprint_input = tf.placeholder(
      tf.float32, [None, fingerprint_size], name='fingerprint_input')

  logits, dropout_prob = model.create_conv_model(fingerprint_input,
                                                 model_settings, is_training=True)

  # Define loss and optimizer
  ground_truth_input = tf.placeholder(
      tf.float32, [None, label_count], name='groundtruth_input')

  # Optionally we can add runtime checks to spot when NaNs or other symptoms of
  # numerical errors start occurring during training.
  control_dependencies = []
  if FLAGS.check_nans:
    checks = tf.add_check_numerics_ops()
    control_dependencies = [checks]

  # Create the back propagation and training evaluation machinery in the graph.
  with tf.name_scope('cross_entropy'):
    cross_entropy_mean = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(
            labels=ground_truth_input, logits=logits))
  tf.summary.scalar('cross_entropy', cross_entropy_mean)
  with tf.name_scope('train'), tf.control_dependencies(control_dependencies):
    learning_rate_input = tf.placeholder(
        tf.float32, [], name='learning_rate_input')
    train_step = tf.train.GradientDescentOptimizer(
        learning_rate_input).minimize(cross_entropy_mean)
  predicted_indices = tf.argmax(logits, 1)
  expected_indices = tf.argmax(ground_truth_input, 1)
  correct_prediction = tf.equal(predicted_indices, expected_indices)
  confusion_matrix = tf.confusion_matrix(expected_indices, predicted_indices, num_classes=label_count)
  evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)

  global_step = tf.contrib.framework.get_or_create_global_step()
  increment_global_step = tf.assign(global_step, global_step + 1)

  saver = tf.train.Saver(tf.global_variables())

  # Merge all the summaries and write them out to /tmp/retrain_logs (by default)
  merged_summaries = tf.summary.merge_all()
  train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train',
                                       sess.graph)
  validation_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/validation')

  tf.global_variables_initializer().run()

  start_step = 1

  if FLAGS.start_checkpoint:
    model.load_variables_from_checkpoint(sess, FLAGS.start_checkpoint)
    start_step = global_step.eval(session=sess)

  tf.logging.info('Training from step: %d ', start_step)

  # Save graph.pbtxt.
  tf.train.write_graph(sess.graph_def, FLAGS.train_dir,
                       FLAGS.model_architecture + '.pbtxt')

  # Save list of words.
  with gfile.GFile(
      os.path.join(FLAGS.train_dir, FLAGS.model_architecture + '_labels.txt'),
      'w') as f:
    f.write('\n'.join(audio_processor.words_list))

  # Training loop.
  training_steps_max = np.sum(training_steps_list)
  for training_step in xrange(start_step, training_steps_max + 1):
    # Figure out what the current learning rate is.
    training_steps_sum = 0
    for i in range(len(training_steps_list)):
      training_steps_sum += training_steps_list[i]
      if training_step <= training_steps_sum:
        learning_rate_value = learning_rates_list[i]
        break
    # Pull the audio samples we'll use for training.
    train_fingerprints, train_ground_truth = audio_processor.get_data(
        FLAGS.batch_size, 0, model_settings, FLAGS.background_frequency,
        FLAGS.background_volume, time_shift_samples, 'training', sess)
    # Run the graph with this batch of training data.
    train_summary, train_accuracy, cross_entropy_value, _, _ = sess.run(
        [
            merged_summaries, evaluation_step, cross_entropy_mean, train_step,
            increment_global_step
        ],
        feed_dict={
            fingerprint_input: train_fingerprints,
            ground_truth_input: train_ground_truth,
            learning_rate_input: learning_rate_value,
            dropout_prob: 0.5
        })
    train_writer.add_summary(train_summary, training_step)
    tf.logging.info('Step #%d: rate %f, accuracy %.1f%%, cross entropy %f' %
                    (training_step, learning_rate_value, train_accuracy * 100,
                     cross_entropy_value))
    is_last_step = (training_step == training_steps_max)
    if (training_step % FLAGS.eval_step_interval) == 0 or is_last_step:
      set_size = audio_processor.set_size('validation')
      total_accuracy = 0
      total_conf_matrix = None
      for i in xrange(0, set_size, FLAGS.batch_size):
        validation_fingerprints, validation_ground_truth = (
            audio_processor.get_data(FLAGS.batch_size, i, model_settings, 0.0,
                                     0.0, 0, 'validation', sess))
        # Run a validation step and capture training summaries for TensorBoard
        # with the `merged` op.
        validation_summary, validation_accuracy, conf_matrix = sess.run(
            [merged_summaries, evaluation_step, confusion_matrix],
            feed_dict={
                fingerprint_input: validation_fingerprints,
                ground_truth_input: validation_ground_truth,
                dropout_prob: 1.0
            })
        validation_writer.add_summary(validation_summary, training_step)
        batch_size = min(FLAGS.batch_size, set_size - i)
        total_accuracy += (validation_accuracy * batch_size) / set_size
        if total_conf_matrix is None:
          total_conf_matrix = conf_matrix
        else:
          total_conf_matrix += conf_matrix
      tf.logging.info('Confusion Matrix:\n %s' % (total_conf_matrix))
      tf.logging.info('Step %d: Validation accuracy = %.1f%% (N=%d)' %
                      (training_step, total_accuracy * 100, set_size))

    # Save the model checkpoint periodically.
    if (training_step % FLAGS.save_step_interval == 0 or
        training_step == training_steps_max):
      checkpoint_path = os.path.join(FLAGS.train_dir,
                                     FLAGS.model_architecture + '.ckpt')
      tf.logging.info('Saving to "%s-%d"', checkpoint_path, training_step)
      saver.save(sess, checkpoint_path, global_step=training_step)

  set_size = audio_processor.set_size('testing')
  tf.logging.info('set_size=%d', set_size)
  total_accuracy = 0
  total_conf_matrix = None
  for i in xrange(0, set_size, FLAGS.batch_size):
    test_fingerprints, test_ground_truth = audio_processor.get_data(
        FLAGS.batch_size, i, model_settings, 0.0, 0.0, 0, 'testing', sess)
    test_accuracy, conf_matrix = sess.run(
        [evaluation_step, confusion_matrix],
        feed_dict={
            fingerprint_input: test_fingerprints,
            ground_truth_input: test_ground_truth,
            dropout_prob: 1.0
        })
    batch_size = min(FLAGS.batch_size, set_size - i)
    total_accuracy += (test_accuracy * batch_size) / set_size
    if total_conf_matrix is None:
      total_conf_matrix = conf_matrix
    else:
      total_conf_matrix += conf_matrix
  tf.logging.info('Confusion Matrix:\n %s' % (total_conf_matrix))
  tf.logging.info('Final test accuracy = %.1f%% (N=%d)' % (total_accuracy * 100,
                                                           set_size))