コード例 #1
0
def train():

    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]
    transform = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.ToTensor(),
        transforms.Normalize(mean, std)
    ])
    data_location = './flickr8k'
    train_loader, dataset = get_loader(
        root_folder=data_location + "/Images",
        annotation_file=data_location + "/captions.txt",
        transform=transform,
        num_workers=4,
    )
    torch.backends.cudnn.benchmark = True  # Get some boost probaby
    # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    device = 'cpu'
    load_model = False
    save_model = False
    train_CNN = False
    #Hyperparameters
    embed_size = 256
    hidden_size = 256
    vocab_size = len(dataset.vocab)
    num_layers = 2
    learning_rate = 3e-4
    num_epochs = 20

    step = 0
    # init model, loss
    model = CNNtoRNN(embed_size, hidden_size, vocab_size,
                     num_layers).to(device)
    criterion = nn.CrossEntropyLoss(ignore_index=dataset.vocab.stoi["<PAD>"])
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)

    if load_model:
        step = load_checkpoint(
            torch.load("../input/checkpoint2-epoch20/my_checkpoint2.pth.tar",
                       map_location='cpu'), model, optimizer)

    model.train()
    wanna_print = 100

    for epoch in range(num_epochs):

        if save_model:
            checkpoint = {
                "state_dict": model.state_dict(),
                "optimizer": optimizer.state_dict(),
                "step": step
            }
            save_checkpoint(checkpoint)

        for idx, (imgs, captions) in enumerate(train_loader):

            imgs = imgs.to(device)
            captions = captions.to(device)

            # Don't pass the <EOS>
            outputs = model(imgs, captions[:-1])

            # loss accepts only 2 dimension
            # seq_len, N, vocabulary_size --> (seq_len, N) Each time as its own example

            print("Outputs shape ", outputs.shape)

            loss = criterion(outputs.reshape(-1, outputs.shape[2]),
                             captions.reshape(-1))

            print("Step", idx, loss.item())

            step += 1

            optimizer.zero_grad()

            loss.backward(loss)

            optimizer.step()

            if (idx + 1) % wanna_print == 0:
                print("Epoch: {} loss: {:.5f}".format(epoch, loss.item()))

                #generate the caption
                model.eval()
                with torch.no_grad():
                    dataiter = iter(train_loader)
                    img, _ = next(dataiter)
                    print(img[0].shape)
                    caps = model.caption_image(img[0:1].to(device),
                                               vocabulary=dataset.vocab)
                    caption = ' '.join(caps)
                    show_image(img[0], title=caption)
                model.train()
コード例 #2
0
print(len(vocab))

model_path = './weights/my_checkpoint2.pth.tar'

model = CNNtoRNN(embed_size, hidden_size, vocab_size, num_layers).to(device)

criterion = nn.CrossEntropyLoss(ignore_index=vocab.stoi["<PAD>"])
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
if load_model:
    step = load_checkpoint(torch.load(model_path, map_location='cpu'), model,
                           optimizer)

model.eval()

# image_path = 'flickr8k/Images/54501196_a9ac9d66f2.jpg'
image_path = './test_examples/boat.jpg'

img = PIL.Image.open(image_path).convert("RGB")

img_t = transform(img)

caps = model.caption_image(img_t.unsqueeze(0), vocab)
# print(caps)
caps = caps[1:-1]

caption = ' '.join(caps)

show_image2(img_t, 0, caption)

print(caption)