コード例 #1
0
        train_loss = train_model(dataloader['train_dataloader'], model,
                                 criterion, optimizer)
        print('train_loss:', train_loss)
        writer.add_scalar('loss', train_loss, epoch)

        test_error = evaluate(dataloader['dev_dataloader'], model)
        print('testing error:', test_error)
        writer.add_scalar('test_error', test_error, epoch)

        if args.optimizer == 'SGD':
            scheduler.step()

        if test_error < best_error:
            early_stop = 0
            best_error = test_error
            torch.save(model.state_dict(), model_name)

        else:
            early_stop += 1

        epoch_end = time.time()
        cost_time = epoch_end - epoch_begin
        print('train {}th epoch cost {}m {}s'.format(epoch + 1,
                                                     int(cost_time / 60),
                                                     int(cost_time % 60)))
        print()

        if early_stop >= args.patience:
            exit(0)

    train_end = time.time()
コード例 #2
0
ファイル: train_single.py プロジェクト: Syncrossus/mlmt
torch.set_num_threads(args.thread)

logger.debug(lstm_crf)

# Task
optimizer = optim.SGD(filter(lambda p: p.requires_grad, lstm_crf.parameters()),
                      lr=args.lr,
                      momentum=args.momentum)
processor = SeqLabelProcessor(gpu=use_gpu)

train_args = vars(args)
train_args['word_embed_size'] = word_embed.num_embeddings
state = {
    'model': {
        'word_embed': word_embed.state_dict(),
        'char_embed': char_embed.state_dict(),
        'char_hw': char_hw.state_dict(),
        'lstm': lstm.state_dict(),
        'crf': crf.state_dict(),
        'linear': linear.state_dict(),
        'lstm_crf': lstm_crf.state_dict()
    },
    'args': train_args,
    'vocab': {
        'token': token_vocab,
        'label': label_vocab,
        'char': char_vocab,
    }
}
try:
    global_step = 0
コード例 #3
0
    linear_dropout_prob=args.linear_dropout,
    char_highway=char_highway
)

if use_gpu:
    torch.cuda.set_device(args.gpu_idx)
    lstm_crf.cuda()

# Task
optimizer = optim.SGD(filter(lambda p: p.requires_grad, lstm_crf.parameters()),
                      lr=args.lr, momentum=args.momentum)

state = {
    'model': {
        'word_embed': word_embed.state_dict(),
        'char_cnn': char_cnn.state_dict(),
        'char_highway': char_highway.state_dict(),
        'lstm': lstm.state_dict(),
        'crf': crf.state_dict(),
        'output_linear': output_linear.state_dict(),
        'lstm_crf': lstm_crf.state_dict()
    },
    'args': vars(args),
    'vocab': {
        'token': token_vocab,
        'label': label_vocab,
        'char': char_vocab,
    }
}

try: