コード例 #1
0
ファイル: learner.py プロジェクト: Liu-SD/Ape-X
def train(args, n_actors, batch_queue, prios_queue, param_queue):
    env = wrapper.make_atari(args.env)
    env = wrapper.wrap_atari_dqn(env, args)
    utils.set_global_seeds(args.seed, use_torch=True)

    model = DuelingDQN(env, args).to(args.device)
    # model.load_state_dict(torch.load('model_30h.pth'))
    tgt_model = DuelingDQN(env, args).to(args.device)
    tgt_model.load_state_dict(model.state_dict())

    writer = SummaryWriter(comment="-{}-learner".format(args.env))
    optimizer = torch.optim.Adam(model.parameters(), args.lr)
    # optimizer = torch.optim.RMSprop(model.parameters(), args.lr, alpha=0.95, eps=1.5e-7, centered=True)

    check_connection(n_actors)

    param_queue.put(model.state_dict())
    learn_idx = 0
    ts = time.time()
    tb_dict = {
        k: []
        for k in ['loss', 'grad_norm', 'max_q', 'mean_q', 'min_q']
    }
    while True:
        *batch, idxes = batch_queue.get()
        loss, prios, q_values = utils.compute_loss(model, tgt_model, batch,
                                                   args.n_steps, args.gamma)
        grad_norm = utils.update_parameters(loss, model, optimizer,
                                            args.max_norm)
        prios_queue.put((idxes, prios))
        batch, idxes, prios = None, None, None
        learn_idx += 1

        tb_dict["loss"].append(float(loss))
        tb_dict["grad_norm"].append(float(grad_norm))
        tb_dict["max_q"].append(float(torch.max(q_values)))
        tb_dict["mean_q"].append(float(torch.mean(q_values)))
        tb_dict["min_q"].append(float(torch.min(q_values)))

        if args.soft_target_update:
            tau = args.tau
            for p_tgt, p in zip(tgt_model.parameters(), model.parameters()):
                p_tgt.data *= 1 - tau
                p_tgt.data += tau * p
        elif learn_idx % args.target_update_interval == 0:
            print("Updating Target Network..")
            tgt_model.load_state_dict(model.state_dict())
        if learn_idx % args.save_interval == 0:
            print("Saving Model..")
            torch.save(model.state_dict(), "model.pth")
        if learn_idx % args.publish_param_interval == 0:
            param_queue.put(model.state_dict())
        if learn_idx % args.tb_interval == 0:
            bps = args.tb_interval / (time.time() - ts)
            print("Step: {:8} / BPS: {:.2f}".format(learn_idx, bps))
            writer.add_scalar("learner/BPS", bps, learn_idx)
            for k, v in tb_dict.items():
                writer.add_scalar(f'learner/{k}', np.mean(v), learn_idx)
                v.clear()
            ts = time.time()
コード例 #2
0
def train(args, n_actors, batch_queue, prios_queue, param_queue):
    env = RunTagEnv(width=5,
                    height=5,
                    number_of_subordinates=1,
                    max_steps=1000)
    #env = wrapper.make_atari(args.env)
    #env = wrapper.wrap_atari_dqn(env, args)
    utils.set_global_seeds(args.seed, use_torch=True)

    model = DuelingDQN(env).to(args.device)
    tgt_model = DuelingDQN(env).to(args.device)
    tgt_model.load_state_dict(model.state_dict())

    writer = SummaryWriter(comment="-{}-learner".format(args.env))
    # optimizer = torch.optim.Adam(model.parameters(), args.lr)
    optimizer = torch.optim.RMSprop(model.parameters(),
                                    args.lr,
                                    alpha=0.95,
                                    eps=1.5e-7,
                                    centered=True)

    check_connection(n_actors)

    param_queue.put(model.state_dict())
    learn_idx = 0
    ts = time.time()
    while True:
        *batch, idxes = batch_queue.get()
        loss, prios = utils.compute_loss(model, tgt_model, batch, args.n_steps,
                                         args.gamma)
        grad_norm = utils.update_parameters(loss, model, optimizer,
                                            args.max_norm)
        print('Updated parameters!')
        prios_queue.put((idxes, prios))
        batch, idxes, prios = None, None, None
        learn_idx += 1

        writer.add_scalar("learner/loss", loss, learn_idx)
        writer.add_scalar("learner/grad_norm", grad_norm, learn_idx)

        if learn_idx % args.target_update_interval == 0:
            print("Updating Target Network..")
            tgt_model.load_state_dict(model.state_dict())
        if learn_idx % args.save_interval == 0:
            print("Saving Model..")
            torch.save(model.state_dict(), "model.pth")
        if learn_idx % args.publish_param_interval == 0:
            param_queue.put(model.state_dict())
        if learn_idx % args.bps_interval == 0:
            bps = args.bps_interval / (time.time() - ts)
            print("Step: {:8} / BPS: {:.2f}".format(learn_idx, bps))
            writer.add_scalar("learner/BPS", bps, learn_idx)
            ts = time.time()
コード例 #3
0
ファイル: agent.py プロジェクト: andre1M/DQN-navigation
class DoubleDuelingDQNAgent(DoubleDQNAgent):
    """
    Interacts with and learns from the environment.
    Double Dueling DQN.
    """
    def __init__(self, state_size, action_size, seed):
        """
        Initialize an Agent object.

        :param state_size: dimension of each state;
        :param action_size: dimension of each action;
        :param seed: random seed.
        """

        super().__init__(state_size, action_size, seed)

        # Q-Network
        self.network_local = DuelingDQN(state_size, action_size,
                                        seed).to(DEVICE)
        self.network_target = DuelingDQN(state_size, action_size,
                                         seed).to(DEVICE)
        self.optimizer = optim.Adam(self.network_local.parameters(), lr=LR)
コード例 #4
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, seed, model="QNetwork"):
        """Initialize an Agent object.

        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        if model == "QNetwork":
            self.qnetwork_local = QNetwork(state_size, action_size,
                                           seed).to(device)
            self.qnetwork_target = QNetwork(state_size, action_size,
                                            seed).to(device)

        if model == "QNetworkConvolutional":
            self.qnetwork_local = QNetworkConvolutional(
                state_size, action_size, seed).to(device)
            self.qnetwork_target = QNetworkConvolutional(
                state_size, action_size, seed).to(device)

        if model == "DuelingDQN":
            self.qnetwork_local = DuelingDQN(state_size, action_size,
                                             seed).to(device)
            self.qnetwork_target = DuelingDQN(state_size, action_size,
                                              seed).to(device)

        print("Model: " + model)

        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)

        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.

        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # Get max predicted Q values (for next states) from target model
        Q_targets_next = self.qnetwork_target(next_states).detach().max(
            1)[0].unsqueeze(1)
        # Compute Q targets for current states
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
コード例 #5
0
def learner(args):
    comm_cross = global_dict['comm_cross']
    hvd.init(comm=comm_cross)
    torch.cuda.set_device(hvd.local_rank())
    env = wrap_atari_dqn(make_atari(args['env']), args)
    # utils.set_global_seeds(args['seed'], use_torch=True)

    device = args['device']
    model = DuelingDQN(env, args).to(device)
    if os.path.exists('model.pth'):
        # model.load_state_dict(torch.load('model.pth'))
        pass

    tgt_model = DuelingDQN(env, args).to(device)
    del env

    writer = SummaryWriter(log_dir=os.path.join(
        args['log_dir'], f'{global_dict["unit_idx"]}-learner'))
    # optimizer = torch.optim.SGD(model.parameters(), 1e-5 * args['num_units'], momentum=0.8)
    # optimizer = torch.optim.RMSprop(model.parameters(), args['lr'], alpha=0.95, eps=1.5e-7, centered=True)
    optimizer = torch.optim.Adam(model.parameters(),
                                 args['lr'] * args['num_units'])
    optimizer = hvd.DistributedOptimizer(
        optimizer, named_parameters=model.named_parameters())
    hvd.broadcast_parameters(model.state_dict(), root_rank=0)
    tgt_model.load_state_dict(model.state_dict())
    if args['dynamic_gradient_clip']:
        grad_norm_running_mean = args['gradient_norm_running_mean']
        grad_norm_lambda = args['gradient_norm_lambda']

    batch_queue = queue.Queue(maxsize=3)
    prios_queue = queue.Queue(maxsize=4)
    param_queue = queue.Queue(maxsize=3)
    threading.Thread(target=recv_batch, args=(batch_queue, )).start()
    threading.Thread(target=send_prios, args=(prios_queue, )).start()
    threading.Thread(target=send_param, args=(param_queue, )).start()
    if global_dict['unit_idx'] == 0:
        threading.Thread(target=send_param_evaluator,
                         args=(param_queue, )).start()

    prefetcher = data_prefetcher(batch_queue, args['cuda'])

    learn_idx = 0
    ts = time.time()
    tb_dict = {
        k: []
        for k in [
            'loss', 'grad_norm', 'max_q', 'mean_q', 'min_q',
            'batch_queue_size', 'prios_queue_size'
        ]
    }
    first_rount = True
    while True:
        (*batch, idxes) = prefetcher.next()
        if first_rount:
            print("start training")
            sys.stdout.flush()
            first_rount = False
        loss, prios, q_values = utils.compute_loss(model, tgt_model, batch,
                                                   args['n_steps'],
                                                   args['gamma'])

        optimizer.zero_grad()
        loss.backward()
        if args['dynamic_gradient_clip']:
            grad_norm = torch.nn.utils.clip_grad_norm_(
                model.parameters(),
                grad_norm_running_mean * args['clipping_threshold'])
            grad_norm_running_mean = grad_norm_running_mean * grad_norm_lambda + \
                min(grad_norm, grad_norm_running_mean * args['clipping_threshold']) * (1-grad_norm_lambda)
        else:
            grad_norm = torch.norm(
                torch.stack([
                    torch.norm(p.grad.detach(), 2) for p in model.parameters()
                ]), 2)
        # global_prios_sum = np.array(prios_sum)
        # comm_cross.Allreduce(MPI.IN_PLACE, global_prios_sum.data)
        # global_prios_sum = float(global_prios_sum)
        # scale = prios_sum / global_prios_sum
        if args['dynamic_gradient_clip'] and args[
                'dropping_threshold'] and grad_norm > grad_norm_running_mean * args[
                    'dropping_threshold']:
            pass
        else:
            optimizer.step()

        prios_queue.put((idxes, prios))
        learn_idx += 1
        tb_dict["loss"].append(float(loss))
        tb_dict["grad_norm"].append(float(grad_norm))
        tb_dict["max_q"].append(float(torch.max(q_values)))
        tb_dict["mean_q"].append(float(torch.mean(q_values)))
        tb_dict["min_q"].append(float(torch.min(q_values)))
        tb_dict["batch_queue_size"].append(batch_queue.qsize())
        tb_dict["prios_queue_size"].append(prios_queue.qsize())

        if learn_idx % args['target_update_interval'] == 0:
            tgt_model.load_state_dict(model.state_dict())
        if learn_idx % args['save_interval'] == 0 and global_dict[
                'unit_idx'] == 0:
            torch.save(model.state_dict(), "model.pth")
        if learn_idx % args['publish_param_interval'] == 0:
            param_queue.put(model.state_dict())
        if learn_idx % args['tb_interval'] == 0:
            bps = args['tb_interval'] / (time.time() - ts)
            for i, (k, v) in enumerate(tb_dict.items()):
                writer.add_scalar(f'learner/{i+1}_{k}', np.mean(v), learn_idx)
                v.clear()
            writer.add_scalar(f"learner/{i+2}_BPS", bps, learn_idx)
            ts = time.time()
コード例 #6
0
ファイル: agent.py プロジェクト: andre1M/DQN-navigation
class PERDoubleDuelingDQNAgent(DoubleDuelingDQNAgent):
    """
    Interacts with and learns from the environment.
    Double Dueling DQN with prioritized experience replay.
    """
    def __init__(self, state_size, action_size, seed):
        """
        Initialize an Agent object.

        :param state_size: dimension of each state;
        :param action_size: dimension of each action;
        :param seed: random seed.
        """

        super().__init__(state_size, action_size, seed)

        # Replay memory
        self.memory = PrioritizedReplayBuffer(BUFFER_SIZE, BATCH_SIZE,
                                              state_size, seed)

        # Q-Network
        self.network_local = DuelingDQN(state_size, action_size,
                                        seed).to(DEVICE)
        self.network_target = DuelingDQN(state_size, action_size,
                                         seed).to(DEVICE)
        self.optimizer = optim.Adam(self.network_local.parameters(), lr=LR)

    def learn(self, experiences, gamma):
        """
        Update value parameters using given batch of experience tuples.

        :param experiences: (Tuple[torch.Tensor]) tuple of (s, a, r, s', done) tuples;
        :param gamma: discount factor.
        """

        tree_idx, states, actions, rewards, next_states, dones, ISWeights = experiences

        # Get expected Q values from local model
        Q_expected = self.network_local(states).gather(1, actions)

        # Get next actions based on local network
        next_actions = self.network_local(next_states).detach().max(
            1)[1].unsqueeze(1)

        # Get max predicted Q values (for next states) from target model based on local model next actions
        Q_targets_next = self.network_target(next_states).detach().gather(
            1, next_actions)

        # Compute Q targets for current states
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Update transition priorities
        self.memory.batch_update(tree_idx, np.ravel(np.abs(Q_targets.numpy())))

        # Compute loss
        loss = (torch.Tensor(ISWeights).float().to(DEVICE) *
                F.mse_loss(Q_expected, Q_targets)).mean()

        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.network_local, self.network_target, TAU)
コード例 #7
0
class train_DQN():
    def __init__(self, env_id, max_step = 1e5, prior_alpha = 0.6, prior_beta_start = 0.4, 
                    epsilon_start = 1.0, epsilon_final = 0.01, epsilon_decay = 500,
                    batch_size = 32, gamma = 0.99, target_update_interval=1000, save_interval = 1e4,
                    ):
        self.prior_beta_start = prior_beta_start
        self.max_step = int(max_step)
        self.batch_size = batch_size
        self.gamma = gamma
        self.target_update_interval = target_update_interval
        self.save_interval = save_interval


        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self.env = gym.make(env_id)
        self.model = DuelingDQN(self.env).to(self.device)
        self.target_model = DuelingDQN(self.env).to(self.device)
        self.target_model.load_state_dict(self.model.state_dict())
        self.replay_buffer = PrioritizedReplayBuffer(100000,alpha=prior_alpha)
        self.optimizer = optim.Adam(self.model.parameters())
        self.writer = SummaryWriter(comment="-{}-learner".format(self.env.unwrapped.spec.id))


        # decay function
        self.scheduler = optim.lr_scheduler.StepLR(self.optimizer,step_size=1000,gamma=0.99)
        self.beta_by_frame = lambda frame_idx: min(1.0, self.prior_beta_start + frame_idx * (1.0 - self.prior_beta_start) / 1000)
        self.epsilon_by_frame = lambda frame_idx: epsilon_final + (epsilon_start - epsilon_final) * math.exp(-1. * frame_idx / epsilon_decay)
        
    def update_target(self,current_model, target_model):
        target_model.load_state_dict(current_model.state_dict())
    def compute_td_loss(self,batch_size, beta):
        state, action, reward, next_state, done, weights, indices  = self.replay_buffer.sample(batch_size, beta) 

        state      = torch.FloatTensor(state).to(self.device)
        next_state = torch.FloatTensor(next_state).to(self.device)
        action     = torch.LongTensor(action).to(self.device)
        reward     = torch.FloatTensor(reward).to(self.device)
        done       = torch.FloatTensor(done).to(self.device)
        weights    = torch.FloatTensor(weights).to(self.device)
        batch = (state, action, reward, next_state, done, weights)

        # q_values      = self.model(state)
        # next_q_values = self.target_model(next_state)

        # q_value          = q_values.gather(1, action.unsqueeze(1)).squeeze(1)
        # next_q_value     = next_q_values.max(1)[0]
        # expected_q_value = reward + self.gamma * next_q_value * (1 - done)
        
        # td_error = torch.abs(expected_q_value.detach() - q_value)
        # loss  = (td_error).pow(2) * weights
        # prios = loss+1e-5#0.9 * torch.max(td_error)+(1-0.9)*td_error
        # loss  = loss.mean()
        loss, prios = utils.compute_loss(self.model,self.target_model, batch,1)
            
        self.optimizer.zero_grad()
        loss.backward()
        self.scheduler.step()
        self.replay_buffer.update_priorities(indices, prios)
        self.optimizer.step()
        return loss    
    def train(self):
        losses = []
        all_rewards = []
        episode_reward = 0
        episode_idx = 0
        episode_length = 0
        state = self.env.reset()
        for frame_idx in range(self.max_step):
            epsilon = self.epsilon_by_frame(frame_idx)
            action,_ = self.model.act(torch.FloatTensor((state)).to(self.device), epsilon)
            next_state, reward, done, _ = self.env.step(action)
            self.replay_buffer.add(state, action, reward, next_state, done)
            
            state = next_state
            episode_reward += reward
            
            episode_length += 1
            if done:
                state = self.env.reset()
                all_rewards.append(episode_reward)
                self.writer.add_scalar("actor/episode_reward", episode_reward, episode_idx)
                self.writer.add_scalar("actor/episode_length", episode_length, episode_idx)
                # print("episode: ",episode_idx, " reward: ", episode_reward)
                episode_reward = 0
                episode_length = 0
                episode_idx += 1
                
            if len(self.replay_buffer) > self.batch_size:
                beta = self.beta_by_frame(frame_idx)
                loss = self.compute_td_loss(self.batch_size, beta)
                losses.append(loss.item())
                self.writer.add_scalar("learner/loss", loss, frame_idx)
                
            if frame_idx % self.target_update_interval == 0:
                print("update target...")
                self.update_target(self.model, self.target_model)

            if frame_idx % self.save_interval == 0 or frame_idx == self.max_step-1:
                print("save model...")
                self.save_model(frame_idx)

            
    def save_model(self, idx):
        torch.save(self.model.state_dict(), "./model{}.pth".format(idx))
    def load_model(self,idx):
         with open("model{}.pth".format(idx), "rb") as f:
                print("loading weights_{}".format(idx))
                self.model.load_state_dict(torch.load(f,map_location="cpu"))
コード例 #8
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, seed, max_t=1000):
        """Initialize an Agent object.

        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = DuelingDQN(state_size, action_size,
                                         seed).to(device)
        self.qnetwork_target = DuelingDQN(state_size, action_size,
                                          seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0
        self.prio_b = PRIO_B
        self.b_step = 0
        self.max_b_step = 2000
        self.learnFirst = True

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        #self.memory.add(state, action, reward, next_state, done)

        # Hassan : Save the experience in prioritized replay memory
        self.memory.prio_add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                #experiences = self.memory.sample()
                #self.learn(experiences, GAMMA)

                # Hassan : prioritized replay memory

                self.b_step = self.b_step + 1
                experiences, indices = self.memory.prio_sample()
                self.learn(experiences, GAMMA, indices)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.

        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def get_beta(self, t):
        '''
        Return the current exponent β based on its schedul. Linearly anneal β
        from its initial value β0 to 1, at the end of learning.
        :param t: integer. Current time step in the episode
        :return current_beta: float. Current exponent beta
        '''
        #f_frac = min(float(t) / self.max_b_step, 1.0)
        #current_beta = self.prio_b + f_frac * (1. - self.prio_b)
        #current_beta = min(1,current_beta)
        self.prio_b = min(1, self.prio_b + PRIO_B_INC)
        return self.prio_b

    def learn(self, experiences, gamma, indices):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones, probabilities = experiences

        ## TODO: compute and minimize the loss
        "*** YOUR CODE HERE ***"

        # Get max predicted Q values (for next states) from target model
        # Hassan : Action is selected using greedy policy
        #Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)

        # Hassan : Double DQN
        # Selecting actions which maximizes while taking w (qnetwork_local)
        next_actions = self.qnetwork_local(next_states).detach().argmax(
            dim=1).unsqueeze(1)
        #next_actions_test = self.qnetwork_local(next_states).detach().max(1)[1].unsqueeze(1) # Hassan : from the example
        #print(torch.sum(next_actions-next_actions_test)) # Hassan : no difference found
        # Selecting q values of these actions using w' (qnetwork_target)
        Q_targets_next = self.qnetwork_target(next_states).gather(
            1, next_actions)

        # Compute Q targets for current states
        # Hassan : This is TD Target
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        # Hassan : This is current value
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        #Hassan : Compute the td_error
        td_error = Q_targets - Q_expected
        #print(td_error.detach().numpy())
        #self.prio_b = min(1, PRIO_B_INC+self.prio_b)
        f_currbeta = self.get_beta(0)
        #print(f_currbeta)
        #f_currbeta = self.get_beta(self.b_step)
        #print(self.b_step)

        #print(t)
        #print(self.prio_b)
        weights_importance = probabilities.mul_(
            self.memory.__len__()).pow_(-f_currbeta)
        #  Hassan : calculate max_weights_importance
        #probabilities_min = min(self.memory.priorities)/self.memory.cum_priorities
        probabilities_min = self.memory.min_priority / self.memory.cum_priorities
        max_weights_importance = (probabilities_min *
                                  self.memory.__len__())**(-f_currbeta)
        # Hassan : divide the weights importance with the max_weights_importance
        # Hassan : Improvement why not calculating the max_weights_importance = max(weights_importance)??
        # Hassan : this will only calculating on the current list not the complete one

        #print(weights_importance)
        #print(weights_importance.max(0)[0])
        #print(max_weights_importance)
        #if self.learnFirst:
        #    self.learnFirst = False
        #else :
        #    max_weights_importance = max_weights_importance[0]

        weights_final = weights_importance.div_(max_weights_importance)

        square_weighted_error = td_error.pow_(2).mul_(weights_final)
        loss = square_weighted_error.mean()

        # Hassan : after the observations observation from example, update was done after the weights calculation
        if self.prio_b > 0.5:
            self.memory.prio_update(indices,
                                    td_error.detach().numpy(), PRIO_E, PRIO_A)

        # Compute loss
        #loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        # Hassan : Here not after C steps w is changed though cahnged slightly after every learn step
        # Hassan : We can modify to change this after ever C steps
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
コード例 #9
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, seed):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = DuelingDQN(state_size, action_size,
                                         seed).to(device)
        self.qnetwork_target = DuelingDQN(state_size, action_size,
                                          seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        self.priority_alpha = 0.0  #current best: 03
        self.priority_beta_start = 0.4
        self.priority_beta_frames = BUFFER_SIZE

        # Replay memory
        self.memory = PrioritizedReplayMemory(BUFFER_SIZE, self.priority_alpha,
                                              self.priority_beta_start,
                                              self.priority_beta_frames)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.push((state, action, reward, next_state, done))

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if self.memory.storage_size() > BATCH_SIZE:
                #print("storage == ", self.memory.storage_size())
                experiences, idxes, weights = self.memory.sample(BATCH_SIZE)
                self.learn(experiences, idxes, weights, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, idxes, weights, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = zip(*experiences)

        states = torch.from_numpy(
            np.vstack([state for state in states
                       if state is not None])).float().to(device)
        actions = torch.from_numpy(
            np.vstack([action for action in actions
                       if action is not None])).long().to(device)
        rewards = torch.from_numpy(
            np.vstack([reward for reward in rewards
                       if reward is not None])).float().to(device)
        next_states = torch.from_numpy(
            np.vstack([
                next_state for next_state in next_states
                if next_state is not None
            ])).float().to(device)
        dones = torch.from_numpy(
            np.vstack([done for done in dones if done is not None
                       ]).astype(np.uint8)).float().to(device)

        # Get max predicted Q values (for next states) from target model
        #print("state-action values:")
        #print(self.qnetwork_target(next_states).detach())
        #print(next_states)
        next_target_Q = self.qnetwork_target.forward(next_states)
        #print("next_target_Q == ", next_target_Q)

        _, next_local_Q_index = torch.max(
            self.qnetwork_local.forward(next_states), axis=1)

        #Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)

        Q_targets_next = next_target_Q[range(next_target_Q.shape[0]),
                                       next_local_Q_index]

        Q_targets_next1 = Q_targets_next.reshape((len(Q_targets_next), 1))

        # Compute Q targets for current states
        Q_targets = rewards + (gamma * Q_targets_next1 * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        #print(Q_expected)
        #print(Q_targets)

        diff = Q_expected - Q_targets
        #print(diff)
        #diff = diff.mean()
        #print(idxes)
        #print(diff.detach().squeeze().abs().cpu().numpy().tolist())
        #update the priority of the replay buffer

        self.memory.update_priorities(
            idxes,
            diff.detach().squeeze().abs().cpu().numpy().tolist())

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets) * weights
        loss = loss.mean()

        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
コード例 #10
0
class Agent():
    """Interacts with and learns from the environment."""

    def __init__(self, state_size, action_size, seed,max_t=1000):
        """Initialize an Agent object.

        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = DuelingDQN(state_size, action_size, seed).to(device)
        self.qnetwork_target = DuelingDQN(state_size, action_size, seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0
        self.prio_b = PRIO_B
        self.b_step = 0
        self.max_b_step = 2000
        self.learnFirst = True

    def step(self, state, action, reward, next_state, done):

        # Hassan : Save the experience in prioritized replay memory
        self.memory.prio_add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:

                self.b_step = self.b_step + 1
                experiences, indices = self.memory.prio_sample()
                self.learn(experiences, GAMMA, indices)


    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.

        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def get_beta(self, t):
        '''
        Return the current exponent β based on its schedul. Linearly anneal β
        from its initial value β0 to 1, at the end of learning.
        :param t: integer. Current time step in the episode
        :return current_beta: float. Current exponent beta
        '''
        #f_frac = min(float(t) / self.max_b_step, 1.0)
        #current_beta = self.prio_b + f_frac * (1. - self.prio_b)
        #current_beta = min(1,current_beta)
        self.prio_b = min(1,self.prio_b + PRIO_B_INC)
        return self.prio_b

    def learn(self, experiences, gamma, indices):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones, probabilities = experiences

        "*** YOUR CODE HERE ***"

        # Double DQN implementation
        # Selecting actions which maximizes while taking w (qnetwork_local)
        next_actions = self.qnetwork_local(next_states).detach().argmax(dim=1).unsqueeze(1)

        # evluate best actions using w' (qnetwork_target)
        Q_targets_next = self.qnetwork_target(next_states).gather(1, next_actions)


        # Compute Q targets for current states (TD Target)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        # Compute the td_error
        td_error = Q_targets - Q_expected


        f_currbeta = self.get_beta(0)

        # Prioritized experience replay : calculating the final weights for calculating loss function
        weights_importance = probabilities.mul_(self.memory.__len__()).pow_(-f_currbeta)
        probabilities_min = self.memory.min_priority/self.memory.cum_priorities
        max_weights_importance = (probabilities_min * self.memory.__len__())**(-f_currbeta)
        weights_final = weights_importance.div_(max_weights_importance)

        # Compute mean squared weighted error
        square_weighted_error = td_error.pow_(2).mul_(weights_final)
        loss = square_weighted_error.mean()

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        #  Prioritized experience replay : updating the priority of experience tuple in replay buffer
        self.memory.prio_update(indices,td_error.detach().numpy(),PRIO_E,PRIO_A)

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter
        """
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class Agent:
    """Interacts with and learns from the environment."""
    def __init__(self, config):
        """Initialize an Agent object"""
        self.seed = random.seed(config["general"]["seed"])
        self.config = config

        # Q-Network
        self.q = DuelingDQN(config).to(DEVICE)
        self.q_target = DuelingDQN(config).to(DEVICE)

        self.optimizer = optim.RMSprop(self.q.parameters(),
                                       lr=config["agent"]["learning_rate"])
        self.criterion = F.mse_loss

        self.memory = ReplayBuffer(config)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def save_experiences(self, state, action, reward, next_state, done):
        """Prepare and save experience in replay memory"""
        reward = np.clip(reward, -1.0, 1.0)
        self.memory.add(state, action, reward, next_state, done)

    def _current_step_is_a_learning_step(self):
        """Check if the current step is an update step"""
        self.t_step = (self.t_step + 1) % self.config["agent"]["update_rate"]
        return self.t_step == 0

    def _enough_samples_in_memory(self):
        """Check if minimum amount of samples are in memory"""
        return len(self.memory) > self.config["train"]["batch_size"]

    def epsilon_greedy_action_selection(self, action_values, eps):
        """Epsilon-greedy action selection"""
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(
                np.arange(self.config["general"]["action_size"]))

    def act(self, state, eps=0.0):
        """Returns actions for given state as per current policy"""
        state = torch.from_numpy(state).float().unsqueeze(0).to(DEVICE)
        self.q.eval()
        with torch.no_grad():
            action_values = self.q(state)
        self.q.train()

        return self.epsilon_greedy_action_selection(action_values, eps)

    def _calc_loss(self, states, actions, rewards, next_states, dones):
        """Calculates loss for a given experience batch"""
        q_eval = self.q(states).gather(1, actions)
        q_eval_next = self.q(next_states)
        _, q_argmax = q_eval_next.detach().max(1)
        q_next = self.q_target(next_states)
        q_next = q_next.gather(1, q_argmax.unsqueeze(1))
        q_target = rewards + (self.config["agent"]["gamma"] * q_next *
                              (1 - dones))
        loss = self.criterion(q_eval, q_target)
        return loss

    def _update_weights(self, loss):
        """update the q network weights"""
        torch.nn.utils.clip_grad.clip_grad_value_(self.q.parameters(), 1.0)
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

    def learn(self):
        """Update network using one sample of experience from memory"""
        if self._current_step_is_a_learning_step(
        ) and self._enough_samples_in_memory():
            states, actions, rewards, next_states, dones = self.memory.sample(
                self.config["train"]["batch_size"])
            loss = self._calc_loss(states, actions, rewards, next_states,
                                   dones)
            self._update_weights(loss)
            self._soft_update(self.q, self.q_target)

    def _soft_update(self, local_model, target_model):
        """Soft update target network parameters: θ_target = τ*θ_local + (1 - τ)*θ_target"""
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(
                self.config["agent"]["tau"] * local_param.data +
                (1.0 - self.config["agent"]["tau"]) * target_param.data)

    def save(self):
        """Save the network weights"""
        helper.mkdir(
            os.path.join(".", *self.config["general"]["checkpoint_dir"],
                         self.config["general"]["env_name"]))
        current_date_time = helper.get_current_date_time()
        current_date_time = current_date_time.replace(" ", "__").replace(
            "/", "_").replace(":", "_")

        torch.save(
            self.q.state_dict(),
            os.path.join(".", *self.config["general"]["checkpoint_dir"],
                         self.config["general"]["env_name"],
                         "ckpt_" + current_date_time))

    def load(self):
        """Load latest available network weights"""
        list_of_files = glob.glob(
            os.path.join(".", *self.config["general"]["checkpoint_dir"],
                         self.config["general"]["env_name"], "*"))
        latest_file = max(list_of_files, key=os.path.getctime)
        self.q.load_state_dict(torch.load(latest_file))
        self.q_target.load_state_dict(torch.load(latest_file))
コード例 #12
0
class train_DQN():
    def __init__(self,
                 env_id,
                 seed=0,
                 lr=1e-5,
                 n_step=3,
                 gamma=0.99,
                 n_workers=20,
                 max_norm=40,
                 target_update_interval=2500,
                 save_interval=5000,
                 batch_size=64,
                 buffer_size=1e6,
                 prior_alpha=0.6,
                 prior_beta=0.4,
                 publish_param_interval=32,
                 max_step=1e5):
        self.env = gym.make(env_id)
        self.seed = seed
        self.lr = lr
        self.n_step = n_step
        self.gamma = gamma
        self.max_norm = max_norm
        self.target_update_interval = target_update_interval
        self.save_interval = save_interval
        self.publish_param_interval = publish_param_interval
        self.batch_size = batch_size
        self.prior_beta = prior_beta
        self.max_step = max_step

        self.buffer = CustomPrioritizedReplayBuffer(size=buffer_size,
                                                    alpha=prior_alpha)
        self.device = torch.device(
            "cuda:0" if torch.cuda.is_available() else "cpu")
        self.model = DuelingDQN(self.env).to(self.device)
        self.tgt_model = DuelingDQN(self.env).to(self.device)
        self.tgt_model.load_state_dict(self.model.state_dict())
        self.optimizer = torch.optim.RMSprop(self.model.parameters(),
                                             self.lr,
                                             alpha=0.95,
                                             eps=1.5e-7,
                                             centered=True)
        self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer,
                                                         step_size=1000,
                                                         gamma=0.99)
        self.beta_by_frame = lambda frame_idx: min(
            1.0, self.prior_beta + frame_idx * (1.0 - self.prior_beta) / 1000)
        self.batch_recorder = BatchRecorder(env_id=env_id,
                                            env_seed=seed,
                                            n_workers=n_workers,
                                            buffer=self.buffer,
                                            n_steps=n_step,
                                            gamma=gamma,
                                            max_episode_length=50000)
        self.writer = SummaryWriter(
            comment="-{}-learner".format(self.env.unwrapped.spec.id))

    def train(self):
        utils.set_global_seeds(self.seed, use_torch=True)

        learn_idx = 0
        while True:
            beta = self.beta_by_frame(learn_idx)
            states, actions, rewards, next_states, dones, weights, idxes = self.buffer.sample(
                self.batch_size, beta)
            states = torch.FloatTensor(states).to(self.device)
            actions = torch.LongTensor(actions).to(self.device)
            rewards = torch.FloatTensor(rewards).to(self.device)
            next_states = torch.FloatTensor(next_states).to(self.device)
            dones = torch.FloatTensor(dones).to(self.device)
            weights = torch.FloatTensor(weights).to(self.device)
            batch = (states, actions, rewards, next_states, dones, weights)

            loss, prios = utils.compute_loss(self.model, self.tgt_model, batch,
                                             self.n_step, self.gamma)

            self.scheduler.step()
            grad_norm = utils.update_parameters(loss, self.model,
                                                self.optimizer, self.max_norm)

            self.buffer.update_priorities(idxes, prios)

            batch, idxes, prios = None, None, None
            learn_idx += 1

            self.writer.add_scalar("learner/loss", loss, learn_idx)
            self.writer.add_scalar("learner/grad_norm", grad_norm, learn_idx)

            if learn_idx % self.target_update_interval == 0:
                print("Updating Target Network..")
                self.tgt_model.load_state_dict(self.model.state_dict())
            if learn_idx % self.save_interval == 0:
                print("Saving Model..")
                torch.save(self.model.state_dict(),
                           "model{}.pth".format(learn_idx))
            if learn_idx % self.publish_param_interval == 0:
                self.batch_recorder.set_worker_weights(
                    copy.deepcopy(self.model))
            if learn_idx >= self.max_step:
                torch.save(self.model.state_dict(),
                           "model{}.pth".format(learn_idx))
                self.batch_recorder.cleanup()
                break

    def load_model(self, idx):
        with open("model{}.pth".format(idx), "rb") as f:
            print("loading weights_{}".format(idx))
            self.model.load_state_dict(torch.load(f, map_location="cpu"))

    def sampling_data(self):
        self.batch_recorder.record_batch()
コード例 #13
0
class Agent():
    """Interacts with and learns from the environment."""

    def __init__(self,
                 state_size,
                 action_size,
                 seed,
                 gamma=GAMMA,
                 buffer_size=BUFFER_SIZE,
                 batch_size=BATCH_SIZE,
                 update_every=UPDATE_EVERY,
                 lr=LR,
                 tau=TAU
    ):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)
        self.gamma = gamma
        self.batch_size = batch_size

        # Q-Network
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self.model_local = DuelingDQN(state_size, action_size, seed).to(self.device)
        self.model_target = DuelingDQN(state_size, action_size, seed).to(self.device)
        self.optimizer = optim.Adam(self.model_local.parameters(), lr=LR)
    
        # Replay memory
        self.memory = ReplayBuffer(
            action_size=action_size,
            buffer_size=BUFFER_SIZE,
            batch_size=BATCH_SIZE,
            seed=seed,
            device=self.device
        )
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0
    
    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)
        
        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > self.batch_size:
                experiences = self.memory.sample()
                self.update(experiences)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.FloatTensor(state).float().unsqueeze(0).to(self.device)
        
        self.model_local.eval()
        with torch.no_grad():
            qvals = self.model_local.forward(state)
        self.model_local.train()
        
        # Epsilon-greedy action selection
        if random.random() > eps:
            action = np.argmax(qvals.cpu().detach().numpy())
            return action
        else:
            return random.choice(np.arange(self.action_size))
    

    def update(self, batch):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            batch (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = batch
        
        # Get expected Q values from local model
        curr_Q = self.model_local.forward(states).gather(1, actions)
#         curr_Q = curr_Q.squeeze(1)
        
        # Get max predicted Q values (for next states) from target model
        max_next_Q = self.model_target.forward(next_states).detach().max(1)[0].unsqueeze(1)
        expected_Q = rewards + (self.gamma * max_next_Q * (1 - dones))

        loss = F.mse_loss(curr_Q, expected_Q)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        
        # update target model
        self.update_target(self.model_local, self.model_target, TAU)     
    def update_target(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
コード例 #14
0
def train(args, n_actors, batch_queue, prios_queue, param_queue):
    """
    thread to fill parameter queue
    """
    def _fill_param():
        while True:
            model_dict = {}
            state_dict = model.state_dict()
            for k, v in state_dict.items():
                model_dict[k] = v.cpu().numpy()
            param_queue.put(model_dict)

    env = wrapper.make_atari(args.env)
    env = wrapper.wrap_atari_dqn(env, args)
    utils.set_global_seeds(args.seed, use_torch=True)

    model = DuelingDQN(env).to(args.device)
    tgt_model = DuelingDQN(env).to(args.device)
    tgt_model.load_state_dict(model.state_dict())

    writer = SummaryWriter(comment="-{}-learner".format(args.env))
    # optimizer = torch.optim.Adam(model.parameters(), args.lr)
    optimizer = torch.optim.RMSprop(model.parameters(),
                                    args.lr,
                                    alpha=0.95,
                                    eps=1.5e-7,
                                    centered=True)
    model_dict = {}
    state_dict = model.state_dict()
    for k, v in state_dict.items():
        model_dict[k] = v.cpu().numpy()
    param_queue.put(model_dict)
    threading.Thread(target=_fill_param).start()
    learn_idx = 0
    ts = time.time()
    while True:
        #if batch_queue.empty():
        #    print("batch queue size:{}".format(batch_queue.qsize()))
        *batch, idxes = batch_queue.get()
        loss, prios = utils.compute_loss(model, tgt_model, batch, args.n_steps,
                                         args.gamma)
        grad_norm = utils.update_parameters(loss, model, optimizer,
                                            args.max_norm)
        prios_queue.put((idxes, prios))
        batch, idxes, prios = None, None, None
        learn_idx += 1

        if learn_idx % args.tensorboard_update_interval == 0:
            writer.add_scalar("learner/loss", loss, learn_idx)
            writer.add_scalar("learner/grad_norm", grad_norm, learn_idx)

        if learn_idx % args.target_update_interval == 0:
            print("Updating Target Network..")
            tgt_model.load_state_dict(model.state_dict())
        if learn_idx % args.save_interval == 0:
            print("Saving Model..")
            torch.save(model.state_dict(), "model.pth")
        if learn_idx % args.publish_param_interval == 0:
            param_queue.get()
        if learn_idx % args.bps_interval == 0:
            bps = args.bps_interval / (time.time() - ts)
            print("Step: {:8} / BPS: {:.2f}".format(learn_idx, bps))
            writer.add_scalar("learner/BPS", bps, learn_idx)
            ts = time.time()