val_trainId_label_paths = cPickle.load(open(path.join(output_dir, "val_trainId_label_paths.pkl"), "rb")) val_data = list(zip(val_img_paths, val_trainId_label_paths)) # validate_files(val_img_paths) # validate_files(val_trainId_label_paths) # exit() # compute the number of batches needed to iterate through the val data: no_of_val_imgs = len(val_img_paths) no_of_val_batches = int(no_of_val_imgs / batch_size) # define params needed for label to onehot label conversion: layer_idx = np.arange(img_height).reshape(img_height, 1) component_idx = np.tile(np.arange(img_width), (img_height, 1)) model = ENet_model(model_id, img_height=img_height, img_width=img_width, batch_size=batch_size) no_of_classes = model.no_of_classes def evaluate_on_val(): random.shuffle(val_data) val_img_paths, val_trainId_label_paths = zip(*val_data) val_batch_losses = [] batch_pointer = 0 for step in range(no_of_val_batches): batch_imgs = np.zeros((batch_size, img_height, img_width, 3), dtype=np.float32) batch_onehot_labels = np.zeros((batch_size, img_height, img_width, no_of_classes), dtype=np.float32) for i in range(batch_size):
batch_size = 1 img_height = 288 img_width = 800 colors = np.array([ [0, 0, 0], [255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 255, 0], ], dtype=np.float32) no_of_classes = 5 model = ENet_model(model_id, img_height=img_height, img_width=img_width, batch_size=batch_size, no_classes=no_of_classes) train_mean_channels = pickle.load(open("data/mean_channels.pkl", 'rb')) input_mean = train_mean_channels #[103.939, 116.779, 123.68] # [0, 0, 0] input_std = [1, 1, 1] normalizer = transforms.GroupNormalize(mean=(input_mean, (0, )), std=(input_std, (1, ))) # load the mean color channels of the train imgs: train_mean_channels = pickle.load(open("data/mean_channels.pkl", 'rb')) # create a saver for restoring variables/parameters: saver = tf.train.Saver(tf.trainable_variables(), write_version=tf.train.SaverDef.V2)
from utilities import label_img_to_color from model import ENet_model project_dir = "/home/ipcvg/tensorflow_enet/segmentation/" data_dir = project_dir + "data/" model_id = "sequence_run" batch_size = 1 img_height = 512 img_width = 1024 model = ENet_model(model_id, img_height=img_height, img_width=img_width, batch_size=batch_size) no_of_classes = model.no_of_classes # load the mean color channels of the train imgs: train_mean_channels = cPickle.load(open("data/mean_channels.pkl")) # load the sequence data: seq_frames_dir = "/home/ipcvg/tensorflow_enet/segmentation/data/srikar_test/" seq_frame_paths = [] frame_names = sorted(os.listdir(seq_frames_dir)) for step, frame_name in enumerate(frame_names): if step % 100 == 0: print(step) frame_path = seq_frames_dir + frame_name
data_dir = project_dir + "data/" model_id = "sequence_run" label=[] batch_size = 1 img_height =512 img_width = 1024 count=0 x=0 z=0 y=0 alpha=0.1 beta = (1.0 - alpha) model = ENet_model(model_id, img_height=img_height, img_width=img_width, batch_size=batch_size) no_of_classes = model.no_of_classes results_dir = model.project_dir + "motion14/" #results_dir1=model.project_dir+"motion15/" path=results_dir # load the mean color channels of the train imgs: train_mean_channels = cPickle.load(open("data/mean_channels.pkl")) ################################FEATURE EXTRACTION######################################### def feature(frame): gray=cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) edges=cv2.Canny(frame,100,200) rho = 1 # distance resolution in pixels of the Hough grid theta = np.pi / 180 # angular resolution in radians of the Hough grid