コード例 #1
0
ファイル: train.py プロジェクト: ngocphucck/SROIE2019
        loss.backward()
        optimizer.step()

        print('Train batch loss: ', train_batch_loss[-1])

    train_loss.append(sum(train_batch_loss) / len(train_batch_loss))
    print('***Train loss***: ', train_loss[-1])

    val_batch_loss = list()
    for X_batch_val, gt_score, gt_geo in val_dataloader:
        X_batch_val = X_batch_val.to(device)
        gt_score = gt_score.to(device)
        gt_geo = gt_geo.to(device)
        pred_score, pred_geo = model(X_batch_val)

        loss = loss_fn(gt_score, pred_score, gt_geo, pred_geo)
        val_batch_loss.append(loss.item())

        torch.save(model, './east.pt')
        print('Val batch loss: ', val_batch_loss[-1])

    val_loss.append(sum(val_batch_loss) / len(val_batch_loss))
    print('***Validation loss**: ', val_loss[-1])

    if best_val_loss > val_loss[-1]:
        best_val_loss = val_loss[-1]
        torch.save(model.state_dict(), './east1.pt')
        print('Save!')

    print('best val loss: ', best_val_loss)
コード例 #2
0
def main():
    hmean = .0
    is_best = False

    warnings.simplefilter('ignore', np.RankWarning)
    # Prepare for dataset
    print('EAST <==> Prepare <==> DataLoader <==> Begin')
    # train_root_path = os.path.abspath(os.path.join('./dataset/', 'train'))
    train_root_path = cfg.dataroot
    train_img = os.path.join(train_root_path, 'img')
    train_gt = os.path.join(train_root_path, 'gt')

    trainset = custom_dset(train_img, train_gt)
    train_loader = DataLoader(trainset,
                              batch_size=cfg.train_batch_size_per_gpu *
                              cfg.gpu,
                              shuffle=True,
                              collate_fn=collate_fn,
                              num_workers=cfg.num_workers)
    print('EAST <==> Prepare <==> Batch_size:{} <==> Begin'.format(
        cfg.train_batch_size_per_gpu * cfg.gpu))
    print('EAST <==> Prepare <==> DataLoader <==> Done')

    # test datalodaer
    """
    for i in range(100000):
        for j, (a,b,c,d) in enumerate(train_loader):
            print(i, j,'/',len(train_loader))
    """

    # Model
    print('EAST <==> Prepare <==> Network <==> Begin')
    model = East()
    model = nn.DataParallel(model, device_ids=cfg.gpu_ids)
    model = model.cuda()
    init_weights(model, init_type=cfg.init_type)
    cudnn.benchmark = True

    criterion = LossFunc()
    optimizer = torch.optim.Adam(model.parameters(), lr=cfg.lr)
    scheduler = lr_scheduler.StepLR(optimizer, step_size=10000, gamma=0.94)

    # init or resume
    if cfg.resume and os.path.isfile(cfg.checkpoint):
        weightpath = os.path.abspath(cfg.checkpoint)
        print(
            "EAST <==> Prepare <==> Loading checkpoint '{}' <==> Begin".format(
                weightpath))
        checkpoint = torch.load(weightpath)
        start_epoch = checkpoint['epoch']
        model.load_state_dict(checkpoint['state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        print(
            "EAST <==> Prepare <==> Loading checkpoint '{}' <==> Done".format(
                weightpath))
    else:
        start_epoch = 0
    print('EAST <==> Prepare <==> Network <==> Done')

    for epoch in range(start_epoch, cfg.max_epochs):

        train(train_loader, model, criterion, scheduler, optimizer, epoch)

        if epoch % cfg.eval_iteration == 0:

            # create res_file and img_with_box
            output_txt_dir_path = predict(model, criterion, epoch)

            # Zip file
            submit_path = MyZip(output_txt_dir_path, epoch)

            # submit and compute Hmean
            hmean_ = compute_hmean(submit_path)

            if hmean_ > hmean:
                is_best = True

            state = {
                'epoch': epoch,
                'state_dict': model.state_dict(),
                'optimizer': optimizer.state_dict(),
                'is_best': is_best,
            }
            save_checkpoint(state, epoch)
コード例 #3
0
def main():
    warnings.simplefilter('ignore', np.RankWarning)
    #Model
    video_root_path = os.path.abspath('./dataset/train/')
    video_name_list = sorted(
        [p for p in os.listdir(video_root_path) if p.split('_')[0] == 'Video'])
    #print('video_name_list', video_name_list)
    print('EAST <==> Prepare <==> Network <==> Begin')
    model = East()
    AGD_model = AGD()
    model = nn.DataParallel(model, device_ids=cfg.gpu_ids)
    #AGD_model = nn.DataParallel(AGD_model, device_ids=cfg.gpu_ids)
    model = model.cuda()
    AGD_model = AGD_model.cuda()
    init_weights(model, init_type=cfg.init_type)
    cudnn.benchmark = True

    criterion1 = LossFunc()
    #
    criterion2 = Ass_loss()

    optimizer1 = torch.optim.Adam(model.parameters(), lr=cfg.lr)
    optimizer2 = torch.optim.Adam(AGD_model.parameters(), lr=cfg.lr)
    scheduler = lr_scheduler.StepLR(optimizer1, step_size=10000, gamma=0.94)

    # init or resume
    if cfg.resume and os.path.isfile(cfg.checkpoint):
        weightpath = os.path.abspath(cfg.checkpoint)
        print(
            "EAST <==> Prepare <==> Loading checkpoint '{}' <==> Begin".format(
                weightpath))
        checkpoint = torch.load(weightpath)
        start_epoch = checkpoint['epoch']
        model.load_state_dict(checkpoint['state_dict'])
        #AGD_model.load_state_dict(checkpoint['model2.state_dict'])
        optimizer1.load_state_dict(checkpoint['optimizer'])
        #optimizer2.load_state_dict(checkpoint['optimizer2'])
        print(
            "EAST <==> Prepare <==> Loading checkpoint '{}' <==> Done".format(
                weightpath))
    else:
        start_epoch = 0
    print('EAST <==> Prepare <==> Network <==> Done')

    for epoch in range(start_epoch + 1, cfg.max_epochs):
        for video_name in video_name_list:
            print(
                'EAST <==> epoch:{} <==> Prepare <==> DataLoader <==>{} Begin'.
                format(epoch, video_name))
            trainset = custom_dset(os.path.join(video_root_path, video_name))
            #sampler = sampler_for_video_clip(len(trainset))
            train_loader = DataLoader(trainset,
                                      batch_size=cfg.train_batch_size_per_gpu *
                                      cfg.gpu,
                                      shuffle=False,
                                      collate_fn=collate_fn,
                                      num_workers=cfg.num_workers,
                                      drop_last=True)
            print('EAST <==> Prepare <==> Batch_size:{} <==> Begin'.format(
                cfg.train_batch_size_per_gpu * cfg.gpu))
            print(
                'EAST <==> epoch:{} <==> Prepare <==> DataLoader <==>{} Done'.
                format(epoch, video_name))

            train(train_loader, model, AGD_model, criterion1, criterion2,
                  scheduler, optimizer1, optimizer2, epoch)
            '''
            for i, (img, score_map, geo_map, training_mask, coord_ids) in enumerate(train_loader):
                print('i{} img.shape:{} geo_map.shape{} training_mask.shape{} coord_ids.len{}'.format(i, score_map.shape, geo_map.shape, training_mask.shape, len(coord_ids)))
            '''

        if epoch % cfg.eval_iteration == 0:
            state = {
                'epoch': epoch,
                'model1.state_dict': model.state_dict(),
                'model2.state_dict': AGD_model.state_dict(),
                'optimizer1': optimizer1.state_dict(),
                'optimizer2': optimizer2.state_dict()
            }
            save_checkpoint(state, epoch)