def main(): global best_val_score gl = get_grid_list() for g in gl: best_val_score = 0.0 conf = EfficientNetConfig(depth=g[0], width=g[1], resolution=g[2], num_classes=10) run_name = conf_to_name(conf) run = wandb.init(project='EfficientNet_small', reinit=True) run.name = run_name run.save() cur_model = EfficientNet(conf) cur_model.cuda() wandb.watch(cur_model) train(cur_model, run_name) print(run_name, best_val_score) run.finish()
scores = model(data) pred = scores.data.max(1)[1] test_correct += pred.eq(target.data).cpu().sum() print("Predicted {} out of {} correctly".format(test_correct, total_examples)) return 100.0 * test_correct / (float(total_examples)) if __name__ == '__main__': torch.cuda.device(0) model = EfficientNet(1.0, 1.0) config = CONFIG() model = model.cuda() avg_loss = list() best_accuracy = 0.0 optimizer = optim.SGD(model.parameters(), lr=LEARNING_RATE, momentum=config.momentum, weight_decay=config.weight_decay) train_acc, val_acc = list(), list() for i in range(1, EPOCHS + 1): train_acc.append(train(i)) val_acc.append(val()) save_model(model, i)