コード例 #1
0
class Novelty:
    def __init__(self, state_dims, device):
        self.device = device
        self.model = FCN(state_dims, state_dims).to(device)
        self.model_optim = Adam(self.model.parameters(), lr=p.lr)

    def get_reward(self, state, next_state):
        with torch.no_grad():
            pred_next_state = self.model(state)
            try:
                reward = ((pred_next_state - next_state)**2).mean(1)
            except IndexError:
                reward = ((pred_next_state - next_state)**2).mean()
        return reward

    def update(self, memory):
        state_batch, action_batch, reward_batch, next_state_batch, mask_batch = memory.sample(
            p.reward_model_batch_size)
        state_batch = torch.FloatTensor(state_batch).to(self.device)
        next_state_batch = torch.FloatTensor(next_state_batch).to(self.device)
        pred_next_states = self.model(state_batch)
        loss = F.mse_loss(next_state_batch, pred_next_states)

        self.model_optim.zero_grad()
        loss.backward()
        self.model_optim.step()

        return loss.item()
コード例 #2
0
ファイル: agent.py プロジェクト: zouzihan3/leedeeprl-notes
class PolicyGradient:
    
    def __init__(self, n_states,device='cpu',gamma = 0.99,lr = 0.01,batch_size=5):
        self.gamma = gamma
        self.policy_net = FCN(n_states)
        self.optimizer = torch.optim.RMSprop(self.policy_net.parameters(), lr=lr)
        self.batch_size = batch_size

    def choose_action(self,state):
        
        state = torch.from_numpy(state).float()
        state = Variable(state)
        probs = self.policy_net(state)
        m = Bernoulli(probs)
        action = m.sample()

        action = action.data.numpy().astype(int)[0] # 转为标量
        return action
        
    def update(self,reward_pool,state_pool,action_pool):
        # Discount reward
        running_add = 0
        for i in reversed(range(len(reward_pool))):
            if reward_pool[i] == 0:
                running_add = 0
            else:
                running_add = running_add * self.gamma + reward_pool[i]
                reward_pool[i] = running_add

        # Normalize reward
        reward_mean = np.mean(reward_pool)
        reward_std = np.std(reward_pool)
        for i in range(len(reward_pool)):
            reward_pool[i] = (reward_pool[i] - reward_mean) / reward_std

        # Gradient Desent
        self.optimizer.zero_grad()

        for i in range(len(reward_pool)):
            state = state_pool[i]
            action = Variable(torch.FloatTensor([action_pool[i]]))
            reward = reward_pool[i]

            state = Variable(torch.from_numpy(state).float())
            probs = self.policy_net(state)
            m = Bernoulli(probs)
            loss = -m.log_prob(action) * reward  # Negtive score function x reward
            # print(loss)
            loss.backward()
        self.optimizer.step()
コード例 #3
0
class Model:
    def __init__(self, seq_len=20, learning_rate=3e-4):
        device = torch.device(
            "cuda: 0" if torch.cuda.is_available() else "cpu")
        self.device = device
        self.seq_len = seq_len
        time_stamp = time.strftime("%m-%d-%Y_%H:%M:%S", time.localtime())
        print("run on device", device, ",current time:", time_stamp)
        self.writer = SummaryWriter('runs/emb_graph' + time_stamp)

        # define layers
        self.categ_embedding = CategoricalEmbedding().to(device)
        self.r2s_embedding = Route2Stop(vertex_feature=105,
                                        edge_feature=112).to(device)
        self.encoder = Encoder(input_size=100, seq_len=seq_len).to(device)
        self.fcn = FCN(input_size=100).to(device)
        self.similarity = Similarity(input_size=30, device=device).to(device)

        # define training parameters
        self.criterion = nn.BCELoss()
        self.optimizer = optim.Adam(
            [{
                'params': self.categ_embedding.parameters()
            }, {
                'params': self.r2s_embedding.parameters()
            }, {
                'params': self.encoder.parameters()
            }, {
                'params': self.fcn.parameters()
            }, {
                'params': self.similarity.parameters()
            }],
            lr=learning_rate)

    def forward(self, old, real, fake, numer_list, categ_list):

        old = self.categ_embedding(old, numer_list, categ_list, self.device)
        real = self.categ_embedding(real, numer_list, categ_list, self.device)
        fake = self.categ_embedding(fake, numer_list, categ_list, self.device)

        old = self.r2s_embedding(old)
        real = self.r2s_embedding(real)
        fake = self.r2s_embedding(fake)

        old = self.encoder(old)
        real = self.fcn(real)
        fake = self.fcn(fake)

        score_real = self.similarity(old, real)
        score_fake = self.similarity(old, fake)
        return score_real, score_fake

    def metrics(self, score_real, score_fake, label_real_test,
                label_fake_test):
        y_true = np.concatenate(
            [label_real_test.cpu().numpy(),
             label_fake_test.cpu().numpy()],
            axis=0)
        y_pred = torch.cat([
            torch.argmax(score_real, dim=1, keepdim=True),
            torch.argmax(score_fake, dim=1, keepdim=True)
        ],
                           dim=0).cpu().numpy()
        acc = accuracy_score(y_true, y_pred)
        precision = precision_score(y_true, y_pred)
        recall = recall_score(y_true, y_pred)
        f1 = f1_score(y_true, y_pred)
        return acc, precision, recall, f1

    def train_and_test(self, data, batch_size=64, num_epoch=50):
        #initialize labels before training
        label_real = torch.cat(
            [torch.zeros([batch_size, 1]),
             torch.ones([batch_size, 1])], dim=1).to(self.device)
        label_fake = torch.cat(
            [torch.ones([batch_size, 1]),
             torch.zeros([batch_size, 1])], dim=1).to(self.device)

        old_test, real_test, fake_test = data.test
        test_size = real_test.shape[0]
        label_real_test = torch.ones([test_size,
                                      1]).type(torch.long).to(self.device)
        label_fake_test = torch.zeros([test_size,
                                       1]).type(torch.long).to(self.device)

        for epoch in range(num_epoch):
            total_loss = [0] * len(data)
            total_loss_real = [0] * len(data)
            # training first
            for i, chunk in enumerate(data.train):
                old_chunk, real_chunk, fake_chunk = chunk
                num_batch = real_chunk.shape[0] // batch_size
                for batch in range(num_batch):
                    # get a batch of data pair: (old, real, fake)
                    old_batch = old_chunk.iloc[batch * self.seq_len *
                                               batch_size:(batch + 1) *
                                               self.seq_len * batch_size, :]
                    real_batch = real_chunk.iloc[batch *
                                                 batch_size:(batch + 1) *
                                                 batch_size, :]
                    fake_batch = fake_chunk.iloc[batch *
                                                 batch_size:(batch + 1) *
                                                 batch_size, :]

                    score_real, score_fake = self.forward(
                        old_batch, real_batch, fake_batch, data.numer_list,
                        data.categ_list)

                    loss_real = self.criterion(score_real, label_real)
                    loss_fake = self.criterion(score_fake, label_fake)
                    loss = loss_real + loss_fake

                    total_loss[i] += loss.data
                    total_loss_real[i] += loss_real.data
                    self.optimizer.zero_grad()

                    loss.backward()
                    self.optimizer.step()

                    if (batch + 1) % 100 == 0:
                        print(
                            "epoch: %d, chunk: %d, batch: %d, loss: %.3f, real: %.3f, fake: %.3f"
                            % (epoch, i, batch + 1, loss.data, loss_real.data,
                               loss_fake.data))
                total_loss[i] = (total_loss[i] / batch).cpu().numpy()
                total_loss_real[i] = (total_loss_real[i] / batch).cpu().numpy()

            # testing
            score_real, score_fake = self.forward(old_test, real_test,
                                                  fake_test, data.numer_list,
                                                  data.categ_list)
            acc, precision, recall, f1 = self.metrics(score_real, score_fake,
                                                      label_real_test,
                                                      label_fake_test)
            print("test acc: %.4f" % acc)
            self.writer.add_scalar('testing accuracy', acc, epoch)
            self.writer.close()
            # print result and save loss in tensorboard
            print("epoch: %d, average loss: %.4f" %
                  (epoch, np.mean(total_loss)))
            self.writer.add_scalars('training loss', {
                'overall': np.mean(total_loss),
                'good': np.mean(total_loss_real)
            }, epoch)
            self.writer.close()
            return acc, precision, recall, f1
コード例 #4
0
class DQN:
    def __init__(self,
                 n_states,
                 n_actions,
                 gamma=0.99,
                 epsilon_start=0.9,
                 epsilon_end=0.05,
                 epsilon_decay=200,
                 memory_capacity=10000,
                 policy_lr=0.01,
                 batch_size=128,
                 device="cpu"):
        self.actions_count = 0
        self.n_actions = n_actions
        self.device = device
        self.gamma = gamma
        self.epsilon = 0
        self.epsilon_start = epsilon_start
        self.epsilon_end = epsilon_end
        self.epsilon_decay = epsilon_decay
        self.batch_size = batch_size
        self.policy_net = FCN(n_states, n_actions).to(self.device)
        self.target_net = FCN(n_states, n_actions).to(self.device)
        self.target_net.load_state_dict(self.policy_net.state_dict())
        self.target_net.eval()  # 不启用 BatchNormalization 和 Dropout
        self.optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr)
        self.loss = 0
        self.memory = ReplayBuffer(memory_capacity)

    def select_action(self, state):
        '''选择工作
        Args:
            state [array]: 状态
        Returns:
            [array]: 动作
        '''
        self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
            math.exp(-1. * self.actions_count / self.epsilon_decay)
        self.actions_count += 1
        if random.random() > self.epsilon:
            with torch.no_grad():
                state = torch.tensor(
                    [state], device=self.device, dtype=torch.float32
                )  # 先转为张量便于丢给神经网络,state元素数据原本为float64;注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价
                q_value = self.policy_net(
                    state
                )  # tensor([[-0.0798, -0.0079]], grad_fn=<AddmmBackward>)
                action = q_value.max(1)[1].item()
        else:
            action = random.randrange(self.n_actions)
        return action

    def update(self):

        if len(self.memory) < self.batch_size:
            return

        state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
            self.batch_size)

        state_batch = torch.tensor(
            state_batch, device=self.device, dtype=torch.float
        )  # 例如tensor([[-4.5543e-02, -2.3910e-01,  1.8344e-02,  2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02,  2.3400e-01]])
        action_batch = torch.tensor(action_batch,
                                    device=self.device).unsqueeze(
                                        1)  # 例如tensor([[1],...,[0]])
        reward_batch = torch.tensor(
            reward_batch, device=self.device,
            dtype=torch.float)  # tensor([1., 1.,...,1])
        next_state_batch = torch.tensor(next_state_batch,
                                        device=self.device,
                                        dtype=torch.float)
        done_batch = torch.tensor(np.float32(done_batch),
                                  device=self.device).unsqueeze(
                                      1)  # 将bool转为float然后转为张量
        # Compute Q(s_t, a) - the model computes Q(s_t), then we select the
        # columns of actions taken. These are the actions which would've been taken
        # for each batch state according to policy_net
        q_values = self.policy_net(state_batch).gather(
            1, action_batch)  # 等价于self.forward
        # Compute V(s_{t+1}) for all next states.
        # Expected values of actions for non_final_next_states are computed based
        # on the "older" target_net; selecting their best reward with max(1)[0].
        # This is merged based on the mask, such that we'll have either the expected
        # state value or 0 in case the state was final.

        next_state_values = self.target_net(next_state_batch).max(
            1)[0].detach()  # tensor([ 0.0060, -0.0171,...,])
        # Compute the expected Q values
        expected_q_values = reward_batch + self.gamma * next_state_values * (
            1 - done_batch[0])

        # Compute Huber loss
        # self.loss = nn.MSELoss(q_values, expected_q_values.unsqueeze(1))
        self.loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1))
        # Optimize the model
        self.optimizer.zero_grad(
        )  # zero_grad clears old gradients from the last step (otherwise you’d just accumulate the gradients from all loss.backward() calls).
        self.loss.backward(
        )  # loss.backward() computes the derivative of the loss w.r.t. the parameters (or anything requiring gradients) using backpropagation.
        for param in self.policy_net.parameters():  # clip防止梯度爆炸
            param.grad.data.clamp_(-1, 1)
        self.optimizer.step(
        )  # causes the optimizer to take a step based on the gradients of the parameters.
コード例 #5
0
from model import FCN
from synth import Generator    # Used to add noise to images
G = Generator()

from bezier import *
from vggnet import *
Encoder = VGG(16, 36)      #Initializing a VGGnet architecture with 16 depth and 39 (9*4) as the num_outputs.
                           #Now we have to pass in the data 
writer = TensorBoard('log/')
import torch.optim as optim
criterion = nn.MSELoss()
criterion2 = nn.CrossEntropyLoss()

Decoder = FCN(64)   #Initializing the FCN network with width 64 (which is useless as the entire thing is hardcoded)
optimizerE = optim.Adam(Encoder.parameters(), lr=3e-4)
optimizerD = optim.Adam(Decoder.parameters(), lr=3e-4)
batch_size = 64
data_size = 100000
generated_size = 0
val_data_size = 512
first_generate = True

use_cuda = True
step = 0
Train_batch = [None] * data_size
Ground_truth = [None] * data_size
Label_batch = [None] * data_size
Val_train_batch = [None] * val_data_size
Val_ground_truth = [None] * val_data_size
Val_label_batch = [None] * val_data_size
コード例 #6
0
ファイル: dqn.py プロジェクト: sjyttkl/leedeeprl-notes
class DQN:
    def __init__(self,
                 n_states,
                 n_actions,
                 gamma=0.99,
                 epsilon_start=0.9,
                 epsilon_end=0.05,
                 epsilon_decay=200,
                 memory_capacity=10000,
                 policy_lr=0.01,
                 batch_size=128,
                 device="cpu"):
        self.actions_count = 0
        self.n_actions = n_actions  # 总的动作个数
        self.device = device  # 设备,cpu或gpu等
        self.gamma = gamma
        # e-greedy 策略相关参数
        self.epsilon = 0
        self.epsilon_start = epsilon_start
        self.epsilon_end = epsilon_end
        self.epsilon_decay = epsilon_decay
        self.batch_size = batch_size
        self.policy_net = FCN(n_states, n_actions).to(self.device)
        self.target_net = FCN(n_states, n_actions).to(self.device)
        # target_net的初始模型参数完全复制policy_net
        self.target_net.load_state_dict(self.policy_net.state_dict())
        self.target_net.eval()  # 不启用 BatchNormalization 和 Dropout
        # 可查parameters()与state_dict()的区别,前者require_grad=True
        self.optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr)
        self.loss = 0
        self.memory = ReplayBuffer(memory_capacity)

    def select_action(self, state):
        '''选择动作
        Args:
            state [array]: [description]
        Returns:
            action [array]: [description]
        '''
        self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
            math.exp(-1. * self.actions_count / self.epsilon_decay)
        self.actions_count += 1
        if random.random() > self.epsilon:
            with torch.no_grad():
                # 先转为张量便于丢给神经网络,state元素数据原本为float64
                # 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价
                state = torch.tensor([state],
                                     device=self.device,
                                     dtype=torch.float32)
                # 如tensor([[-0.0798, -0.0079]], grad_fn=<AddmmBackward>)
                q_value = self.policy_net(state)
                # tensor.max(1)返回每行的最大值以及对应的下标,
                # 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
                # 所以tensor.max(1)[1]返回最大值对应的下标,即action
                action = q_value.max(1)[1].item()
        else:
            action = random.randrange(self.n_actions)
        return action

    def update(self):

        if len(self.memory) < self.batch_size:
            return
        # 从memory中随机采样transition
        state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
            self.batch_size)
        # 转为张量
        # 例如tensor([[-4.5543e-02, -2.3910e-01,  1.8344e-02,  2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02,  2.3400e-01]])
        state_batch = torch.tensor(state_batch,
                                   device=self.device,
                                   dtype=torch.float)
        action_batch = torch.tensor(action_batch,
                                    device=self.device).unsqueeze(
                                        1)  # 例如tensor([[1],...,[0]])
        reward_batch = torch.tensor(
            reward_batch, device=self.device,
            dtype=torch.float)  # tensor([1., 1.,...,1])
        next_state_batch = torch.tensor(next_state_batch,
                                        device=self.device,
                                        dtype=torch.float)
        done_batch = torch.tensor(np.float32(done_batch),
                                  device=self.device).unsqueeze(
                                      1)  # 将bool转为float然后转为张量

        # 计算当前(s_t,a)对应的Q(s_t, a)
        # 关于torch.gather,对于a=torch.Tensor([[1,2],[3,4]])
        # 那么a.gather(1,torch.Tensor([[0],[1]]))=torch.Tensor([[1],[3]])
        q_values = self.policy_net(state_batch).gather(
            dim=1, index=action_batch)  # 等价于self.forward
        # 计算所有next states的V(s_{t+1}),即通过target_net中选取reward最大的对应states
        next_state_values = self.target_net(next_state_batch).max(
            1)[0].detach()  # 比如tensor([ 0.0060, -0.0171,...,])
        # 计算 expected_q_value
        # 对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward
        expected_q_values = reward_batch + self.gamma * \
            next_state_values * (1-done_batch[0])
        # self.loss = F.smooth_l1_loss(q_values,expected_q_values.unsqueeze(1)) # 计算 Huber loss
        self.loss = nn.MSELoss()(q_values,
                                 expected_q_values.unsqueeze(1))  # 计算 均方误差loss
        # 优化模型
        self.optimizer.zero_grad(
        )  # zero_grad清除上一步所有旧的gradients from the last step
        # loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分
        self.loss.backward()
        for param in self.policy_net.parameters():  # clip防止梯度爆炸
            param.grad.data.clamp_(-1, 1)
        self.optimizer.step()  # 更新模型

    def save_model():
        pass

    def load_model():
        pass
コード例 #7
0
ファイル: main.py プロジェクト: pocket-dan/showtime
def train_deep():
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    from torch.utils.data import Dataset
    from model import FCN
    from torch.optim import lr_scheduler

    def train(model, device, train_loader, optimizer):
        model.train()
        train_loss = 0
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = F.nll_loss(output, target)
            train_loss += loss.item()
            loss.backward()
            optimizer.step()

        return train_loss / len(train_loader.dataset)

    def test(model, device, test_loader):
        model.eval()
        test_loss = 0
        correct = 0
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += F.nll_loss(
                    output, target,
                    reduction="sum").item()  # sum up batch loss
                pred = output.argmax(
                    dim=1,
                    keepdim=True)  # get the index of the max log-probability
                correct += pred.eq(target.view_as(pred)).sum().item()

        test_loss /= len(test_loader.dataset)
        test_acc = 100.0 * correct / len(test_loader.dataset)

        return test_loss, test_acc

    # training settings
    batch_size = 32
    test_batch_size = 1000
    epochs = 500
    patience = 30  # for early stopping
    use_cuda = torch.cuda.is_available()

    torch.manual_seed(9)

    device = torch.device("cuda" if use_cuda else "cpu")

    kwargs = {"num_workers": 1, "pin_memory": True} if use_cuda else {}
    train_loader = torch.utils.data.DataLoader(
        PoseDataset([root_dir / d for d in train_data_dirs]),
        batch_size=batch_size,
        shuffle=True,
        **kwargs,
    )
    test_loader = torch.utils.data.DataLoader(
        PoseDataset([root_dir / d for d in test_data_dirs], mode="test"),
        batch_size=test_batch_size,
        shuffle=True,
        **kwargs,
    )

    model = FCN().to(device)
    optimizer = optim.Adam(model.parameters(), lr=1e-3, amsgrad=True)

    early_stopping = utils.EarlyStopping(patience, Path("results"))
    for epoch in range(1, epochs + 1):
        train_loss = train(model, device, train_loader, optimizer)
        test_loss, test_acc = test(model, device, test_loader)
        print(f"epoch: {epoch:>3}, train_loss: {train_loss:.4f}, ", end="")
        print(f"test_loss: {test_loss:.4f}, test_acc: {test_acc:.3f}")

        early_stopping(test_loss, test_acc, model)

        if early_stopping.early_stop:
            print("Early stopping activated")
            break

    print(f"deep model acc: {early_stopping.best_acc}")
コード例 #8
0
class DQN:
    def __init__(self,
                 n_states,
                 n_actions,
                 gamma=0.99,
                 epsilon_start=0.9,
                 epsilon_end=0.05,
                 epsilon_decay=200,
                 memory_capacity=10000,
                 policy_lr=0.01,
                 batch_size=128,
                 device="cpu"):
        self.actions_count = 0
        self.n_actions = n_actions  # 总的动作个数
        self.device = device  # 设备,cpu或gpu等
        self.gamma = gamma
        # e-greedy策略相关参数
        self.epsilon = 0
        self.epsilon_start = epsilon_start
        self.epsilon_end = epsilon_end
        self.epsilon_decay = epsilon_decay
        self.batch_size = batch_size
        self.policy_net = FCN(n_states, n_actions).to(self.device)
        self.target_net = FCN(n_states, n_actions).to(self.device)
        # target_net的初始模型参数完全复制policy_net
        self.target_net.load_state_dict(self.policy_net.state_dict())
        self.target_net.eval()  # 不启用 BatchNormalization 和 Dropout
        # 可查parameters()与state_dict()的区别,前者require_grad=True
        self.optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr)
        self.loss = 0
        self.memory = ReplayBuffer(memory_capacity)

    def choose_action(self, state, train=True):
        '''选择动作
        '''
        if train:
            self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
                math.exp(-1. * self.actions_count / self.epsilon_decay)
            self.actions_count += 1
            if random.random() > self.epsilon:
                with torch.no_grad():
                    # 先转为张量便于丢给神经网络,state元素数据原本为float64
                    # 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价
                    state = torch.tensor([state],
                                         device=self.device,
                                         dtype=torch.float32)
                    # 如tensor([[-0.0798, -0.0079]], grad_fn=<AddmmBackward>)
                    q_value = self.policy_net(state)
                    # tensor.max(1)返回每行的最大值以及对应的下标,
                    # 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
                    # 所以tensor.max(1)[1]返回最大值对应的下标,即action
                    action = q_value.max(1)[1].item()
            else:
                action = random.randrange(self.n_actions)
            return action
        else:
            with torch.no_grad():
                # 先转为张量便于丢给神经网络,state元素数据原本为float64
                # 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价
                state = torch.tensor([state],
                                     device='cpu',
                                     dtype=torch.float32)
                # 如tensor([[-0.0798, -0.0079]], grad_fn=<AddmmBackward>)
                q_value = self.target_net(state)
                # tensor.max(1)返回每行的最大值以及对应的下标,
                # 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
                # 所以tensor.max(1)[1]返回最大值对应的下标,即action
                action = q_value.max(1)[1].item()
            return action

    def update(self):

        if len(self.memory) < self.batch_size:
            return
        # 从memory中随机采样transition
        state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
            self.batch_size)
        # 转为张量
        # 例如tensor([[-4.5543e-02, -2.3910e-01,  1.8344e-02,  2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02,  2.3400e-01]])
        state_batch = torch.tensor(state_batch,
                                   device=self.device,
                                   dtype=torch.float)
        action_batch = torch.tensor(action_batch,
                                    device=self.device).unsqueeze(
                                        1)  # 例如tensor([[1],...,[0]])
        reward_batch = torch.tensor(
            reward_batch, device=self.device,
            dtype=torch.float)  # tensor([1., 1.,...,1])
        next_state_batch = torch.tensor(next_state_batch,
                                        device=self.device,
                                        dtype=torch.float)
        done_batch = torch.tensor(np.float32(done_batch),
                                  device=self.device).unsqueeze(
                                      1)  # 将bool转为float然后转为张量

        # 计算当前(s_t,a)对应的Q(s_t, a)
        q_values = self.policy_net(state_batch)
        next_q_values = self.policy_net(next_state_batch)
        # 代入当前选择的action,得到Q(s_t|a=a_t)
        q_value = q_values.gather(dim=1, index=action_batch)
        '''以下是Nature DQN的q_target计算方式
        # 计算所有next states的Q'(s_{t+1})的最大值,Q'为目标网络的q函数
        next_q_state_value = self.target_net(
            next_state_batch).max(1)[0].detach()  # 比如tensor([ 0.0060, -0.0171,...,])
        # 计算 q_target
        # 对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward
        q_target = reward_batch + self.gamma * next_q_state_value * (1-done_batch[0])
        '''
        '''以下是Double DQNq_target计算方式,与NatureDQN稍有不同'''
        next_target_values = self.target_net(next_state_batch)
        # 选出Q(s_t‘, a)对应的action,代入到next_target_values获得target net对应的next_q_value,即Q’(s_t|a=argmax Q(s_t‘, a))
        next_target_q_value = next_target_values.gather(
            1,
            torch.max(next_q_values, 1)[1].unsqueeze(1)).squeeze(1)
        q_target = reward_batch + self.gamma * next_target_q_value * (
            1 - done_batch[0])
        self.loss = nn.MSELoss()(q_value, q_target.unsqueeze(1))  # 计算 均方误差loss
        # 优化模型
        self.optimizer.zero_grad(
        )  # zero_grad清除上一步所有旧的gradients from the last step
        # loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分
        self.loss.backward()
        for param in self.policy_net.parameters():  # clip防止梯度爆炸
            param.grad.data.clamp_(-1, 1)
        self.optimizer.step()  # 更新模型

    def save_model(self, path):
        torch.save(self.target_net.state_dict(), path)

    def load_model(self, path):
        self.target_net.load_state_dict(torch.load(path))
コード例 #9
0
def main(config):
    ## ================ Load data =============================================================
    dataloader_train, dataloader_test = get_dataloader(config, config.tforms)

    data, labels, fname, raw_audio = next(iter(dataloader_train))

    tn = tforms_mine.ApplyReverb(config.resampling_rate)

    tmp = tn(data[0])

    print("Data shape pre module = %s" % str(data.shape))

    transformer = get_time_frequency_transform(config)

    out = do_time_frequency_transform(data, transformer, config)

    print("Data shape after transformer = %s" % str(out.shape))

    # Visualize some of the data
    tmp = out

    tmp2 = {'spectrogram': tmp, 'labels': labels, 'fname': fname}

    AudioTaggingPreProcessing.show_spectrogram_batch(
        tmp2, config, filepath=config.result_path)

    tmp3 = {'audio': raw_audio, 'labels': labels, 'fname': fname}

    AudioTaggingPreProcessing.show_waveforms_from_audio_batch(
        tmp3, config, filepath=config.result_path, saveWavs=False)

    ## ================ Model =================================================================

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(device)

    # input shape (batch, 1, 128, 1366) ss
    model = FCN(ConvBlock,
                output_shape=dataloader_train.dataset.num_classes,
                max_pool=[(2, 4), (2, 4), (2, 4), (3, 5), (4, 4)]).to(device)

    summary(model, input_size=(1, 128, 1366))

    # input shape (batch, 1, 128, 256)
    # model = FCN(ConvBlock, output_shape=dataloader_train.dataset.num_classes,
    #             max_pool=[(2, 2), (2, 2), (2, 4), (3, 3), (4, 4)],
    #             filters_num=[64, 128, 256, 512, 1024]).to(device)
    #
    # summary(model, input_size=(1, 128, 256))

    # Loss and optimizer
    learning_rate = 0.001
    criterion = model.loss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

    # Another hacky way to get the iterator for the validation set
    def loopy(dl):
        while True:
            for x in iter(dl):
                yield x

    ## ================ Training loop =========================================================
    t_sum = 0
    t_epoch = 0
    last_time = time.time()
    last_epoch = time.time()
    all_time = []
    all_time_epoch = []

    total_step = len(dataloader_train)
    loss_history_train = []

    train_loss_step = 0.0
    valid_loss_step = 0.0
    train_loss_epoch = 0.0
    valid_loss_epoch = 0.0
    train_loss_history = []
    valid_loss_history = []

    train_steps = 0
    valid_steps = 0

    myIter = loopy(dataloader_test)

    for epoch in range(config.num_epochs):
        train_loss_epoch = 0.0
        valid_loss_epoch = 0.0
        train_loss_step = 0.0
        valid_loss_step = 0.0

        # Training loop
        pbar = tqdm(enumerate(dataloader_train))
        for i, sample in pbar:
            t = time.time()
            t_diff = t - last_time
            t_sum += t_diff
            last_time = t
            all_time.append(t_diff)

            audio = sample[
                0]  # Sample is (transformed_audio, labels, fname, raw_audio)
            labels = sample[1].to(device)

            # Forward pass
            if config.tforms == TformsSet.TorchAudio:  # Torchaudio supports full GPU
                audio = audio.to(device)
                specs = do_time_frequency_transform(
                    audio, transformer.to(device),
                    config)  # time-freq transform
                outputs = model(specs)
            else:  # Audtorch uses numpy, so no support for GPU
                specs = do_time_frequency_transform(
                    audio, transformer, config)  # time-freq transform
                outputs = model(specs.to(device))

            loss = criterion(outputs, labels)

            train_loss_epoch += loss.item()
            train_loss_step = loss.item()

            train_steps += 1
            train_loss_history.append(
                train_loss_step)  # Append losses for plotting

            # Backward and optimize
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if train_steps % config.print_every == 0:
                model.eval()

                with torch.no_grad():
                    # Hacky way to get a single validation batch, see above for comments.
                    try:
                        sample = next(myIter)
                    except StopIteration:
                        myIter = loopy(dataloader_test)
                        sample = next(myIter)

                    audio = sample[0]
                    labels = sample[1].to(device)

                    # Forward pass | time-freq transform
                    if config.tforms == TformsSet.TorchAudio:  # Torchaudio supports full GPU
                        specs = do_time_frequency_transform(
                            audio.to(device), transformer.to(device), config)
                    else:  # Audtorch uses numpy, so no support for GPU
                        specs = do_time_frequency_transform(
                            audio, transformer, config).to(device)

                    outputs = model(specs)
                    loss = criterion(outputs, labels)

                    valid_loss_step = loss.item()
                    valid_loss_epoch += valid_loss_step

                    valid_steps += 1
                    valid_loss_history.append(
                        valid_loss_step)  # Append losses for plotting

            pbar.set_description(
                "Epoch [{}/{}], Step [{}/{}],   T_diff {} , T_total {} , train_Loss: {:.4f} , valid_Loss {:.4f}"
                .format(epoch + 1, config.num_epochs, i + 1, total_step,
                        t_diff, t_sum, train_loss_step, valid_loss_step))

        t = time.time()
        t_epoch = t - last_epoch
        last_epoch = t
        all_time_epoch.append(t_epoch)
        print(
            "--------- Epoch [{}/{}] Summary , time per epoch {} , train_loss {} , valid_loss {}"
            .format(epoch + 1, config.num_epochs, t_epoch,
                    train_loss_epoch / len(dataloader_train),
                    valid_loss_epoch / max(valid_steps, 1)))

    ## ================ Plot training =========================================================
    ## Plot time for each step
    t = np.linspace(0, config.num_epochs, num=len(all_time), endpoint=False)

    plt.figure(figsize=(16, 8))
    plt.plot(t, all_time, 'r-+', label='Time per step')
    plt.legend()
    plt.savefig(os.path.join(config.result_path, 'Output_time_per_step.png'))
    plt.xlabel('Epochs')
    plt.ylabel('Time (s)')
    plt.title("Train data = %d" % (len(dataloader_train)))
    plt.show()

    ## Plot time per epoch
    t = np.linspace(0,
                    config.num_epochs,
                    num=len(all_time_epoch),
                    endpoint=False)

    plt.figure(figsize=(16, 8))
    plt.plot(t, all_time_epoch, 'r-+', label='Time per step')
    plt.legend()
    plt.savefig(os.path.join(config.result_path, 'Output_time_per_epoch.png'))
    plt.xlabel('Epochs')
    plt.ylabel('Time (s)')
    plt.title("Train data = %d" % (len(dataloader_train)))
    plt.show()

    ## Plot loss
    t = np.linspace(0, config.num_epochs, num=train_steps, endpoint=False)
    t_valid = np.linspace(0,
                          config.num_epochs,
                          num=valid_steps,
                          endpoint=False)

    plt.figure(figsize=(20, 8))
    plt.plot(t, train_loss_history, 'r-+', label='Train')
    plt.plot(t_valid, valid_loss_history, 'b--o', label='Valid')
    plt.legend()
    plt.yscale('log')
    plt.ylabel('Loss')
    plt.title("Train data = %d" % (len(dataloader_train)))
    plt.savefig(os.path.join(config.result_path, 'Output_loss.png'))
    plt.show()

    ## ================ Evaluation ============================================================
    def get_auc(y_true, y_preds, labels_list):
        from sklearn import metrics
        score_accuracy = 0
        score_lwlrap = 0
        score_roc_auc_macro = 0
        score_pr_auc_macro = 0
        score_roc_auc_micro = 0
        score_pr_auc_micro = 0
        score_mse = 0
        score_roc_auc_all = np.zeros((len(labels_list), 1)).squeeze()
        score_pr_auc_all = np.zeros((len(labels_list), 1)).squeeze()
        try:
            # for accuracy, lets pretend this is a single label problem, so assign only one label to every prediction
            score_accuracy = metrics.accuracy_score(
                y_true,
                indices_to_one_hot(y_preds.argmax(axis=1),
                                   dataloader_train.dataset.num_classes))
            score_lwlrap = metrics.label_ranking_average_precision_score(
                y_true, y_preds)
            score_mse = math.sqrt(metrics.mean_squared_error(y_true, y_preds))
            # Average precision is a single number used to approximate the integral of the PR curve
            # Macro is average over all clases, without considering class imbalances
            score_pr_auc_macro = metrics.average_precision_score(
                y_true, y_preds, average="macro")
            score_roc_auc_macro = metrics.roc_auc_score(y_true,
                                                        y_preds,
                                                        average="macro")
            # Micro, considers class imbalances
            score_pr_auc_micro = metrics.average_precision_score(
                y_true, y_preds, average="micro")
            score_roc_auc_micro = metrics.roc_auc_score(y_true,
                                                        y_preds,
                                                        average="micro")

        except ValueError as e:
            print("Soemthing wrong with evaluation")
            print(e)
        print("Accuracy =  %f" % (score_accuracy))
        print("Label ranking average precision =  %f" % (score_lwlrap))
        print("ROC_AUC macro score  = %f" % (score_roc_auc_macro))
        print("PR_AUC macro score = %f" % (score_pr_auc_macro))
        print("ROC_AUC_micro score  = %f" % (score_roc_auc_micro))
        print("PR_AUC_micro score = %f" % (score_pr_auc_micro))
        print("MSE score for train = %f" % (score_mse))

        # These are per tag
        try:
            score_roc_auc_all = metrics.roc_auc_score(y_true,
                                                      y_preds,
                                                      average=None)
            score_pr_auc_all = metrics.average_precision_score(y_true,
                                                               y_preds,
                                                               average=None)
        except ValueError as e:
            print("Something wrong with evaluation")
            print(e)

        print("")
        print("Per tag, roc_auc, pr_auc")
        for i in range(len(labels_list)):
            print('%s \t\t\t\t\t\t %.4f \t%.4f' %
                  (labels_list[i], score_roc_auc_all[i], score_pr_auc_all[i]))

        tmp = {
            'accuracy': score_accuracy,
            'lwlrap': score_lwlrap,
            'mse': score_mse,
            'roc_auc_macro': score_roc_auc_macro,
            'pr_auc_macro': score_pr_auc_macro,
            'roc_auc_micro': score_roc_auc_micro,
            'pr_auc_micro': score_pr_auc_micro,
            'roc_auc_all': score_roc_auc_all,
            'pr_auc_all': score_pr_auc_all
        }

        scores = edict(tmp)

        try:
            plt.figure(figsize=(20, 8))
            plt.bar(np.arange(len(labels_list)), scores.roc_auc_all[:])
            plt.ylabel('ROC_AUC')
            plt.title("Train data = %d" % (len(dataloader_train)))
            plt.savefig(
                os.path.join(config.result_path,
                             'Output_scores_per_label.png'))
            plt.show()

            # Plot only a few of the scores
            aa = {
                'accuracy': scores.accuracy,
                'lwlrap': scores.lwlrap,
                'mse': scores.mse,
                'roc_auc_macro': scores.roc_auc_macro,
                'roc_auc_micro': scores.roc_auc_micro,
                'pr_auc_macro': scores.pr_auc_macro,
                'pr_auc_micro': scores.pr_auc_micro
            }

            plt.figure(figsize=(10, 6))
            plt.bar(range(len(aa)), list(aa.values()), align='center')
            plt.xticks(range(len(aa)), list(aa.keys()))
            plt.ylabel('Scores')
            plt.savefig(os.path.join(config.result_path, 'Outputs_scores.png'))
            plt.show()
        except IndexError as e:
            print(e)

        return scores

    del myIter

    model.eval()
    with torch.no_grad():
        total = 0
        numBatches = 0

        allPreds = np.empty((0, dataloader_test.dataset.num_classes), float)
        allLabels = np.empty((0, dataloader_test.dataset.num_classes), int)

        for batch in dataloader_test:
            audio = batch[0]
            labels = batch[1].cpu().numpy()

            # Forward pass | time-freq transform
            if config.tforms == TformsSet.TorchAudio:  # Torchaudio supports full GPU
                specs = do_time_frequency_transform(audio.to(device),
                                                    transformer.to(device),
                                                    config)
            else:  # Audtorch uses numpy, so no support for GPU
                specs = do_time_frequency_transform(audio, transformer,
                                                    config).to(device)

            outputs = model.forward_with_evaluation(
                specs.to(device)).cpu().numpy()

            if not check_outputs(outputs, True):
                warnings.warn(
                    "Warning, the ouputs appear to have wrong values!!!!!")

            allPreds = np.append(allPreds, outputs, axis=0)
            allLabels = np.append(allLabels, labels, axis=0)

            total += labels.shape[0]
            numBatches += 1

    print("Evaluated on {} validation batches".format(numBatches))

    scores = get_auc(allLabels, allPreds, dataloader_test.dataset.taglist)

    # Save scores to disk
    import pickle

    with open(os.path.join(config.result_path, 'Scores.pkl')) as f:
        pickle.dump(scores, f, pickle.HIGHEST_PROTOCOL)

    return

    # Load the results like this:
    with open('obj/' + name + '.pkl', 'rb') as f:
        return pickle.load(f)
コード例 #10
0
def train(data_loader, model_index, x_eval_train, y_eval_train):
    ### Model Initiation
    fcn = FCN()
    #print (fcn.b_1_conv_1[0].weight.data)

    d = tor.load("./models/vgg16_pretrained.pkl")
    fcn.vgg16_load(d)
    #d = tor.load("./models/fcn_model_1_1.pkl")
    #fcn.load_state_dict(d)
    fcn.cuda()
    #loss_func = tor.nn.CrossEntropyLoss(weight=w)
    loss_func = tor.nn.CrossEntropyLoss()
    #loss_func = tor.nn.MSELoss()
    #optim = tor.optim.SGD(fcn.parameters(), lr=LR, momentum=MOMENTUM)
    optim1 = tor.optim.Adam(fcn.b_6_conv_1.parameters(), lr=LR)

    optim2 = tor.optim.Adam(fcn.b_6_conv_2.parameters(), lr=LR)
    optim3 = tor.optim.Adam(fcn.b_6_conv_3.parameters(), lr=LR)
    optim4 = tor.optim.Adam(fcn.b_7_trans_1.parameters(), lr=LR)
    optim = tor.optim.Adam(fcn.parameters(), lr=LR)
    ### Training
    for epoch in range(EPOCH):
        print("|Epoch: {:>4} |".format(epoch + 1), end="")

        ### Training
        for step, (x_batch, y_batch) in enumerate(data_loader):
            x = Variable(x_batch).type(tor.FloatTensor).cuda()
            y = Variable(y_batch).type(tor.LongTensor).cuda()

            pred = fcn(x)
            optim1.zero_grad()
            optim2.zero_grad()
            optim3.zero_grad()
            optim4.zero_grad()
            optim.zero_grad()
            loss = loss_func(pred, y)
            loss.backward()
            optim1.step()
            optim2.step()
            optim3.step()
            optim4.step()
        print(pred[:2])
        print(tor.max(pred[:5], 1)[1])
        ### Evaluation
        loss = float(loss.data)
        acc = evaluate(fcn, x_eval_train, y_eval_train)

        print("|Loss: {:<8} |Acc: {:<8}".format(loss, acc))

        ### Save model
        if epoch % RECORD_MODEL_PERIOD == 0:
            tor.save(
                fcn.state_dict(),
                os.path.join(MODEL_ROOT,
                             "fcn_model_{}_{}.pkl".format(model_index, epoch)))

        ### Record
        record_data = dict()
        if epoch == 0:
            record_data["model_name"] = "fcn_model_{}.pkl".format(model_index)
            record_data["data_size"] = AVAILABLA_SIZE
            record_data["batch_size"] = BATCHSIZE
            record_data["decay"] = str((LR_STEPSIZE, LR_GAMMA))
            record_data["lr_init"] = float(optim1.param_groups[0]["lr"])
            record_data["lr"] = float(optim1.param_groups[0]["lr"])
            record_data["record_epoch"] = RECORD_MODEL_PERIOD
            record_data["loss"] = loss
            record_data["acc"] = acc
        else:
            record_data["model_name"] = "fcn_model_{}.pkl".format(model_index)
            record_data["lr"] = float(optim1.param_groups[0]["lr"])
            record_data["loss"] = loss
            record_data["acc"] = acc

        record(RECORD_FP, record_data)
コード例 #11
0
    indices = []
    mapLoc = None if haveCuda else {'cuda:0': 'cpu'}
    if haveCuda:
        model = model.cuda()

    criterion = CrossEntropyLoss2d()

    epochs = 200
    lr = 1e-1
    weight_decay = 1e-3
    momentum = 0.5
    patience = 20

    optimizer = torch.optim.SGD([
        {
            'params': model.parameters()
        },
    ],
                                lr=lr,
                                momentum=momentum,
                                weight_decay=weight_decay)

    scheduler = lr_scheduler.ReduceLROnPlateau(optimizer,
                                               'min',
                                               factor=0.5,
                                               patience=patience,
                                               verbose=True)
    ploter = LinePlotter()

    bestLoss = 100
    bestAcc = 0
コード例 #12
0
        torch.nn.init.normal(m.weight.data,mean=0,std=1)
        torch.nn.init.normal(m.bias.data,mean=0,std=1)

with open("/home/yuchen/Programs/cancer-prognosis/best.txt", 'r') as file:
    best = float(file.readline())
    epoch0 = int(file.readline())
print("Last Train: accu %f , epoch0 %d" % (best, epoch0))
try:
    net = torch.load('/home/yuchen/Programs/cancer-prognosis/seg_model.pkl')
except:
    net = FCN()
    net.apply(weights_init)
net.cuda()


optimizer = torch.optim.Adam(net.parameters(),lr=LR, weight_decay=0.5)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.9)

loss_func = nn.NLLLoss2d(weight=torch.FloatTensor([1,8000]).cuda())

data_loder = DataLoader()
zeros = np.zeros((512,512))
for epoch in range(epoch0, epoch0+EPOCH):
    scheduler.step()
    train_step = 0
    test_step = 0
    train_loss = 0
    test_loss = 0
    train_accu = 0
    test_accu = 0
    for train, test in data_loder.gen(BATCH_SIZE, get_stored=True):
コード例 #13
0
ファイル: train.py プロジェクト: VladimirIsakov91/pneumonia
                             })

    net = FCN()
    net.cuda()

    data = ImageDataset('./train.zarr', transform=train_tr)
    val = ImageDataset('./test.zarr', transform=val_tr)

    loader = DataLoader(dataset=data,
                        batch_size=batch_size,
                        shuffle=True,
                        num_workers=6)
    val_loader = DataLoader(dataset=val, batch_size=batch_size, shuffle=False)

    loss_fn = nn.CrossEntropyLoss()
    optimizer = Adam(params=net.parameters(), lr=lr, weight_decay=weight_decay)
    scaler = GradScaler()
    scheduler = StepLR(optimizer=optimizer, step_size=step_size, gamma=gamma)

    trainer = Engine(update)

    Accuracy(output_transform=output_transform).attach(engine=trainer,
                                                       name='train_acc')
    Loss(loss_fn=loss_fn,
         output_transform=output_transform).attach(engine=trainer, name='loss')

    trainer.add_event_handler(event_name=Events.EPOCH_COMPLETED,
                              handler=log_training)
    trainer.add_event_handler(event_name=Events.EPOCH_COMPLETED,
                              handler=scheduler_step)
    trainer.add_event_handler(event_name=Events.COMPLETED,
コード例 #14
0
ファイル: main.py プロジェクト: gnouhp/Synthetic-Segmentation
    ax3.set_title("Predicted")

    ax1.tick_params(labelbottom=False, labelleft=False)
    ax2.tick_params(labelbottom=False, labelleft=False)
    ax3.tick_params(labelbottom=False, labelleft=False)

    fig.savefig('viz_results/viz_{}.png'.format(epoch_idx),
                bbox_inches='tight')
    plt.close(fig)


# Instantiate the model and its hyperparameters.
n_species = 4
n_epochs = 501
model = FCN(n_classes=n_species, img_size=256).to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)
criterion = nn.NLLLoss()

# Our main training loop.
for epoch_i in range(n_epochs):
    # Training consists of just these 4 lines.
    loss = criterion(model(train_imgs), train_masks)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # Visualize validation performance every 50 epochs.
    if epoch_i % 50 == 0:
        print("Epoch: {}/{}, Loss: {:.4f}".format(epoch_i + 1, n_epochs,
                                                  loss.item()))
        with torch.no_grad():