def models(modelname, cfg, word_len): #print(word_len) text_encoder = cache.get(modelname + '_text_encoder', None) if text_encoder is None: #print("text_encoder not cached") text_encoder = RNN_ENCODER(word_len, nhidden=cfg.TEXT.EMBEDDING_DIM) state_dict = torch.load(cfg.TRAIN.NET_E, map_location=lambda storage, loc: storage) text_encoder.load_state_dict(state_dict) if cfg.CUDA: text_encoder.cuda() text_encoder.eval() cache[modelname + '_text_encoder'] = text_encoder netG = cache.get(modelname + '_netG', None) if netG is None: #print("netG not cached") netG = G_NET() state_dict = torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) if cfg.CUDA: netG.cuda() netG.eval() cache[modelname + '_netG'] = netG return text_encoder, netG
def models(word_len): print('Loading Model', word_len) text_encoder = cache.get('text_encoder') print('Text enconder', text_encoder) if text_encoder is None: print("text_encoder not cached") text_encoder = RNN_ENCODER(word_len, nhidden=256) state_dict = torch.load('../DAMSMencoders/coco/text_encoder100.pth', map_location=lambda storage, loc: storage) text_encoder.load_state_dict(state_dict) print('loaded text encoder') text_encoder.cuda() print('text encoder cuda') text_encoder.eval() print('text encoder eval') #cache.set('text_encoder', text_encoder, timeout=60 * 60 * 24) print('Got Text Encoder, moving to netG') netG = cache.get('netG') if netG is None: print("netG not cached") netG = G_NET() state_dict = torch.load('../models/coco_AttnGAN2.pth', map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) if cfg.CUDA: netG.cuda() netG.eval() #cache.set('netG', netG, timeout=60 * 60 * 24) print('Got NetG') return text_encoder, netG
def load_network_stageII(self): from model import G_NET, D_NET netG = G_NET() netG.apply(weights_init) print(netG) if cfg.NET_G != '': state_dict = \ torch.load(cfg.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load from: ', cfg.NET_G) netD = D_NET() netD.apply(weights_init) if cfg.NET_D != '': state_dict = \ torch.load(cfg.NET_D, map_location=lambda storage, loc: storage) netD.load_state_dict(state_dict) print('Load from: ', cfg.NET_D) print(netD) if cfg.CUDA: netG.cuda() netD.cuda() return netG, netD
def test(cfg_file, embedding_t7_path): cfg_from_file(cfg_file) cfg.GPU_ID = 0 print('Using config:') pprint.pprint(cfg) netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=[0]) print(netG) #state_dict = torch.load('../gan/models/birds_3stages/netG_26000.pth') print(cfg.TRAIN.NET_G) state_path = '/home/ubuntu/GANTextToImage/gan/' + cfg.TRAIN.NET_G state_dict = torch.load(state_path, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) # print('Load ', '../gan/models/flowers_1stage/netG_6000.pth') # the path to save generated images s_tmp = cfg.TRAIN.NET_G istart = s_tmp.rfind('_') + 1 iend = s_tmp.rfind('.') iteration = int(s_tmp[istart:iend]) s_tmp = s_tmp[:s_tmp.rfind('/')] save_dir = '%s/iteration%d' % (s_tmp, iteration) nz = cfg.GAN.Z_DIM noise = Variable(torch.FloatTensor(1, nz)) if cfg.CUDA: netG.cuda() noise = noise.cuda() # switch to evaluate mode netG.eval() t_embedding = load_lua(embedding_t7_path) t_embedding = t_embedding.unsqueeze(0) print(t_embedding.size()) if cfg.CUDA: t_embedding = Variable(t_embedding).cuda() else: t_embedding = Variable(t_embedding) # print(t_embeddings[:, 0, :], t_embeddings.size(1)) embedding_dim = t_embedding.size(1) noise.data.resize_(1, nz) noise.data.normal_(0, 1) fake_img_list = [] # for i in range(embedding_dim): fake_imgs, _, _ = netG(noise, t_embedding[:, 0, :]) if cfg.TEST.B_EXAMPLE: # fake_img_list.append(fake_imgs[0].data.cpu()) # fake_img_list.append(fake_imgs[1].data.cpu()) fake_img_list.append(fake_imgs[2].data.cpu()) else: save_singleimages(fake_imgs[-1], '/home/ubuntu/GANTextToImage/static', 0, 256)
def models(word_len): #print(word_len) text_encoder = cache.get('text_encoder') if text_encoder is None: #print("text_encoder not cached") text_encoder = RNN_ENCODER(word_len, nhidden=cfg.TEXT.EMBEDDING_DIM) state_dict = torch.load(cfg.TRAIN.NET_E, map_location=lambda storage, loc: storage) text_encoder.load_state_dict(state_dict) if cfg.CUDA: text_encoder.cuda() text_encoder.eval() cache.set('text_encoder', text_encoder, timeout=60 * 60 * 24) netG = cache.get('netG') if netG is None: #print("netG not cached") netG = G_NET() state_dict = torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) if cfg.CUDA: netG.cuda() netG.eval() cache.set('netG', netG, timeout=60 * 60 * 24) return text_encoder, netG
def load_network(gpus): netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=gpus) print(netG) netsD = [] if cfg.TREE.BRANCH_NUM > 0: netsD.append(D_NET64()) if cfg.TREE.BRANCH_NUM > 1: netsD.append(D_NET128()) if cfg.TREE.BRANCH_NUM > 2: netsD.append(D_NET256()) if cfg.TREE.BRANCH_NUM > 3: netsD.append(D_NET512()) if cfg.TREE.BRANCH_NUM > 4: netsD.append(D_NET1024()) # TODO: if cfg.TREE.BRANCH_NUM > 5: for i in range(len(netsD)): netsD[i].apply(weights_init) netsD[i] = torch.nn.DataParallel(netsD[i], device_ids=gpus) # print(netsD[i]) print('# of netsD', len(netsD)) count = 0 if cfg.TRAIN.NET_G != '': state_dict = torch.load(cfg.TRAIN.NET_G) netG.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_G) try: istart = cfg.TRAIN.NET_G.rfind('_') + 1 iend = cfg.TRAIN.NET_G.rfind('.') count = cfg.TRAIN.NET_G[istart:iend] count = int(count) except: last_run_dir = cfg.DATA_DIR + '/' + cfg.LAST_RUN_DIR + '/Model' with open(last_run_dir + '/count.txt', 'r') as f: count = int(f.read()) count = int(count) + 1 if cfg.TRAIN.NET_D != '': for i in range(len(netsD)): print('Load %s_%d.pth' % (cfg.TRAIN.NET_D, i)) state_dict = torch.load('%s%d.pth' % (cfg.TRAIN.NET_D, i)) netsD[i].load_state_dict(state_dict) inception_model = INCEPTION_V3() if cfg.CUDA: netG.cuda() for i in range(len(netsD)): netsD[i].cuda() inception_model = inception_model.cuda() inception_model.eval() return netG, netsD, len(netsD), inception_model, count
def load_network(gpus, dictionary=None): netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=gpus) print(netG) netsD = [] if cfg.TREE.BRANCH_NUM > 0: netsD.append(D_NET64()) if cfg.TREE.BRANCH_NUM > 1: netsD.append(D_NET128()) if cfg.TREE.BRANCH_NUM > 2: netsD.append(D_NET256()) if cfg.TREE.BRANCH_NUM > 3: netsD.append(D_NET512()) if cfg.TREE.BRANCH_NUM > 4: netsD.append(D_NET1024()) # TODO: if cfg.TREE.BRANCH_NUM > 5: for i in range(len(netsD)): netsD[i].apply(weights_init) netsD[i] = torch.nn.DataParallel(netsD[i], device_ids=gpus) # print(netsD[i]) print('# of netsD', len(netsD)) count = 0 if cfg.TRAIN.NET_G != '': state_dict = torch.load(cfg.TRAIN.NET_G) netG.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_G) istart = cfg.TRAIN.NET_G.rfind('_') + 1 iend = cfg.TRAIN.NET_G.rfind('.') count = cfg.TRAIN.NET_G[istart:iend] count = int(count) + 1 if cfg.TRAIN.NET_D != '': for i in range(len(netsD)): print('Load %s_%d.pth' % (cfg.TRAIN.NET_D, i)) state_dict = torch.load('%s%d.pth' % (cfg.TRAIN.NET_D, i)) netsD[i].load_state_dict(state_dict) inception_model = INCEPTION_V3() embedding_model = load_embedding_model(dictionary) for param in embedding_model.parameters(): param.requires_grad = False if cfg.CUDA: netG.cuda() for i in range(len(netsD)): netsD[i].cuda() inception_model = inception_model.cuda() embedding_model.cuda() inception_model.eval() return netG, netsD, len(netsD), inception_model, embedding_model, count
def evaluate_finegan(self): if cfg.TRAIN.NET_G == '': print('Error: the path for model not found!') else: # Build and load the generator netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=self.gpus) model_dict = netG.state_dict() state_dict = \ torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage)['birds128'] state_dict = {k: v for k, v in state_dict.items() if k in model_dict} model_dict.update(state_dict) netG.load_state_dict(model_dict) print('Load ', cfg.TRAIN.NET_G) # Uncomment this to print Generator layers print(netG) sys nz = cfg.GAN.Z_DIM noise = torch.FloatTensor(self.batch_size, nz) noise.data.normal_(0, 1) if cfg.CUDA: netG.cuda() noise = noise.cuda() netG.eval() background_class = cfg.TEST_BACKGROUND_CLASS parent_class = cfg.TEST_PARENT_CLASS child_class = cfg.TEST_CHILD_CLASS bg_code = torch.zeros([self.batch_size, cfg.FINE_GRAINED_CATEGORIES]) p_code = torch.zeros([self.batch_size, cfg.SUPER_CATEGORIES]) c_code = torch.zeros([self.batch_size, cfg.FINE_GRAINED_CATEGORIES]) for j in range(self.batch_size): bg_code[j][background_class] = 1 p_code[j][parent_class] = 1 c_code[j][child_class] = 1 fake_imgs, fg_imgs, mk_imgs, fgmk_imgs = netG(noise, c_code, p_code, bg_code) # Forward pass through the generator self.save_image(fake_imgs[0][0], self.save_dir, 'background') self.save_image(fake_imgs[1][0], self.save_dir, 'parent_final') self.save_image(fake_imgs[2][0], self.save_dir, 'child_final') self.save_image(fg_imgs[0][0], self.save_dir, 'parent_foreground') self.save_image(fg_imgs[1][0], self.save_dir, 'child_foreground') self.save_image(mk_imgs[0][0], self.save_dir, 'parent_mask') self.save_image(mk_imgs[1][0], self.save_dir, 'child_mask') self.save_image(fgmk_imgs[0][0], self.save_dir, 'parent_foreground_masked') self.save_image(fgmk_imgs[1][0], self.save_dir, 'child_foreground_masked')
def load_network(gpus): netEn_img = MLP_ENCODER_IMG() netEn_img.apply(weights_init) netEn_img = torch.nn.DataParallel(netEn_img, device_ids=gpus) print(netEn_img) netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=gpus) print(netG) netsD = [] if cfg.TREE.BRANCH_NUM > 0: netsD.append(D_NET64()) if cfg.TREE.BRANCH_NUM > 1: netsD.append(D_NET128()) if cfg.TREE.BRANCH_NUM > 2: netsD.append(D_NET256()) for i in xrange(len(netsD)): netsD[i].apply(weights_init) netsD[i] = torch.nn.DataParallel(netsD[i], device_ids=gpus) print('# of netsD', len(netsD)) count = 0 if cfg.TRAIN.NET_G != '': state_dict = torch.load(cfg.TRAIN.NET_G) netG.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_G) istart = cfg.TRAIN.NET_G.rfind('_') + 1 iend = cfg.TRAIN.NET_G.rfind('.') count = cfg.TRAIN.NET_G[istart:iend] count = int(count) + 1 if cfg.TRAIN.NET_D != '': for i in xrange(len(netsD)): print('Load %s_%d.pth' % (cfg.TRAIN.NET_D, i)) state_dict = torch.load('%s%d.pth' % (cfg.TRAIN.NET_D, i)) netsD[i].load_state_dict(state_dict) if cfg.TRAIN.NET_MLP_IMG != '': state_dict = torch.load(cfg.TRAIN.NET_MLP_IMG) netEn_img.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_MLP_IMG) inception_model = INCEPTION_V3() if cfg.CUDA: netG.cuda() netEn_img = netEn_img.cuda() for i in xrange(len(netsD)): netsD[i].cuda() inception_model = inception_model.cuda() inception_model.eval() return netG, netsD, netEn_img, inception_model, len(netsD), count
def evaluate(self, split_dir): if cfg.TRAIN.NET_G == '': print('Error: the path for morels is not found!') else: # Build and load the generator netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=self.gpus) print(netG) # state_dict = torch.load(cfg.TRAIN.NET_G) state_dict = \ torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_G) # the path to save generated images s_tmp = cfg.TRAIN.NET_G istart = s_tmp.rfind('_') + 1 iend = s_tmp.rfind('.') iteration = int(s_tmp[istart:iend]) s_tmp = s_tmp[:s_tmp.rfind('/')] save_dir = '%s/iteration%d/%s' % (s_tmp, iteration, split_dir) if cfg.TEST.B_EXAMPLE: folder = '%s/super' % (save_dir) else: folder = '%s/single' % (save_dir) print('Make a new folder: ', folder) mkdir_p(folder) nz = cfg.GAN.Z_DIM noise = Variable(torch.FloatTensor(self.batch_size, nz)) if cfg.CUDA: netG.cuda() noise = noise.cuda() # switch to evaluate mode netG.eval() num_batches = int(cfg.TEST.SAMPLE_NUM / self.batch_size) cnt = 0 for step in range(num_batches): noise.data.normal_(0, 1) #hmxhmxhmxhmxhmxhmxhmxhmxhmxhmxhmxhmxhmxstart fake_imgs, layers_output, _, _ = netG(noise) if len(layers_output) != len(lamdas): print("please check lamdas length") #hmxhmxhmxhmxhmxhmxhmxhmxhmxhmxhmxhmxhmxend if cfg.TEST.B_EXAMPLE: self.save_superimages(fake_imgs[-1], folder, cnt, 256) else: self.save_singleimages(fake_imgs[-1], folder, cnt, 256) # self.save_singleimages(fake_imgs[-2], folder, 128) # self.save_singleimages(fake_imgs[-3], folder, 64) cnt += self.batch_size
def load_network(gpus): netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=gpus) print(netG) netsD = [] if cfg.TREE.BRANCH_NUM > 0: netsD.append(D_NET64()) if cfg.TREE.BRANCH_NUM > 1: netsD.append(D_NET128()) if cfg.TREE.BRANCH_NUM > 2: netsD.append(D_NET256()) if cfg.TREE.BRANCH_NUM > 3: netsD.append(D_NET512()) if cfg.TREE.BRANCH_NUM > 4: netsD.append(D_NET1024()) # TODO: if cfg.TREE.BRANCH_NUM > 5: for i in range(len(netsD)): netsD[i].apply(weights_init) netsD[i] = torch.nn.DataParallel(netsD[i], device_ids=gpus) # print(netsD[i]) print('# of netsD', len(netsD)) count = 0 if cfg.TRAIN.NET_G != '': state_dict = torch.load(cfg.TRAIN.NET_G) netG.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_G) istart = cfg.TRAIN.NET_G.rfind('_') + 1 iend = cfg.TRAIN.NET_G.rfind('.') count = cfg.TRAIN.NET_G[istart:iend] count = int(count) + 1 if cfg.TRAIN.NET_D != '': for i in range(len(netsD)): print('Load %s_%d.pth' % (cfg.TRAIN.NET_D, i)) state_dict = torch.load('%s%d.pth' % (cfg.TRAIN.NET_D, i)) netsD[i].load_state_dict(state_dict) inception_model = INCEPTION_V3() if cfg.CUDA: netG.cuda() for i in range(len(netsD)): netsD[i].cuda() inception_model = inception_model.cuda() inception_model.eval() return netG, netsD, len(netsD), inception_model, count
def load_network(gpus): netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=gpus) print(netG) netsD = [] # 128 * 128 if cfg.TREE.BRANCH_NUM > 1: for i in range( 3): # 3 discriminators for background, parent and child stage netsD.append(D_NET128(i)) # 256 * 256 if cfg.TREE.BRANCH_NUM > 2: for i in range( 3): # 3 discriminators for background, parent and child stage netsD.append(D_NET256(i)) # for i in range(3): # 3 discriminators for background, parent and child stage # netsD.append(D_NET128(i)) for i in range(len(netsD)): netsD[i].apply(weights_init) netsD[i] = torch.nn.DataParallel(netsD[i], device_ids=gpus) print(netsD[i]) count = 0 if cfg.TRAIN.NET_G != '': state_dict = torch.load(cfg.TRAIN.NET_G) netG.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_G) istart = cfg.TRAIN.NET_G.rfind('_') + 1 iend = cfg.TRAIN.NET_G.rfind('.') count = cfg.TRAIN.NET_G[istart:iend] count = int(count) + 1 if cfg.TRAIN.NET_D != '': for i in range(len(netsD)): print('Load %s_%d.pth' % (cfg.TRAIN.NET_D, i)) state_dict = torch.load('%s_%d.pth' % (cfg.TRAIN.NET_D, i)) netsD[i].load_state_dict(state_dict) if cfg.CUDA: netG.cuda() for i in range(len(netsD)): netsD[i].cuda() return netG, netsD, len(netsD), count
def build_models(self): netG = G_NET(len(self.cats_index_dict)) netINSD = INS_D_NET(len(self.cats_index_dict)) netGLBD = GLB_D_NET(len(self.cats_index_dict)) netG.apply(weights_init) netINSD.apply(weights_init) netGLBD.apply(weights_init) if cfg.CUDA: netG.cuda() netINSD.cuda() netGLBD.cuda() if len(cfg.GPU_IDS) > 1: netG = nn.DataParallel(netG) netG.to(self.device) netINSD = nn.DataParallel(netINSD) netINSD.to(self.device) netGLBD = nn.DataParallel(netGLBD) netGLBD.to(self.device) # ########################################################### # epoch = 0 if cfg.TRAIN.NET_G != '': state_dict = \ torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load G from: ', cfg.TRAIN.NET_G) filename = path_leaf(cfg.TRAIN.NET_G) istart = filename.rfind('_') + 1 iend = filename.rfind('.') epoch = filename[istart:iend] epoch = int(epoch) + 1 Gname = cfg.TRAIN.NET_G s_tmp = Gname[:Gname.rfind('/')] Dname = '%s/netINSD.pth' % (s_tmp) print('Load INSD from: ', Dname) state_dict = \ torch.load(Dname, map_location=lambda storage, loc: storage) netINSD.load_state_dict(state_dict) s_tmp = Gname[:Gname.rfind('/')] Dname = '%s/netGLBD.pth' % (s_tmp) print('Load GLBD from: ', Dname) state_dict = \ torch.load(Dname, map_location=lambda storage, loc: storage) netGLBD.load_state_dict(state_dict) return [netG, netINSD, netGLBD, epoch]
def evaluate(self, split_dir): if cfg.TRAIN.NET_G == '': print('Error: the path for morels is not found!') else: # Build and load the generator netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=self.gpus) print(netG) # state_dict = torch.load(cfg.TRAIN.NET_G) state_dict = \ torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_G) # the path to save generated images s_tmp = cfg.TRAIN.NET_G istart = s_tmp.rfind('_') + 1 iend = s_tmp.rfind('.') iteration = int(s_tmp[istart:iend]) s_tmp = s_tmp[:s_tmp.rfind('/')] save_dir = '%s/iteration%d/%s' % (s_tmp, iteration, split_dir) if cfg.TEST.B_EXAMPLE: folder = '%s/super' % (save_dir) else: folder = '%s/single' % (save_dir) print('Make a new folder: ', folder) mkdir_p(folder) nz = cfg.GAN.Z_DIM noise = Variable(torch.FloatTensor(self.batch_size, nz)) if cfg.CUDA: netG.cuda() noise = noise.cuda() # switch to evaluate mode netG.eval() num_batches = int(cfg.TEST.SAMPLE_NUM / self.batch_size) cnt = 0 for step in xrange(num_batches): noise.data.normal_(0, 1) fake_imgs, _, _ = netG(noise) if cfg.TEST.B_EXAMPLE: self.save_superimages(fake_imgs[-1], folder, cnt, 256) else: self.save_singleimages(fake_imgs[-1], folder, cnt, 256) # self.save_singleimages(fake_imgs[-2], folder, 128) # self.save_singleimages(fake_imgs[-3], folder, 64) cnt += self.batch_size
def load_network(gpus): netG = G_NET(start_depth) netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=gpus) print(netG) netsD = [] netsD.append(D_NET_BG(start_depth)) netsD.append(D_NET_PC(1, start_depth)) netsD.append(D_NET_PC(2, start_depth)) netsD.append(D_NET_BG_PG(start_depth)) for i in range(len(netsD)): netsD[i].apply(weights_init) netsD[i] = torch.nn.DataParallel(netsD[i], device_ids=gpus) print(netsD[i]) count = 0 if cfg.TRAIN.NET_G != '': state_dict = torch.load(cfg.TRAIN.NET_G) netG.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_G) istart = cfg.TRAIN.NET_G.rfind('netG_') + 5 iend = cfg.TRAIN.NET_G.rfind('_depth') count = cfg.TRAIN.NET_G[istart:iend] count = int(count) istart = cfg.TRAIN.NET_G.rfind('depth') iend = cfg.TRAIN.NET_G.rfind('.') _depth = cfg.TRAIN.NET_G[istart:iend] if cfg.TRAIN.NET_D != '': for i in range(len(netsD)): print('Load %s%d_%s.pth' % (cfg.TRAIN.NET_D, i, _depth)) state_dict = torch.load('%s%d_%s.pth' % (cfg.TRAIN.NET_D, i, _depth)) netsD[i].load_state_dict(state_dict) if cfg.CUDA: netG.cuda() for i in range(len(netsD)): netsD[i].cuda() return netG, netsD, len(netsD), count
def models(word_len): text_encoder = cache.get('text_encoder') if text_encoder is None: text_encoder = RNN_ENCODER(word_len, nhidden=256) state_dict = torch.load('../DAMSMencoders/coco/text_encoder100.pth', map_location=lambda storage, loc: storage) text_encoder.load_state_dict(state_dict) text_encoder.cuda() text_encoder.eval() #cache.set('text_encoder', text_encoder, timeout=60 * 60 * 24) netG = cache.get('netG') if netG is None: netG = G_NET() state_dict = torch.load('../models/coco_AttnGAN2.pth', map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) if cfg.CUDA: netG.cuda() netG.eval() #cache.set('netG', netG, timeout=60 * 60 * 24) return text_encoder, netG
def evaluate(self, split_dir): if cfg.TRAIN.NET_G == '': print('Error: the path for morels is not found!') else: # Build and load the generator if split_dir == 'test': split_dir = 'valid' netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=self.gpus) print(netG) # state_dict = torch.load(cfg.TRAIN.NET_G) state_dict = \ torch.load('/content/drive/My Drive/Colab Notebooks/StackGAN-v2-master/models/netG_210000.pth', map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_G) # the path to save generated images s_tmp = cfg.TRAIN.NET_G istart = s_tmp.rfind('_') + 1 iend = s_tmp.rfind('.') iteration = int(s_tmp[istart:iend]) s_tmp = s_tmp[:s_tmp.rfind('/')] save_dir = '%s/iteration%d' % (s_tmp, iteration) nz = cfg.GAN.Z_DIM noise = Variable(torch.FloatTensor(self.batch_size, nz)) if cfg.CUDA: netG.cuda() noise = noise.cuda() # switch to evaluate mode netG.eval() for step, data in enumerate(self.data_loader, 0): imgs, t_embeddings, filenames = data if cfg.CUDA: t_embeddings = Variable(t_embeddings).cuda() else: t_embeddings = Variable(t_embeddings) # print(t_embeddings[:, 0, :], t_embeddings.size(1)) embedding_dim = t_embeddings.size(1) batch_size = imgs[0].size(0) noise.data.resize_(batch_size, nz) noise.data.normal_(0, 1) fake_img_list = [] for i in range(embedding_dim): fake_imgs, _, _ = netG(noise, t_embeddings[:, i, :]) if cfg.TEST.B_EXAMPLE: # fake_img_list.append(fake_imgs[0].data.cpu()) # fake_img_list.append(fake_imgs[1].data.cpu()) fake_img_list.append(fake_imgs[2].data.cpu()) else: self.save_singleimages(fake_imgs[-1], filenames, save_dir, split_dir, i, 256) # self.save_singleimages(fake_imgs[-2], filenames, # save_dir, split_dir, i, 128) # self.save_singleimages(fake_imgs[-3], filenames, # save_dir, split_dir, i, 64) # break if cfg.TEST.B_EXAMPLE: # self.save_superimages(fake_img_list, filenames, # save_dir, split_dir, 64) # self.save_superimages(fake_img_list, filenames, # save_dir, split_dir, 128) self.save_superimages(fake_img_list, filenames, save_dir, split_dir, 256)
def evaluate(self, split_dir): inception_model = INCEPTION_V3() # fid_model = FID_INCEPTION() if cfg.CUDA: inception_model.cuda() # fid_model.cuda() inception_model.eval() # fid_model.eval() if cfg.TRAIN.NET_G == '': print('Error: the path for models is not found!') else: # Build and load the generator if split_dir == 'test': split_dir = 'valid' netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=self.gpus) # print(netG) # state_dict = torch.load(cfg.TRAIN.NET_G) state_dict = \ torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_G) # the path to save generated images # s_tmp = cfg.TRAIN.NET_G # istart = s_tmp.rfind('_') + 1 # iend = s_tmp.rfind('.') # iteration = int(s_tmp[istart:iend]) # s_tmp = s_tmp[:s_tmp.rfind('/')] # save_dir = '%s/iteration%d' % (s_tmp, iteration) # save_dir = 'C:\\Users\\alper\\PycharmProjects\\MSGAN\\StackGAN++-Mode-Seeking\\results' save_dir = "D:\\results" nz = cfg.GAN.Z_DIM n_samples = 50 # noise = Variable(torch.FloatTensor(self.batch_size, nz)) noise = Variable(torch.FloatTensor(n_samples, nz)) if cfg.CUDA: netG.cuda() noise = noise.cuda() # switch to evaluate mode netG.eval() for step, data in enumerate(tqdm(self.data_loader)): # if step == 8: # break imgs, t_embeddings, filenames = data if cfg.CUDA: t_embeddings = Variable(t_embeddings).cuda() else: t_embeddings = Variable(t_embeddings) # print(t_embeddings[:, 0, :], t_embeddings.size(1)) embedding_dim = t_embeddings.size(1) # batch_size = imgs[0].size(0) # noise.data.resize_(batch_size, nz) noise.data.normal_(0, 1) fake_img_list = [] inception_score_list = [] fid_list = [] score_list = [] predictions = [] fids = [] for i in range(embedding_dim): inception_score_list.append([]) fid_list.append([]) score_list.append([]) emb_imgs = [] for j in range(n_samples): noise_j = noise[j].unsqueeze(0) t_embeddings_i = t_embeddings[:, i, :] fake_imgs, _, _ = netG(noise_j, t_embeddings_i) # filenames_number ='_sample_%2.2d'%(j) # filenames_new = [] # filenames_new.append(filenames[-1]+filenames_number) # filenames_new = tuple(filenames_new) # for selecting reasonable images pred = inception_model(fake_imgs[-1].detach()) pred = pred.data.cpu().numpy() predictions.append(pred) bird_indices = [ 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 21, 23, 81, 84, 85, 86, 88, 90, 91, 93, 94, 95, 96, 97, 99, 129, 130, 133, 134, 135, 138, 141, 142, 143, 144, 146, 517 ] score = np.max(pred[0, bird_indices]) score_list[i].append((j, score)) emb_imgs.append(fake_imgs[2].data.cpu()) if cfg.TEST.B_EXAMPLE: # fake_img_list.append(fake_imgs[0].data.cpu()) # fake_img_list.append(fake_imgs[1].data.cpu()) fake_img_list.append(fake_imgs[2].data.cpu()) else: self.save_singleimages(fake_imgs[-1], filenames, j, save_dir, split_dir, i, 256) # self.save_singleimages(fake_imgs[-2], filenames, # save_dir, split_dir, i, 128) # self.save_singleimages(fake_imgs[-3], filenames, # save_dir, split_dir, i, 64) # break score_list[i] = sorted(score_list[i], key=lambda x: x[1], reverse=True)[:5] # for FID score # ffi = [i[0].numpy() for i in emb_imgs] fake_filtered_images = [ fake_img_list[i][0].numpy() for i in range(len(fake_img_list)) ] img_dir = os.path.join(cfg.DATA_DIR, "CUB_200_2011", "images", filenames[0].split("/")[0]) img_files = [ os.path.join(img_dir, i) for i in os.listdir(img_dir) ] # act_real = get_activations(img_files, fid_model) # mu_real, sigma_real = get_fid_stats(act_real) # print("mu_real: {}, sigma_real: {}".format(mu_real, sigma_real)) np_imgs = np.array(fake_filtered_images) # print(np_imgs.shape) # # print(type(np_imgs[0])) # act_fake = get_activations(np_imgs, fid_model, img=True) # mu_fake, sigma_fake = get_fid_stats(act_fake) # fid_score = frechet_distance(mu_real, sigma_real, mu_fake, sigma_fake) # fids.append(fid_score) # print("mu_fake: {}, sigma_fake: {}".format(mu_fake, sigma_fake)) # print(inception_score_list) # # calculate inception score # predictions = np.concatenate(predictions, 0) # mean, std = compute_inception_score(predictions, 10) # mean_nlpp, std_nlpp = \ # negative_log_posterior_probability(predictions, 10) # inception_score_list.append((mean, std, mean_nlpp, std_nlpp)) # # for FID score # fake_filtered_images = [fake_img_list[i*n_samples + k[0]][0].numpy() for i, j in enumerate(score_list) for k in j] # # fake_filtered_images = [fake_img_list[i][0].numpy() for i in range(len(fake_img_list))] # img_dir = os.path.join(cfg.DATA_DIR, "CUB_200_2011", "images", filenames[0].split("/")[0]) # img_files = [os.path.join(img_dir, i) for i in os.listdir(img_dir)] # # act_real = get_activations(img_files, fid_model) # mu_real, sigma_real = get_fid_stats(act_real) # # print("mu_real: {}, sigma_real: {}".format(mu_real, sigma_real)) # # np_imgs = np.array(fake_filtered_images) # # print(np_imgs.shape) # # # print(type(np_imgs[0])) # act_fake = get_activations(np_imgs, fid_model, img=True) # mu_fake, sigma_fake = get_fid_stats(act_fake) # # print("mu_fake: {}, sigma_fake: {}".format(mu_fake, sigma_fake)) # # # fid_score = frechet_distance(mu_real, sigma_real, mu_fake, sigma_fake) # fid_score = np.mean(fids) # fid_list.append(fid_score) # stats = 'step: {}, FID: {}, inception_score: {}, nlpp: {}\n'.format(step, fid_score, (mean, std), (mean_nlpp, std_nlpp)) # with open("results\\stats.txt", "a+") as f: # f.write(stats) # print(stats) if cfg.TEST.B_EXAMPLE: # self.save_superimages(fake_img_list, filenames, # save_dir, split_dir, 64) # self.save_superimages(fake_img_list, filenames, # save_dir, split_dir, 128) if cfg.TEST.FILTER: images_to_save = [ fake_img_list[i * n_samples + k[0]] for i, j in enumerate(score_list) for k in j ] else: images_to_save = fake_img_list self.save_superimages(images_to_save, filenames, save_dir, split_dir, 256)
def gen_samples(self, idx): text_encoder = RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM) state_dict = torch.load(cfg.TRAIN.NET_E, map_location=lambda storage, loc: storage) text_encoder.load_state_dict(state_dict) print('Load text encoder from: {}'.format(cfg.TRAIN.NET_E)) text_encoder = text_encoder.cuda() text_encoder.eval() netG = G_NET() state_dict = torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load G from: {}'.format(cfg.TRAIN.NET_G)) netG.cuda() netG.eval() s_tmp = cfg.TRAIN.NET_G[:cfg.TRAIN.NET_G.rfind('.pth')] save_dir = '%s/samples' % (s_tmp) mkdir_p(save_dir) batch_size = self.batch_size nz = cfg.GAN.Z_DIM with torch.no_grad(): noise = Variable(torch.FloatTensor(batch_size, nz)) noise = noise.cuda() step = 0 data_iter = iter(self.data_loader) while step < self.num_batches: data = data_iter.next() imgs, captions, cap_lens, class_ids, sorted_cap_indices = self.prepare_data( data) hidden = text_encoder.init_hidden(batch_size) words_embs, sent_emb = text_encoder(captions, cap_lens, hidden) mask = (captions == 0) num_words = words_embs.size(2) if mask.size(1) > num_words: mask = mask[:, :num_words] for i in range(10): noise.data.normal_(0, 1) fake_imgs, attention_maps, _, _ = netG(noise, sent_emb, words_embs, mask) cap_lens_np = cap_lens.cpu().data.numpy() for j in range(batch_size): right_idx = step * batch_size + sorted_cap_indices[j] save_name = '%s/%d_s_%d' % (save_dir, i, right_idx) original_idx = idx[right_idx] shutil.copyfile( '/.local/AttnGAN/data/FashionSynthesis/test/original/test128_{}.png' .format(original_idx + 1), save_dir + '/test128_{0}_{1}.png'.format( original_idx + 1, right_idx)) for k in range(len(fake_imgs)): im = fake_imgs[k][j].data.cpu().numpy() im = (im + 1.0) * 127.5 im = im.astype(np.uint8) im = np.transpose(im, (1, 2, 0)) im = Image.fromarray(im) fullpath = '%s_g%d.png' % (save_name, k) im.save(fullpath) for k in range(len(attention_maps)): if len(fake_imgs) > 1: im = fake_imgs[k + 1].detach().cpu() else: im = fake_imgs[0].detach().cpu() attn_maps = attention_maps[k] att_sze = attn_maps.size(2) img_set, sentences = \ build_super_images2(im[j].unsqueeze(0), captions[j].unsqueeze(0), [cap_lens_np[j]], self.ixtoword, [attn_maps[j]], att_sze) if img_set is not None: im = Image.fromarray(img_set) fullpath = '%s_a%d.png' % (save_name, k) im.save(fullpath) step += 1
def evaluate(self, split_dir): if cfg.TRAIN.NET_G == '': print('Error: the path for morels is not found!') else: # Build and load the generator if split_dir == 'test': split_dir = 'valid' netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=self.gpus) print(netG) #state_dict = torch.load(cfg.TRAIN.NET_G) state_dict = \ torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_G) # the path to save generated images # s_tmp = cfg.TRAIN.NET_G # istart = s_tmp.rfind('_') + 1 # iend = s_tmp.rfind('.') # iteration = int(s_tmp[istart:iend]) # s_tmp = s_tmp[:s_tmp.rfind('/')] # save_dir = '%s/iteration%d' % (s_tmp, iteration) save_dir = 'J:\\qimao\\Text-to-image\\results\\Plugin-v1-210K-random50' nz = cfg.GAN.Z_DIM n_samples = 50 # noise = Variable(torch.FloatTensor(self.batch_size, nz)) noise = Variable(torch.FloatTensor(n_samples, nz)) if cfg.CUDA: netG.cuda() noise = noise.cuda() # switch to evaluate mode netG.eval() for step, data in enumerate(self.data_loader, 0): imgs, t_embeddings, filenames = data if cfg.CUDA: t_embeddings = Variable(t_embeddings).cuda() else: t_embeddings = Variable(t_embeddings) # print(t_embeddings[:, 0, :], t_embeddings.size(1)) embedding_dim = t_embeddings.size(1) # batch_size = imgs[0].size(0) # noise.data.resize_(batch_size, nz) noise.data.normal_(0, 1) fake_img_list = [] for i in range(embedding_dim): for j in range(n_samples): noise_j = noise[j].unsqueeze(0) t_embeddings_i = t_embeddings[:, i, :] #hmxhmxhmxhmxhmxhmxhmxhmxhmxhmxhmxhmxhmxstart fake_imgs, layers_output, _, _ = netG( noise_j, t_embeddings_i) if len(layers_output) != len(lamdas): print("please check lamdas length") #hmxhmxhmxhmxhmxhmxhmxhmxhmxhmxhmxhmxhmxend # filenames_number ='_sample_%2.2d'%(j) # filenames_new = [] # filenames_new.append(filenames[-1]+filenames_number) # filenames_new = tuple(filenames_new) if cfg.TEST.B_EXAMPLE: # fake_img_list.append(fake_imgs[0].data.cpu()) # fake_img_list.append(fake_imgs[1].data.cpu()) fake_img_list.append(fake_imgs[2].data.cpu()) else: self.save_singleimages(fake_imgs[-1], filenames, j, save_dir, split_dir, i, 256) # self.save_singleimages(fake_imgs[-2], filenames, # save_dir, split_dir, i, 128) # self.save_singleimages(fake_imgs[-3], filenames, # save_dir, split_dir, i, 64) # break if cfg.TEST.B_EXAMPLE: # self.save_superimages(fake_img_list, filenames, # save_dir, split_dir, 64) # self.save_superimages(fake_img_list, filenames, # save_dir, split_dir, 128) self.save_superimages(fake_img_list, filenames, save_dir, split_dir, 256)
def build_models(self): # ###################encoders######################################## # if cfg.TRAIN.NET_E == '': print('Error: no pretrained text-image encoders') return image_encoder = CNN_ENCODER(cfg.TEXT.EMBEDDING_DIM) img_encoder_path = cfg.TRAIN.NET_E.replace('text_encoder', 'image_encoder') state_dict = \ torch.load(img_encoder_path, map_location=lambda storage, loc: storage) image_encoder.load_state_dict(state_dict) for p in image_encoder.parameters(): p.requires_grad = False print('Load image encoder from:', img_encoder_path) image_encoder.eval() text_encoder = \ RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM) state_dict = \ torch.load(cfg.TRAIN.NET_E, map_location=lambda storage, loc: storage) text_encoder.load_state_dict(state_dict) for p in text_encoder.parameters(): p.requires_grad = False print('Load text encoder from:', cfg.TRAIN.NET_E) text_encoder.eval() # #######################generator and discriminators############## # netG = G_NET(len(self.cats_index_dict)) netsPatD, netsShpD = [], [] if cfg.TREE.BRANCH_NUM > 0: netsPatD.append(PAT_D_NET64()) netsShpD.append(SHP_D_NET64(len(self.cats_index_dict))) if cfg.TREE.BRANCH_NUM > 1: netsPatD.append(PAT_D_NET128()) netsShpD.append(SHP_D_NET128(len(self.cats_index_dict))) if cfg.TREE.BRANCH_NUM > 2: netsPatD.append(PAT_D_NET256()) netsShpD.append(SHP_D_NET256(len(self.cats_index_dict))) netObjSSD = OBJ_SS_D_NET(len(self.cats_index_dict)) netObjLSD = OBJ_LS_D_NET(len(self.cats_index_dict)) netG.apply(weights_init) netObjSSD.apply(weights_init) netObjLSD.apply(weights_init) for i in range(len(netsPatD)): netsPatD[i].apply(weights_init) netsShpD[i].apply(weights_init) print('# of netsPatD', len(netsPatD)) # ########################################################### # if cfg.CUDA: text_encoder = text_encoder.cuda() image_encoder = image_encoder.cuda() netG.cuda() netObjSSD.cuda() netObjLSD.cuda() for i in range(len(netsPatD)): netsPatD[i].cuda() netsShpD[i].cuda() if len(cfg.GPU_IDS) > 1: text_encoder = nn.DataParallel(text_encoder) text_encoder.to(self.device) image_encoder = nn.DataParallel(image_encoder) image_encoder.to(self.device) netG = nn.DataParallel(netG) netG.to(self.device) netObjSSD = nn.DataParallel(netObjSSD) netObjSSD.to(self.device) netObjLSD = nn.DataParallel(netObjLSD) netObjLSD.to(self.device) for i in range(len(netsPatD)): netsPatD[i] = nn.DataParallel(netsPatD[i]) netsPatD[i].to(self.device) netsShpD[i] = nn.DataParallel(netsShpD[i]) netsShpD[i].to(self.device) # epoch = 0 if cfg.TRAIN.NET_G != '': state_dict = \ torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load G from: ', cfg.TRAIN.NET_G) istart = cfg.TRAIN.NET_G.rfind('_') + 1 iend = cfg.TRAIN.NET_G.rfind('.') epoch = cfg.TRAIN.NET_G[istart:iend] epoch = int(epoch) + 1 Gname = cfg.TRAIN.NET_G for i in range(len(netsPatD)): s_tmp = Gname[:Gname.rfind('/')] Dname = '%s/netPatD%d.pth' % (s_tmp, i) print('Load PatD from: ', Dname) state_dict = \ torch.load(Dname, map_location=lambda storage, loc: storage) netsPatD[i].load_state_dict(state_dict) Dname = '%s/netShpD%d.pth' % (s_tmp, i) print('Load ShpD from: ', Dname) state_dict = \ torch.load(Dname, map_location=lambda storage, loc: storage) netsShpD[i].load_state_dict(state_dict) s_tmp = Gname[:Gname.rfind('/')] Dname = '%s/netObjSSD.pth' % (s_tmp) print('Load ObjSSD from: ', Dname) state_dict = \ torch.load(Dname, map_location=lambda storage, loc: storage) netObjSSD.load_state_dict(state_dict) s_tmp = Gname[:Gname.rfind('/')] Dname = '%s/netObjLSD.pth' % (s_tmp) print('Load ObjLSD from: ', Dname) state_dict = \ torch.load(Dname, map_location=lambda storage, loc: storage) netObjLSD.load_state_dict(state_dict) return [ text_encoder, image_encoder, netG, netsPatD, netsShpD, netObjSSD, netObjLSD, epoch ]
def sample(self, split_dir, num_samples=25, draw_bbox=False): from PIL import Image, ImageDraw, ImageFont import cPickle as pickle import torchvision import torchvision.utils as vutils if cfg.TRAIN.NET_G == '': print('Error: the path for model NET_G is not found!') else: if split_dir == 'test': split_dir = 'valid' # Build and load the generator text_encoder = RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM) state_dict = \ torch.load(cfg.TRAIN.NET_E, map_location=lambda storage, loc: storage) text_encoder.load_state_dict(state_dict) print('Load text encoder from:', cfg.TRAIN.NET_E) text_encoder = text_encoder.cuda() text_encoder.eval() batch_size = cfg.TRAIN.BATCH_SIZE nz = cfg.GAN.Z_DIM model_dir = cfg.TRAIN.NET_G state_dict = torch.load(model_dir, map_location=lambda storage, loc: storage) # state_dict = torch.load(cfg.TRAIN.NET_G) netG = G_NET() print('Load G from: ', model_dir) netG.apply(weights_init) netG.load_state_dict(state_dict["netG"]) netG.cuda() netG.eval() # the path to save generated images s_tmp = model_dir[:model_dir.rfind('.pth')] save_dir = '%s_%s' % (s_tmp, split_dir) mkdir_p(save_dir) ####################################### noise = Variable(torch.FloatTensor(9, nz)) imsize = 256 for step, data in enumerate(self.data_loader, 0): if step >= num_samples: break imgs, captions, cap_lens, class_ids, keys, transformation_matrices, label_one_hot, bbox = \ prepare_data(data, eval=True) transf_matrices_inv = transformation_matrices[1][0].unsqueeze(0) label_one_hot = label_one_hot[0].unsqueeze(0) img = imgs[-1][0] val_image = img.view(1, 3, imsize, imsize) hidden = text_encoder.init_hidden(batch_size) # words_embs: batch_size x nef x seq_len # sent_emb: batch_size x nef words_embs, sent_emb = text_encoder(captions, cap_lens, hidden) words_embs, sent_emb = words_embs[0].unsqueeze(0).detach(), sent_emb[0].unsqueeze(0).detach() words_embs = words_embs.repeat(9, 1, 1) sent_emb = sent_emb.repeat(9, 1) mask = (captions == 0) mask = mask[0].unsqueeze(0) num_words = words_embs.size(2) if mask.size(1) > num_words: mask = mask[:, :num_words] mask = mask.repeat(9, 1) transf_matrices_inv = transf_matrices_inv.repeat(9, 1, 1, 1) label_one_hot = label_one_hot.repeat(9, 1, 1) ####################################################### # (2) Generate fake images ###################################################### noise.data.normal_(0, 1) inputs = (noise, sent_emb, words_embs, mask, transf_matrices_inv, label_one_hot) with torch.no_grad(): fake_imgs, _, mu, logvar = nn.parallel.data_parallel(netG, inputs, self.gpus) data_img = torch.FloatTensor(10, 3, imsize, imsize).fill_(0) data_img[0] = val_image data_img[1:10] = fake_imgs[-1] if draw_bbox: for idx in range(3): x, y, w, h = tuple([int(imsize*x) for x in bbox[0, idx]]) w = imsize-1 if w > imsize-1 else w h = imsize-1 if h > imsize-1 else h if x <= -1: break data_img[:10, :, y, x:x + w] = 1 data_img[:10, :, y:y + h, x] = 1 data_img[:10, :, y+h, x:x + w] = 1 data_img[:10, :, y:y + h, x + w] = 1 # get caption cap = captions[0].data.cpu().numpy() sentence = "" for j in range(len(cap)): if cap[j] == 0: break word = self.ixtoword[cap[j]].encode('ascii', 'ignore').decode('ascii') sentence += word + " " sentence = sentence[:-1] vutils.save_image(data_img, '{}/{}_{}.png'.format(save_dir, sentence, step), normalize=True, nrow=10) print("Saved {} files to {}".format(step, save_dir))
def sampling(self, split_dir): if cfg.TRAIN.NET_G == '': print('Error: the path for morels is not found!') else: if split_dir == 'test': split_dir = 'valid' # Build and load the generator netG = G_NET(len(self.cats_index_dict)) netG.apply(weights_init) netG.eval() if cfg.CUDA: netG.cuda() if len(cfg.GPU_IDS) > 1: netG = nn.DataParallel(netG) netG.to(self.device) batch_size = self.batch_size nz = cfg.GAN.Z_DIM noise = Variable( torch.FloatTensor(batch_size, cfg.ROI.BOXES_NUM, len(self.cats_index_dict) * 4)) noise = noise.cuda() model_dir = cfg.TRAIN.NET_G state_dict = \ torch.load(model_dir, map_location=lambda storage, loc: storage) # state_dict = torch.load(cfg.TRAIN.NET_G) netG.load_state_dict(state_dict) print('Load G from: ', model_dir) # the path to save generated images s_tmp = model_dir[:model_dir.rfind('.pth')] save_dir = '%s/%s' % (s_tmp, split_dir) mkdir_p(save_dir) cnt = 0 for _ in range(1): # (cfg.TEXT.CAPTIONS_PER_IMAGE): for step, data in enumerate(self.data_loader, 0): cnt += batch_size if step % 100 == 0: print('step: ', step) # if step > 50: # break imgs, pooled_hmaps, hmaps, bbox_maps_fwd, bbox_maps_bwd, bbox_fmaps, \ rois, fm_rois, num_rois, class_ids, keys = prepare_data(data) num_rois = num_rois.data.cpu().numpy() cats_list = [] for batch_index in range(self.batch_size): cats = [] for roi_index in range(num_rois[batch_index]): rela_cat_id = int(rois[batch_index, roi_index, 4]) abs_cat_id = self.cats_dict[rela_cat_id][0] cat = self.ixtoword[abs_cat_id].encode( 'ascii', 'ignore').decode('ascii') cats.append(cat) cats_list.append(cats) ####################################################### # (2) Generate fake images ###################################################### max_num_roi = max(num_rois) noise.data.normal_(0, 1) fake_hmaps = netG(noise[:, :max_num_roi], bbox_maps_fwd, bbox_maps_bwd, bbox_fmaps) fake_hmaps = fake_hmaps.repeat(1, 1, 3, 1, 1) for j in range(batch_size): s_tmp = '%s/single/%s' % (save_dir, keys[j]) folder = s_tmp[:s_tmp.rfind('/')] if not os.path.isdir(folder): print('Make a new folder: ', folder) mkdir_p(folder) k = 0 # for k in range(len(fake_imgs)): im = fake_hmaps[j][k].data.cpu().numpy() minV = im.min() maxV = im.max() im = (im - minV) / (maxV - minV) im *= 255 im = im.astype(np.uint8) im = np.transpose(im, (1, 2, 0)) im = Image.fromarray(im) cat = cats_list[j][k] fullpath = '{0}_{1}.png'.format(s_tmp, cat) im.save(fullpath)
nz = 100 n_samples = 10 fid_model = FID_INCEPTION() fid_model.cuda() fid_model.eval() inception_model = INCEPTION_V3() inception_model.cuda() inception_model.eval() G_NET_Path = 'C:\\Users\\alper\\PycharmProjects\\MSGAN\\StackGAN++-Mode-Seeking\\models\\ours_new.pth' netG = G_NET() netG.apply(weights_init) torch.cuda.set_device(0) netG = netG.cuda() netG = torch.nn.DataParallel(netG, device_ids=[0]) state_dict = \ torch.load(G_NET_Path, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) noise = Variable(torch.FloatTensor(n_samples, nz)) noise = noise.cuda() netG.eval() def generate_fake_images(): emb = dataset.embeddings emb = np.reshape(emb, (emb.shape[0]*emb.shape[1], emb.shape[2])) np.random.shuffle(emb)
class Generator: def __init__(self, caption_file, saveable, cuda=False, profile=False): # flags self.cuda = cuda self.profile = profile if self.profile: print('Initializing Generator...') print('cuda={}\nprofile={}'.format(self.cuda, self.profile)) # load caption indices x = pickle.load(open(caption_file, 'rb')) self.ixtoword = x[2] self.wordtoix = x[3] del x # load text encoder self.text_encoder = RNN_ENCODER(len(self.wordtoix), nhidden=cfg.TEXT.EMBEDDING_DIM) state_dict = torch.load(cfg.TRAIN.NET_E, map_location=lambda storage, loc: storage) self.text_encoder.load_state_dict(state_dict) if self.cuda: self.text_encoder.cuda() self.text_encoder.eval() # load generative model self.netG = G_NET() state_dict = torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) self.netG.load_state_dict(state_dict) if self.cuda: self.netG.cuda() self.netG.eval() # saveable items -> push to storage self.saveable = saveable def vectorize_caption(self, caption, copies): # create caption vector tokens = caption.split(' ') cap_v = [] for t in tokens: t = t.strip().encode('ascii', 'ignore').decode('ascii') if len(t) > 0 and t in self.wordtoix: cap_v.append(self.wordtoix[t]) # expected state for single generation captions = np.zeros((copies, len(cap_v))) for i in range(copies): captions[i,:] = np.array(cap_v) cap_lens = np.zeros(copies) + len(cap_v) return captions.astype(int), cap_lens.astype(int), len(self.wordtoix) def generate(self, caption, copies=2): # load word vector captions, cap_lens, n_words = self.vectorize_caption(caption, copies) # only one to generate batch_size = captions.shape[0] nz = cfg.GAN.Z_DIM captions = Variable(torch.from_numpy(captions), volatile=True) cap_lens = Variable(torch.from_numpy(cap_lens), volatile=True) noise = Variable(torch.FloatTensor(batch_size, nz), volatile=True) if self.cuda: captions = captions.cuda() cap_lens = cap_lens.cuda() noise = noise.cuda() ####################################################### # (1) Extract text embeddings ####################################################### hidden = self.text_encoder.init_hidden(batch_size) words_embs, sent_emb = self.text_encoder(captions, cap_lens, hidden) mask = (captions == 0) ####################################################### # (2) Generate fake images ####################################################### noise.data.normal_(0, 1) fake_imgs, attention_maps, _, _ = self.netG(noise, sent_emb, words_embs, mask) # G attention cap_lens_np = cap_lens.cpu().data.numpy() # prefix for partitioning images prefix = datetime.now().strftime('%Y/%B/%d/%H_%M_%S_%f') urls = [] # only look at first one for j in range(batch_size): for k in range(len(fake_imgs)): im = fake_imgs[k][j].data.cpu().numpy() im = (im + 1.0) * 127.5 im = im.astype(np.uint8) im = np.transpose(im, (1, 2, 0)) # save using saveable birdy = 'bird_g{}'.format(k) if copies > 2: item = self.saveable.save('{}/{}'.format(prefix, j), birdy, im) else: item = self.saveable.save(prefix, birdy, im) urls.append(item) if copies == 2: for k in range(len(attention_maps)): if len(fake_imgs) > 1: im = fake_imgs[k + 1].detach().cpu() else: im = fake_imgs[0].detach().cpu() attn_maps = attention_maps[k] att_sze = attn_maps.size(2) img_set, sentences = \ build_super_images2(im[j].unsqueeze(0), captions[j].unsqueeze(0), [cap_lens_np[j]], self.ixtoword, [attn_maps[j]], att_sze) if img_set is not None: attnmap = 'attmaps_a{}'.format(k) item = self.saveable.save(prefix, attnmap, img_set) urls.append(item) if copies == 2: break return urls
def sampling(self): if self.args.netG == '': print('Error: the path for models is not found!') else: data_dir = cfg.DATA_DIR if self.args.split == "test_unseen": filepath = os.path.join(data_dir, "test_unseen/class_data.pickle") else: #test_seen filepath = os.path.join(data_dir, "test_seen/class_data.pickle") if os.path.isfile(filepath): with open(filepath, "rb") as f: data_dic = pkl.load(f) class_names = data_dic['classes'] class_ids = data_dic['class_info'] att_dir = os.path.join(data_dir, "CUB_200_2011/attributes") att_np = np.zeros((312, 200)) #for CUB with open(att_dir + "/class_attribute_labels_continuous.txt", "r") as f: for ind, line in enumerate(f.readlines()): line = line.strip("\n") line = list(map(float, line.split())) att_np[:, ind] = line if self.args.kl_loss: netG = G_NET() else: netG = G_NET_not_CA() test_model = "netG_epoch_600.pth" model_path = os.path.join(self.args.netG, "Model", test_model) ## state_dic = torch.load(model_path, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dic) netG.cuda() netG.eval() noise = torch.FloatTensor(self.batch_size, cfg.GAN.Z_DIM) for class_name, class_id in zip(class_names, class_ids): print("now generating, ", class_name) class_dir = os.path.join(self.args.netG, 'valid', test_model[:test_model.rfind(".")], self.args.split, class_name) atts = att_np[:, class_id - 1] atts = np.expand_dims(atts, axis=0) atts = atts.repeat(self.batch_size, axis=0) assert atts.shape == (self.batch_size, 312) if cfg.CUDA: noise = noise.cuda() atts = torch.cuda.FloatTensor(atts) else: atts = torch.FloatTensor(atts) for i in range(self.sample_num): noise.normal_(0, 1) if self.args.kl_loss: fake_imgs, _, _ = nn.parallel.data_parallel( netG, (noise, atts), self.gpus) else: fake_imgs = nn.parallel.data_parallel( netG, (noise, atts), self.gpus) for stage in range(len(fake_imgs)): for num, im in enumerate(fake_imgs[stage]): im = im.detach().cpu() im = im.add_(1).div_(2).mul_(255) im = im.numpy().astype(np.uint8) im = np.transpose(im, (1, 2, 0)) im = Image.fromarray(im) stage_dir = os.path.join(class_dir, "stage_%d" % stage) mkdir_p(stage_dir) img_path = os.path.join(stage_dir, "single_%d.png" % num) im.save(img_path) for j in range(int(self.batch_size / 20)): ## cfg.batch_size==100 one_set = [ fake_imgs[0][j * 20:(j + 1) * 20], fake_imgs[1][j * 20:(j + 1) * 20], fake_imgs[2][j * 20:(j + 1) * 20] ] img_set = build_images(one_set) img_set = Image.fromarray(img_set) super_dir = os.path.join(class_dir, "super") mkdir_p(super_dir) img_path = os.path.join(super_dir, "super_%d.png" % j) img_set.save(img_path)
def build_models(self): # ############################## encoders ############################# # text_encoder = RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM) state_dict = \ torch.load(cfg.TRAIN.NET_E, map_location=lambda storage, loc: storage) text_encoder.load_state_dict(state_dict) print('Load text encoder from:', cfg.TRAIN.NET_E) text_encoder.eval() image_encoder = CNN_ENCODER(cfg.TEXT.EMBEDDING_DIM) img_encoder_path = cfg.TRAIN.NET_E.replace('text_encoder', 'image_encoder') state_dict = \ torch.load(img_encoder_path, map_location=lambda storage, loc: storage) image_encoder.load_state_dict(state_dict) for p in image_encoder.parameters(): p.requires_grad = False print('Load image encoder from:', img_encoder_path) image_encoder.eval() # ########### image generator and (potential) shape generator ########## # netG = G_NET(len(self.cats_index_dict)) netG.apply(weights_init) netG.eval() netShpG = None if cfg.TEST.USE_GT_BOX_SEG > 0: netShpG = SHP_G_NET(len(self.cats_index_dict)) netShpG.apply(weights_init) netShpG.eval() # ################### parallization and initialization ################## # if cfg.CUDA: text_encoder.cuda() image_encoder.cuda() netG.cuda() if cfg.TEST.USE_GT_BOX_SEG > 0: netShpG.cuda() if len(cfg.GPU_IDS) > 1: text_encoder = nn.DataParallel(text_encoder) text_encoder.to(self.device) image_encoder = nn.DataParallel(image_encoder) image_encoder.to(self.device) netG = nn.DataParallel(netG) netG.to(self.device) if cfg.TEST.USE_GT_BOX_SEG > 0: netShpG = nn.DataParallel(netShpG) netShpG.to(self.device) state_dict = torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load G from: ', cfg.TRAIN.NET_G) if cfg.TEST.USE_GT_BOX_SEG > 0: state_dict = torch.load(cfg.TEST.NET_SHP_G, map_location=lambda storage, loc: storage) netShpG.load_state_dict(state_dict) print('Load Shape G from: ', cfg.TEST.NET_SHP_G) return [text_encoder, image_encoder, netG, netShpG]
def evaluate(self, split_dir): if cfg.TRAIN.NET_G == '': print('Error: the path for morels is not found!') else: # Build and load the generator if split_dir == 'test': split_dir = 'valid' netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=self.gpus) print(netG) # state_dict = torch.load(cfg.TRAIN.NET_G) state_dict = \ torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_G) netE = load_embedding_model(self.data_loader.dataset.dictionary) print(netE) nz = cfg.GAN.Z_DIM sample_size = cfg.TEST.NUM_IMAGES noise = Variable(torch.FloatTensor(sample_size, nz)) if cfg.CUDA: netG.cuda() netE.cuda() noise = noise.cuda() # switch to evaluate mode netG.eval() count = 0 output_dir = os.path.join(cfg.OUTPUT_DIR, cfg.EXPERIMENT_NAME) for step, data in enumerate( tqdm(self.data_loader, desc='evaluate'), 0): imgs, txt_ids, txts = data if cfg.CUDA: txt_ids = Variable(txt_ids).cuda() else: txt_ids = Variable(txt_ids) txts_embeddings = netE(txt_ids) batch_size = imgs[0].size(0) imgs64, imgs128, imgs256 = [], [], [] for i in range(0, batch_size): noise.data.normal_(0, 1) txt_embedding = txts_embeddings[i].repeat(sample_size, 1) fake_imgs, _, _ = netG(noise, txt_embedding) imgs64.append(normalize_(fake_imgs[0])) imgs128.append(normalize_(fake_imgs[1])) imgs256.append(normalize_(fake_imgs[2])) save_images_with_text(imgs64, imgs128, imgs256, imgs, txts, batch_size, cfg.TEXT.MAX_LEN, count, output_dir) count = count + batch_size + 1
torch.cuda.set_device(gpus[0]) cudnn.benchmark = True batch_size = 2 netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=gpus) state_dict = \ torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) nz = cfg.GAN.Z_DIM noise = Variable(torch.FloatTensor(batch_size, nz)) netG.cuda() netG.eval() noise = noise.cuda() t_embeddings = load_lua(txt_dir) t_embeddings = t_embeddings.view(-1,1024) t_embeddings = torch.cat((t_embeddings,t_embeddings), 0) t_embeddings = Variable(t_embeddings).cuda() embedding_dim = t_embeddings.size(1) noise.data.resize_(batch_size, nz) noise.data.normal_(0, 1) images, _, _ = netG(noise, t_embeddings) save_singleimages(images[-1], save_dir)
def sample_images(self): sample_size = 24 save_dir = '../sample_images/' save_final = '../sample_finals/' if not os.path.exists(save_dir): os.makedirs(save_dir) if not os.path.exists(save_final): os.makedirs(save_final) random.seed(datetime.now()) depth = cfg.TEST_DEPTH res = 32 * 2**depth if cfg.TRAIN.NET_G == '': print('Error: the path for model not found!') else: # Build and load the generator netG = G_NET(depth) netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=self.gpus) model_dict = netG.state_dict() state_dict = \ torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) state_dict = { k: v for k, v in state_dict.items() if k in model_dict } model_dict.update(state_dict) netG.load_state_dict(model_dict) print('Load ', cfg.TRAIN.NET_G) # Uncomment this to print Generator layers # print(netG) nz = cfg.GAN.Z_DIM noise = torch.FloatTensor(1, nz) # noise.data.normal_(0, 1) # noise = noise.repeat(1, 1) if cfg.CUDA: netG.cuda() noise = noise.cuda() netG.eval() for i in tqdm(range(sample_size)): noise.data.normal_(0, 1) bg_code = torch.zeros([1, cfg.FINE_GRAINED_CATEGORIES]).cuda() p_code = torch.zeros([1, cfg.SUPER_CATEGORIES]).cuda() c_code = torch.zeros([1, cfg.FINE_GRAINED_CATEGORIES]).cuda() b = random.randint(0, cfg.FINE_GRAINED_CATEGORIES - 1) p = random.randint(0, cfg.SUPER_CATEGORIES - 1) c = random.randint(0, cfg.FINE_GRAINED_CATEGORIES - 1) bg_code[0][b] = 1 p_code[0][p] = 1 c_code[0][c] = 1 fake_imgs, fg_imgs, mk_imgs, fgmk_imgs = netG( noise, c_code, 1, p_code, bg_code) # Forward pass through the generator self.save_image(fake_imgs[3 * depth + 0][0], save_dir, '%d_bg' % i) self.save_image(fake_imgs[3 * depth + 1][0], save_dir, '%d_pf' % i) self.save_image(fake_imgs[3 * depth + 2][0], save_dir, '%d_cf' % i) self.save_image(fake_imgs[3 * depth + 2][0], save_final, '%d' % i) # self.save_image(fg_imgs[2 * depth + 0][0], save_dir, 'parent_foreground') # self.save_image(fg_imgs[2 * depth + 1][0], save_dir, 'child_foreground') self.save_image(mk_imgs[2 * depth + 0][0], save_dir, '%d_pmk' % i) self.save_image(mk_imgs[2 * depth + 1][0], save_dir, '%d_cmk' % i)
def evaluate(self, split_dir, n_samples=4, extractor='googlenet', save_dir=None): if cfg.TRAIN.NET_G == '': print('Error: the path for morels is not found!') else: # Build and load the generator if split_dir == 'test': split_dir = 'valid' netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=self.gpus) mapper = EXTRACTOR_MAPPING[extractor]() mapper = torch.nn.DataParallel(mapper, device_ids=self.gpus) set_parameter_requires_grad(netG, False) set_parameter_requires_grad(mapper, False) print(netG) # state_dict = torch.load(cfg.TRAIN.NET_G) state_dict = \ torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_G) if save_dir is None: # the path to save generated images s_tmp = cfg.TRAIN.NET_G istart = s_tmp.rfind('_') + 1 iend = s_tmp.rfind('.') iteration = int(s_tmp[istart:iend]) s_tmp = s_tmp[:s_tmp.rfind('/')] save_dir = '%s/iteration%d' % (s_tmp, iteration) nz = cfg.GAN.Z_DIM if cfg.CUDA: netG.cuda() mapper.cuda() # switch to evaluate mode netG.eval() mapper.eval() synthetic_ds = SyntheticDataset(save_dir) for class_embeddings, synthetic_id in self.data_loader.dataset.embeddings_by_class( ): if cfg.CUDA: class_embeddings = class_embeddings.cuda() class_embeddings = class_embeddings.mean( dim=1) # mean of 10 captions per image for i in range(class_embeddings.size(0)): image_embeddings = class_embeddings[i].repeat(n_samples, 1) noise = torch.randn(n_samples, nz) if cfg.CUDA: noise = noise.cuda() imgs, _, _ = netG(noise, image_embeddings) imgs = imgs[-1] samples = mapper(imgs) synthetic_ds.save_pairs(samples, synthetic_id)
def build_models(self): # ###################encoders######################################## # if cfg.TRAIN.NET_E == '': print('Error: no pretrained text-image encoders') return image_encoder = CNN_ENCODER(cfg.TEXT.EMBEDDING_DIM) img_encoder_path = cfg.TRAIN.NET_E.replace('text_encoder', 'image_encoder') state_dict = \ torch.load(img_encoder_path, map_location=lambda storage, loc: storage) image_encoder.load_state_dict(state_dict) for p in image_encoder.parameters(): p.requires_grad = False print('Load image encoder from:', img_encoder_path) image_encoder.eval() text_encoder = \ RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM) state_dict = \ torch.load(cfg.TRAIN.NET_E, map_location=lambda storage, loc: storage) text_encoder.load_state_dict(state_dict) for p in text_encoder.parameters(): p.requires_grad = False print('Load text encoder from:', cfg.TRAIN.NET_E) text_encoder.eval() # #######################generator and discriminators############## # netsD = [] from model import D_NET64, D_NET128, D_NET256 netG = G_NET() if cfg.TREE.BRANCH_NUM > 0: netsD.append(D_NET64()) if cfg.TREE.BRANCH_NUM > 1: netsD.append(D_NET128()) if cfg.TREE.BRANCH_NUM > 2: netsD.append(D_NET256()) netG.apply(weights_init) # print(netG) for i in range(len(netsD)): netsD[i].apply(weights_init) # print(netsD[i]) print('# of netsD', len(netsD)) epoch = 0 if self.resume: checkpoint_list = sorted([ckpt for ckpt in glob.glob(self.model_dir + "/" + '*.pth')]) latest_checkpoint = checkpoint_list[-1] state_dict = torch.load(latest_checkpoint, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict["netG"]) for i in range(len(netsD)): netsD[i].load_state_dict(state_dict["netD"][i]) epoch = int(latest_checkpoint[-8:-4]) + 1 print("Resuming training from checkpoint {} at epoch {}.".format(latest_checkpoint, epoch)) # if cfg.TRAIN.NET_G != '': state_dict = \ torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load G from: ', cfg.TRAIN.NET_G) istart = cfg.TRAIN.NET_G.rfind('_') + 1 iend = cfg.TRAIN.NET_G.rfind('.') epoch = cfg.TRAIN.NET_G[istart:iend] epoch = int(epoch) + 1 if cfg.TRAIN.B_NET_D: Gname = cfg.TRAIN.NET_G for i in range(len(netsD)): s_tmp = Gname[:Gname.rfind('/')] Dname = '%s/netD%d.pth' % (s_tmp, i) print('Load D from: ', Dname) state_dict = \ torch.load(Dname, map_location=lambda storage, loc: storage) netsD[i].load_state_dict(state_dict) # ########################################################### # if cfg.CUDA: text_encoder = text_encoder.cuda() image_encoder = image_encoder.cuda() netG.cuda() for i in range(len(netsD)): netsD[i].cuda() return [text_encoder, image_encoder, netG, netsD, epoch]
def evaluate(self, split_dir): if cfg.TRAIN.NET_G == '': print('Error: the path for morels is not found!') else: # Build and load the generator if split_dir == 'test': split_dir = 'valid' netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=self.gpus) print(netG) # state_dict = torch.load(cfg.TRAIN.NET_G) state_dict = \ torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_G) # the path to save generated images s_tmp = cfg.TRAIN.NET_G istart = s_tmp.rfind('_') + 1 iend = s_tmp.rfind('.') iteration = int(s_tmp[istart:iend]) s_tmp = s_tmp[:s_tmp.rfind('/')] save_dir = '%s/iteration%d' % (s_tmp, iteration) nz = cfg.GAN.Z_DIM noise = Variable(torch.FloatTensor(self.batch_size, nz)) if cfg.CUDA: netG.cuda() noise = noise.cuda() # switch to evaluate mode netG.eval() for step, data in enumerate(self.data_loader, 0): imgs, t_embeddings, filenames = data if cfg.CUDA: t_embeddings = Variable(t_embeddings).cuda() else: t_embeddings = Variable(t_embeddings) # print(t_embeddings[:, 0, :], t_embeddings.size(1)) embedding_dim = t_embeddings.size(1) batch_size = imgs[0].size(0) noise.data.resize_(batch_size, nz) noise.data.normal_(0, 1) fake_img_list = [] for i in range(embedding_dim): fake_imgs, _, _ = netG(noise, t_embeddings[:, i, :]) if cfg.TEST.B_EXAMPLE: # fake_img_list.append(fake_imgs[0].data.cpu()) # fake_img_list.append(fake_imgs[1].data.cpu()) fake_img_list.append(fake_imgs[2].data.cpu()) else: self.save_singleimages(fake_imgs[-1], filenames, save_dir, split_dir, i, 256) # self.save_singleimages(fake_imgs[-2], filenames, # save_dir, split_dir, i, 128) # self.save_singleimages(fake_imgs[-3], filenames, # save_dir, split_dir, i, 64) # break if cfg.TEST.B_EXAMPLE: # self.save_superimages(fake_img_list, filenames, # save_dir, split_dir, 64) # self.save_superimages(fake_img_list, filenames, # save_dir, split_dir, 128) self.save_superimages(fake_img_list, filenames, save_dir, split_dir, 256)