def inference(path): net = JumpModel() img = tf.placeholder(tf.float32, [None, 640, 720, 3], name='img') label = tf.placeholder(tf.float32, [None, 2], name='label') is_training = tf.placeholder(np.bool, name='is_training') keep_prob = tf.placeholder(np.float32, name='keep_prob') lr = tf.placeholder(np.float32, name='lr') pred = net.forward(img, is_training, keep_prob, 'coarse') saver = tf.train.Saver() sess = tf.Session() sess.run(tf.global_variables_initializer()) ckpt = tf.train.get_checkpoint_state('./train_logs') if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) print('==== successfully restored ====') val_img = get_a_img(path) feed_dict = { img: val_img, is_training: False, keep_prob: 1.0, } pred_out = sess.run(pred, feed_dict=feed_dict) return pred_out
def load_resource(self): self.player = cv2.imread(os.path.join(self.resource_dir, 'player.png'), 0) # network initization self.net = JumpModel() self.net_fine = JumpModelFine() self.img = tf.placeholder(tf.float32, [None, 640, 720, 3], name='img') self.img_fine = tf.placeholder(tf.float32, [None, 320, 320, 3], name='img_fine') self.label = tf.placeholder(tf.float32, [None, 2], name='label') self.is_training = tf.placeholder(np.bool, name='is_training') self.keep_prob = tf.placeholder(np.float32, name='keep_prob') self.pred = self.net.forward(self.img, self.is_training, self.keep_prob) self.pred_fine = self.net_fine.forward(self.img_fine, self.is_training, self.keep_prob) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) all_vars = tf.global_variables() var_coarse = [k for k in all_vars if k.name.startswith('coarse')] var_fine = [k for k in all_vars if k.name.startswith('fine')] self.saver_coarse = tf.train.Saver(var_coarse) self.saver_fine = tf.train.Saver(var_fine) self.saver_coarse.restore(self.sess, self.ckpt) self.saver_fine.restore(self.sess, self.ckpt_fine) print('==== successfully restored ====')
def load_resource(self): self.player = cv2.imread(os.path.join(self.resource_dir, 'player.png'), 0) # network initization self.net = JumpModel() self.net_fine = JumpModelFine() self.img = tf.placeholder(tf.float32, [None, 640, 720, 3], name='img') self.img_fine = tf.placeholder(tf.float32, [None, 320, 320, 3], name='img_fine') self.label = tf.placeholder(tf.float32, [None, 2], name='label') self.is_training = tf.placeholder(np.bool, name='is_training') self.keep_prob = tf.placeholder(np.float32, name='keep_prob') self.pred = self.net.forward(self.img, self.is_training, self.keep_prob) self.pred_fine = self.net_fine.forward(self.img_fine, self.is_training, self.keep_prob) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) all_vars = tf.all_variables() var_coarse = [k for k in all_vars if k.name.startswith('coarse')] var_fine = [k for k in all_vars if k.name.startswith('fine')] self.saver_coarse = tf.train.Saver(var_coarse) self.saver_fine = tf.train.Saver(var_fine) self.saver_coarse.restore(self.sess, self.ckpt) self.saver_fine.restore(self.sess, self.ckpt_fine) print('==== successfully restored ====')
img_name = name[:posi] + '.png' x, y = name[name.index('_h_') + 3: name.index('_h_') + 6], name[name.index('_w_') + 3: name.index('_w_') + 6] x, y = int(x), int(y) img = cv2.imread(img_name) label = np.array([x, y], dtype=np.float32) return img[np.newaxis, :, :, :], label.reshape((1, label.shape[0])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-g', '--gpu', default=None, type=int) args = parser.parse_args() if args is not None: os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) net = JumpModel() dataset = JumpData() img = tf.placeholder(tf.float32, [None, 640, 720, 3], name='img') label = tf.placeholder(tf.float32, [None, 2], name='label') is_training = tf.placeholder(np.bool, name='is_training') keep_prob = tf.placeholder(np.float32, name='keep_prob') lr = tf.placeholder(np.float32, name='lr') pred = net.forward(img, is_training, keep_prob, 'coarse') loss = tf.reduce_mean(tf.sqrt(tf.pow(pred - label, 2) + 1e-12)) tf.summary.scalar('loss', loss) optimizer = tf.train.AdamOptimizer(lr) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimizer.minimize(loss) saver = tf.train.Saver()
6], name[name.index('_w_') + 3:name.index('_w_') + 6] x, y = int(x), int(y) img = cv2.imread(img_name) label = np.array([x, y], dtype=np.float32) return img[np.newaxis, :, :, :], label.reshape((1, label.shape[0])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-g', '--gpu', default=None, type=int) args = parser.parse_args() if args is not None: os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) net = JumpModel() dataset = JumpData() img = tf.placeholder(tf.float32, [None, 640, 720, 3], name='img') label = tf.placeholder(tf.float32, [None, 2], name='label') is_training = tf.placeholder(np.bool, name='is_training') keep_prob = tf.placeholder(np.float32, name='keep_prob') lr = tf.placeholder(np.float32, name='lr') pred = net.forward(img, is_training, keep_prob, 'coarse') loss = tf.reduce_mean(tf.sqrt(tf.pow(pred - label, 2) + 1e-12)) tf.summary.scalar('loss', loss) optimizer = tf.train.AdamOptimizer(lr) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimizer.minimize(loss) saver = tf.train.Saver()
y = 160 + y2 - img.shape[1] y2 = img.shape[1] y1 = y2 - 320 img = img[x1: x2, y1: y2, :] label = np.array([x, y], dtype=np.float32) return img[np.newaxis, :, :, :], label.reshape((1, label.shape[0])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-g', '--gpu', default=None, type=int) args = parser.parse_args() if args is not None: os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) net = JumpModel() dataset = JumpData() img = tf.placeholder(tf.float32, [None, 320, 320, 3], name='img') label = tf.placeholder(tf.float32, [None, 2], name='label') is_training = tf.placeholder(np.bool, name='is_training') keep_prob = tf.placeholder(np.float32, name='keep_prob') lr = tf.placeholder(np.float32, name='lr') pred = net.forward(img, is_training, keep_prob) loss = tf.reduce_mean(tf.sqrt(tf.pow(pred - label, 2) + 1e-12)) tf.summary.scalar('loss', loss) optimizer = tf.train.AdamOptimizer(lr) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimizer.minimize(loss) saver = tf.train.Saver()
class WechatAutoJump(object): def __init__(self, phone, sensitivity, serverURL, debug, resource_dir): self.phone = phone self.sensitivity = sensitivity self.debug = debug self.resource_dir = resource_dir self.step = 0 self.ckpt = os.path.join(self.resource_dir, 'train_logs_coarse/best_model.ckpt-13999') self.ckpt_fine = os.path.join(self.resource_dir, 'train_logs_fine/best_model.ckpt-53999') self.serverURL = serverURL self.load_resource() if self.phone == 'IOS': import wda self.client = wda.Client(self.serverURL) self.s = self.client.session() if self.debug: if not os.path.exists(self.debug): os.mkdir(self.debug) def load_resource(self): self.player = cv2.imread(os.path.join(self.resource_dir, 'player.png'), 0) # network initization self.net = JumpModel() self.net_fine = JumpModelFine() self.img = tf.placeholder(tf.float32, [None, 640, 720, 3], name='img') self.img_fine = tf.placeholder(tf.float32, [None, 320, 320, 3], name='img_fine') self.label = tf.placeholder(tf.float32, [None, 2], name='label') self.is_training = tf.placeholder(np.bool, name='is_training') self.keep_prob = tf.placeholder(np.float32, name='keep_prob') self.pred = self.net.forward(self.img, self.is_training, self.keep_prob) self.pred_fine = self.net_fine.forward(self.img_fine, self.is_training, self.keep_prob) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) all_vars = tf.all_variables() var_coarse = [k for k in all_vars if k.name.startswith('coarse')] var_fine = [k for k in all_vars if k.name.startswith('fine')] self.saver_coarse = tf.train.Saver(var_coarse) self.saver_fine = tf.train.Saver(var_fine) self.saver_coarse.restore(self.sess, self.ckpt) self.saver_fine.restore(self.sess, self.ckpt_fine) print('==== successfully restored ====') def get_current_state(self): '''''' if self.phone == 'Android': os.system('adb shell screencap -p /sdcard/1.png') os.system('adb pull /sdcard/1.png state.png') elif self.phone == 'IOS': self.client.screenshot('state.png') if self.debug: shutil.copyfile( 'state.png', os.path.join(self.debug, 'state_{:03d}.png'.format(self.step))) state = cv2.imread('state.png') self.resolution = state.shape[:2] scale = state.shape[1] / 720. state = cv2.resize(state, (720, int(state.shape[0] / scale)), interpolation=cv2.INTER_NEAREST) if state.shape[0] > 1280: s = (state.shape[0] - 1280) // 2 state = state[s:(s + 1280), :, :] elif state.shape[0] < 1280: s1 = (1280 - state.shape[0]) // 2 s2 = (1280 - state.shape[0]) - s1 pad1 = 255 * np.ones((s1, 720, 3), dtype=np.uint8) pad2 = 255 * np.ones((s2, 720, 3), dtype=np.uint8) state = np.concatenate((pad1, state, pad2), 0) return state def get_player_position(self, state): state = cv2.cvtColor(state, cv2.COLOR_BGR2GRAY) pos = multi_scale_search(self.player, state, 0.3, 10) h, w = int((pos[0] + 13 * pos[2]) / 14.), (pos[1] + pos[3]) // 2 return np.array([h, w]) def get_target_position(self, state, player_pos): feed_dict = { self.img: np.expand_dims(state[320:-320], 0), self.is_training: False, self.keep_prob: 1.0, } pred_out = self.sess.run(self.pred, feed_dict=feed_dict) pred_out = pred_out[0].astype(int) x1 = pred_out[0] - 160 x2 = pred_out[0] + 160 y1 = pred_out[1] - 160 y2 = pred_out[1] + 160 if y1 < 0: y1 = 0 y2 = 320 if y2 > state.shape[1]: y2 = state.shape[1] y1 = y2 - 320 img_fine_in = state[x1:x2, y1:y2, :] feed_dict_fine = { self.img_fine: np.expand_dims(img_fine_in, 0), self.is_training: False, self.keep_prob: 1.0, } pred_out_fine = self.sess.run(self.pred_fine, feed_dict=feed_dict_fine) pred_out_fine = pred_out_fine[0].astype(int) out = pred_out_fine + np.array([x1, y1]) return out def get_target_position_fast(self, state, player_pos): state_cut = state[:player_pos[0], :, :] m1 = (state_cut[:, :, 0] == 245) m2 = (state_cut[:, :, 1] == 245) m3 = (state_cut[:, :, 2] == 245) m = np.uint8(np.float32(m1 * m2 * m3) * 255) b1, b2 = cv2.connectedComponents(m) for i in range(1, np.max(b2) + 1): x, y = np.where(b2 == i) if len(x) > 280 and len(x) < 310: r_x, r_y = x, y h, w = int(r_x.mean()), int(r_y.mean()) return np.array([h, w]) def jump(self, player_pos, target_pos): distance = np.linalg.norm(player_pos - target_pos) press_time = distance * self.sensitivity press_time = int(np.rint(press_time)) press_h, press_w = int(0.82 * self.resolution[0]), self.resolution[1] // 2 if self.phone == 'Android': cmd = 'adb shell input swipe {} {} {} {} {}'.format( press_w, press_h, press_w, press_h, press_time) print(cmd) os.system(cmd) elif self.phone == 'IOS': self.s.tap_hold(press_w, press_h, press_time / 1000.) def debugging(self): current_state = self.state.copy() cv2.circle(current_state, (self.player_pos[1], self.player_pos[0]), 5, (0, 255, 0), -1) cv2.circle(current_state, (self.target_pos[1], self.target_pos[0]), 5, (0, 0, 255), -1) cv2.imwrite( os.path.join( self.debug, 'state_{:03d}_res_h_{}_w_{}.png'.format( self.step, self.target_pos[0], self.target_pos[1])), current_state) def play(self): self.state = self.get_current_state() self.player_pos = self.get_player_position(self.state) if self.phone == 'IOS': self.target_pos = self.get_target_position(self.state, self.player_pos) print('CNN-search: %04d' % self.step) else: try: self.target_pos = self.get_target_position_fast( self.state, self.player_pos) print('fast-search: %04d' % self.step) except UnboundLocalError: self.target_pos = self.get_target_position( self.state, self.player_pos) print('CNN-search: %04d' % self.step) if self.debug: self.debugging() self.jump(self.player_pos, self.target_pos) self.step += 1 time.sleep(1.5) def run(self): try: while True: self.play() except KeyboardInterrupt: pass
class WechatAutoJump(object): def __init__(self, phone, sensitivity, serverURL, debug, resource_dir): self.phone = phone self.sensitivity = sensitivity self.debug = debug self.resource_dir = resource_dir # 初始化已跳跃步数 self.step = 0 self.ckpt = os.path.join(self.resource_dir, 'train_logs_coarse/best_model.ckpt-13999') self.ckpt_fine = os.path.join(self.resource_dir, 'train_logs_fine/best_model.ckpt-53999') self.serverURL = serverURL # 加载:player.png,初始化tf.Session() self.load_resource() if self.phone == 'IOS': import wda # 连接到手机 self.client = wda.Client(self.serverURL) # 启动应用 self.s = self.client.session() if self.debug: if not os.path.exists(self.debug): os.mkdir(self.debug) def load_resource(self): # 加载 小人图片 player.png self.player = cv2.imread(os.path.join(self.resource_dir, 'player.png'), 0) # network initization self.net = JumpModel() self.net_fine = JumpModelFine() # 定义占位符: # 将采集到的大小为1280*720的图像沿x方向上下各截去320*720大小,只保留中心640*720的图像作为训练数据 self.img = tf.placeholder(tf.float32, [None, 640, 720, 3], name='img') self.img_fine = tf.placeholder(tf.float32, [None, 320, 320, 3], name='img_fine') # 定义标签: self.label = tf.placeholder(tf.float32, [None, 2], name='label') self.is_training = tf.placeholder(np.bool, name='is_training') self.keep_prob = tf.placeholder(np.float32, name='keep_prob') # self.pred = self.net.forward(self.img, self.is_training, self.keep_prob) self.pred_fine = self.net_fine.forward(self.img_fine, self.is_training, self.keep_prob) # 初始化并运行 self.sess self.sess = tf.Session() # 对所有的图变量进行集体初始化并开始运行 self.sess.run(tf.global_variables_initializer()) all_vars = tf.all_variables() var_coarse = [k for k in all_vars if k.name.startswith('coarse')] var_fine = [k for k in all_vars if k.name.startswith('fine')] self.saver_coarse = tf.train.Saver(var_coarse) self.saver_fine = tf.train.Saver(var_fine) self.saver_coarse.restore(self.sess, self.ckpt) self.saver_fine.restore(self.sess, self.ckpt_fine) print('==== successfully restored ====') # 获取手机屏幕当前截图, 将截屏缩放成尺寸为:1280*720的图片返回 def get_current_state(self): # 获取当前手机屏截屏,并把图片拉取到程序运行的当前目录 if self.phone == 'Android': os.system('adb shell screencap -p /sdcard/1.png') os.system('adb pull /sdcard/1.png state.png') elif self.phone == 'IOS': self.client.screenshot('state.png') if not os.path.exists('state.png'): raise NameError( 'Cannot obtain screenshot from your phone! Please follow the instructions in readme!' ) if self.debug: shutil.copyfile( 'state.png', os.path.join(self.debug, 'state_{:03d}.png'.format(self.step))) # 读取这张截图 state = cv2.imread('state.png') # iphone上得到的state的值是:(1334,750,3), 切片取前2个值 # resolution[0]=y, resolution[1]=x # 另外一种赋值方式: rows, columns=state.shape[:2] self.resolution = state.shape[:2] # 下面要将采集到的图片等比例缩放成尺寸(x,y):720*1280 scale = state.shape[1] / 720. # 计算x轴像素的缩放系数,然后应用到y轴进行缩放 # 这里 state.shape[0]/scale = 1280.639999,取整后刚好是1280 state = cv2.resize(state, (720, int(state.shape[0] / scale)), interpolation=cv2.INTER_NEAREST) # 如果缩放后,state.shape[0]的值还不是1280,要再进一步处理: if state.shape[0] > 1280: s = (state.shape[0] - 1280) // 2 state = state[s:(s + 1280), :, :] elif state.shape[0] < 1280: s1 = (1280 - state.shape[0]) // 2 s2 = (1280 - state.shape[0]) - s1 pad1 = 255 * np.ones((s1, 720, 3), dtype=np.uint8) pad2 = 255 * np.ones((s2, 720, 3), dtype=np.uint8) state = np.concatenate((pad1, state, pad2), 0) # 后续操作:每张图有判断意义的区域只有屏幕中央位置,截图的上下两部分是没有意义的 # 后面会从上下各截去320*720大小,只保留中心640*720的图像作为训练数据 return state def get_player_position(self, state): # 转换为灰度图片 state = cv2.cvtColor(state, cv2.COLOR_BGR2GRAY) # 搜索player的坐标 pos = multi_scale_search(self.player, state, 0.3, 10) h, w = int((pos[0] + 13 * pos[2]) / 14.), (pos[1] + pos[3]) // 2 return np.array([h, w]) def get_target_position(self, state, player_pos): feed_dict = { self.img: np.expand_dims(state[320:-320], 0), self.is_training: False, self.keep_prob: 1.0, } pred_out = self.sess.run(self.pred, feed_dict=feed_dict) pred_out = pred_out[0].astype(int) x1 = pred_out[0] - 160 x2 = pred_out[0] + 160 y1 = pred_out[1] - 160 y2 = pred_out[1] + 160 if y1 < 0: y1 = 0 y2 = 320 if y2 > state.shape[1]: y2 = state.shape[1] y1 = y2 - 320 img_fine_in = state[x1:x2, y1:y2, :] feed_dict_fine = { self.img_fine: np.expand_dims(img_fine_in, 0), self.is_training: False, self.keep_prob: 1.0, } pred_out_fine = self.sess.run(self.pred_fine, feed_dict=feed_dict_fine) pred_out_fine = pred_out_fine[0].astype(int) out = pred_out_fine + np.array([x1, y1]) return out def get_target_position_fast(self, state, player_pos): state_cut = state[:player_pos[0], :, :] m1 = (state_cut[:, :, 0] == 245) m2 = (state_cut[:, :, 1] == 245) m3 = (state_cut[:, :, 2] == 245) m = np.uint8(np.float32(m1 * m2 * m3) * 255) b1, b2 = cv2.connectedComponents(m) for i in range(1, np.max(b2) + 1): x, y = np.where(b2 == i) if len(x) > 280 and len(x) < 310: r_x, r_y = x, y h, w = int(r_x.mean()), int(r_y.mean()) return np.array([h, w]) def jump(self, player_pos, target_pos): distance = np.linalg.norm(player_pos - target_pos) press_time = distance * self.sensitivity press_time = int(np.rint(press_time)) press_h, press_w = int(0.82 * self.resolution[0]), self.resolution[1] // 2 if self.phone == 'Android': cmd = 'adb shell input swipe {} {} {} {} {}'.format( press_w, press_h, press_w, press_h, press_time) print(cmd) os.system(cmd) elif self.phone == 'IOS': self.s.tap_hold(press_w, press_h, press_time / 1000.) def debugging(self): current_state = self.state.copy() cv2.circle(current_state, (self.player_pos[1], self.player_pos[0]), 5, (0, 255, 0), -1) cv2.circle(current_state, (self.target_pos[1], self.target_pos[0]), 5, (0, 0, 255), -1) cv2.imwrite( os.path.join( self.debug, 'state_{:03d}_res_h_{}_w_{}.png'.format( self.step, self.target_pos[0], self.target_pos[1])), current_state) # Added by yichen def personification(self): if self.step % 70 == 0: next_rest = 18 rest = True elif self.step % 40 == 0: next_rest = 13 rest = True elif self.step % 20 == 0: next_rest = 11 rest = True elif self.step % 10 == 0: next_rest = 8 rest = True else: rest = False if rest: for rest_time in range(next_rest): sys.stdout.write('\r程序将在 {}s 后继续'.format(next_rest - rest_time)) sys.stdout.flush() time.sleep(1) print('\n继续') time.sleep(random.uniform(1.5, 3.0)) if self.step % 5 == 0: self.sensitivity = 2.145 elif self.step % 7 == 0: self.sensitivity = 2.000 elif self.step % 9 == 0: self.sensitivity = 1.985 elif self.step % 3 == 0: self.sensitivity = 1.970 def play(self): # 获取 1280*720大小的屏幕截图 self.state = self.get_current_state() # 计算 player的坐标 self.player_pos = self.get_player_position(self.state) # 计算player要跳到哪个坐标 if self.phone == 'IOS': self.target_pos = self.get_target_position(self.state, self.player_pos) print('CNN-search: %04d' % self.step) else: try: self.target_pos = self.get_target_position_fast( self.state, self.player_pos) print('fast-search: %04d' % self.step) except UnboundLocalError: self.target_pos = self.get_target_position( self.state, self.player_pos) print('CNN-search: %04d' % self.step) if self.debug: self.debugging() # 触发跳跃动作 self.jump(self.player_pos, self.target_pos) self.step += 1 time.sleep(1.5) def run(self): try: while True: self.play() except KeyboardInterrupt: pass
class WechatAutoJump(object): def __init__(self, phone, sensitivity, debug, resource_dir): self.phone = phone self.sensitivity = sensitivity self.debug = debug self.resource_dir = resource_dir self.step = 0 self.load_resource() if self.phone == 'IOS': self.client = wda.Client() self.s = self.client.session() if self.debug: if not os.path.exists(self.debug): os.mkdir(self.debug) def load_resource(self): self.player = cv2.imread(os.path.join(self.resource_dir, 'player.png'), 0) # network initization self.net = JumpModel() self.img = tf.placeholder(tf.float32, [None, 640, 720, 3], name='img') self.label = tf.placeholder(tf.float32, [None, 2], name='label') self.is_training = tf.placeholder(np.bool, name='is_training') self.keep_prob = tf.placeholder(np.float32, name='keep_prob') self.pred = self.net.forward(self.img, self.is_training, self.keep_prob) self.saver = tf.train.Saver() self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) ckpt = tf.train.get_checkpoint_state( os.path.join(self.resource_dir, 'train_logs2')) if ckpt and ckpt.model_checkpoint_path: self.saver.restore(self.sess, ckpt.model_checkpoint_path) print('==== successfully restored ====') def get_current_state(self): if self.phone == 'Android': os.system('adb shell screencap -p /sdcard/1.png') os.system('adb pull /sdcard/1.png state.png') elif self.phone == 'IOS': self.client.screenshot('state.png') if self.debug: shutil.copyfile( 'state.png', os.path.join(self.debug, 'state_{:03d}.png'.format(self.step))) state = cv2.imread('state.png') self.resolution = state.shape[:2] scale = state.shape[1] / 720. state = cv2.resize(state, (720, int(state.shape[0] / scale)), interpolation=cv2.INTER_NEAREST) if state.shape[0] > 1280: s = state.shape[0] - 1280 state = state[s:, :, :] elif state.shape[0] < 1280: s = 1280 - state.shape[0] state = np.concatenate((255 * np.ones( (s, 720, 3), dtype=np.uint8), state), 0) return state def get_player_position(self, state): state = cv2.cvtColor(state, cv2.COLOR_BGR2GRAY) pos = multi_scale_search(self.player, state, 0.3, 10) h, w = int((pos[0] + 13 * pos[2]) / 14.), (pos[1] + pos[3]) // 2 return np.array([h, w]) def get_target_position(self, state, player_pos): feed_dict = { self.img: np.expand_dims(state[320:-320], 0), self.is_training: False, self.keep_prob: 1.0, } pred_out = self.sess.run(self.pred, feed_dict=feed_dict) return pred_out[0].astype(int) def get_target_position_fast(self, state, player_pos): state_cut = state[:player_pos[0], :, :] m1 = (state_cut[:, :, 0] == 245) m2 = (state_cut[:, :, 1] == 245) m3 = (state_cut[:, :, 2] == 245) m = np.uint8(np.float32(m1 * m2 * m3) * 255) b1, b2 = cv2.connectedComponents(m) for i in range(1, np.max(b2) + 1): x, y = np.where(b2 == i) # print('fast', len(x)) if len(x) > 280 and len(x) < 310: r_x, r_y = x, y h, w = int(r_x.mean()), int(r_y.mean()) return np.array([h, w]) def jump(self, player_pos, target_pos): distance = np.linalg.norm(player_pos - target_pos) press_time = distance * self.sensitivity press_time = int(press_time) if self.phone == 'Android': press_h, press_w = int(0.82 * self.resolution[0]), self.resolution[1] // 2 cmd = 'adb shell input swipe {} {} {} {} {}'.format( press_w, press_h, press_w, press_h, press_time) print(cmd) os.system(cmd) elif self.phone == 'IOS': self.s.tap_hold(200, 200, press_time / 1000.) def debugging(self): current_state = self.state.copy() cv2.circle(current_state, (self.player_pos[1], self.player_pos[0]), 5, (0, 255, 0), -1) cv2.circle(current_state, (self.target_pos[1], self.target_pos[0]), 5, (0, 0, 255), -1) cv2.imwrite( os.path.join( self.debug, 'state_{:03d}_res_h_{}_w_{}.png'.format( self.step, self.target_pos[0], self.target_pos[1])), current_state) def play(self): self.state = self.get_current_state() self.player_pos = self.get_player_position(self.state) try: self.target_pos = self.get_target_position_fast( self.state, self.player_pos) except: self.target_pos = self.get_target_position(self.state, self.player_pos) if self.debug: self.debugging() self.jump(self.player_pos, self.target_pos) self.step += 1 time.sleep(1.5) def run(self): try: while True: self.play() except KeyboardInterrupt: pass
class WechatAutoJump(object): def __init__(self, phone, sensitivity, serverURL, debug, resource_dir): self.phone = phone self.sensitivity = sensitivity self.debug = debug self.resource_dir = resource_dir self.step = 0 self.ckpt = os.path.join(self.resource_dir, 'train_logs_coarse/best_model.ckpt-13999') self.ckpt_fine = os.path.join(self.resource_dir, 'train_logs_fine/best_model.ckpt-53999') self.serverURL = serverURL self.load_resource() if self.phone == 'IOS': import wda self.client = wda.Client(self.serverURL) self.s = self.client.session() if self.debug: if not os.path.exists(self.debug): os.mkdir(self.debug) def load_resource(self): self.player = cv2.imread(os.path.join(self.resource_dir, 'player.png'), 0) # network initization self.net = JumpModel() self.net_fine = JumpModelFine() self.img = tf.placeholder(tf.float32, [None, 640, 720, 3], name='img') self.img_fine = tf.placeholder(tf.float32, [None, 320, 320, 3], name='img_fine') self.label = tf.placeholder(tf.float32, [None, 2], name='label') self.is_training = tf.placeholder(np.bool, name='is_training') self.keep_prob = tf.placeholder(np.float32, name='keep_prob') self.pred = self.net.forward(self.img, self.is_training, self.keep_prob) self.pred_fine = self.net_fine.forward(self.img_fine, self.is_training, self.keep_prob) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) all_vars = tf.all_variables() var_coarse = [k for k in all_vars if k.name.startswith('coarse')] var_fine = [k for k in all_vars if k.name.startswith('fine')] self.saver_coarse = tf.train.Saver(var_coarse) self.saver_fine = tf.train.Saver(var_fine) self.saver_coarse.restore(self.sess, self.ckpt) self.saver_fine.restore(self.sess, self.ckpt_fine) print('==== successfully restored ====') def get_current_state(self): if self.phone == 'Android': os.system('adb shell screencap -p /sdcard/1.png') os.system('adb pull /sdcard/1.png state.png') elif self.phone == 'IOS': self.client.screenshot('state.png') if self.debug: shutil.copyfile('state.png', os.path.join(self.debug, 'state_{:03d}.png'.format(self.step))) state = cv2.imread('state.png') self.resolution = state.shape[:2] scale = state.shape[1] / 720. state = cv2.resize(state, (720, int(state.shape[0] / scale)), interpolation=cv2.INTER_NEAREST) if state.shape[0] > 1280: s = (state.shape[0] - 1280) // 2 state = state[s:(s+1280),:,:] elif state.shape[0] < 1280: s1 = (1280 - state.shape[0]) // 2 s2 = (1280 - state.shape[0]) - s1 pad1 = 255 * np.ones((s1, 720, 3), dtype=np.uint8) pad2 = 255 * np.ones((s2, 720, 3), dtype=np.uint8) state = np.concatenate((pad1, state, pad2), 0) return state def get_player_position(self, state): state = cv2.cvtColor(state, cv2.COLOR_BGR2GRAY) pos = multi_scale_search(self.player, state, 0.3, 10) h, w = int((pos[0] + 13 * pos[2])/14.), (pos[1] + pos[3])//2 return np.array([h, w]) def get_target_position(self, state, player_pos): feed_dict = { self.img: np.expand_dims(state[320:-320], 0), self.is_training: False, self.keep_prob: 1.0, } pred_out = self.sess.run(self.pred, feed_dict=feed_dict) pred_out = pred_out[0].astype(int) x1 = pred_out[0] - 160 x2 = pred_out[0] + 160 y1 = pred_out[1] - 160 y2 = pred_out[1] + 160 if y1 < 0: y1 = 0 y2 = 320 if y2 > state.shape[1]: y2 = state.shape[1] y1 = y2 - 320 img_fine_in = state[x1: x2, y1: y2, :] feed_dict_fine = { self.img_fine: np.expand_dims(img_fine_in, 0), self.is_training: False, self.keep_prob: 1.0, } pred_out_fine = self.sess.run(self.pred_fine, feed_dict=feed_dict_fine) pred_out_fine = pred_out_fine[0].astype(int) out = pred_out_fine + np.array([x1, y1]) return out def get_target_position_fast(self, state, player_pos): state_cut = state[:player_pos[0],:,:] m1 = (state_cut[:, :, 0] == 245) m2 = (state_cut[:, :, 1] == 245) m3 = (state_cut[:, :, 2] == 245) m = np.uint8(np.float32(m1 * m2 * m3) * 255) b1, b2 = cv2.connectedComponents(m) for i in range(1, np.max(b2) + 1): x, y = np.where(b2 == i) if len(x) > 280 and len(x) < 310: r_x, r_y = x, y h, w = int(r_x.mean()), int(r_y.mean()) return np.array([h, w]) def jump(self, player_pos, target_pos): distance = np.linalg.norm(player_pos - target_pos) press_time = distance * self.sensitivity press_time = int(press_time) press_h, press_w = int(0.82*self.resolution[0]), self.resolution[1]//2 if self.phone == 'Android': cmd = 'adb shell input swipe {} {} {} {} {}'.format(press_w, press_h, press_w, press_h, press_time) print(cmd) os.system(cmd) elif self.phone == 'IOS': self.s.tap_hold(press_w, press_h, press_time / 1000.) def debugging(self): current_state = self.state.copy() cv2.circle(current_state, (self.player_pos[1], self.player_pos[0]), 5, (0,255,0), -1) cv2.circle(current_state, (self.target_pos[1], self.target_pos[0]), 5, (0,0,255), -1) cv2.imwrite(os.path.join(self.debug, 'state_{:03d}_res_h_{}_w_{}.png'.format(self.step, self.target_pos[0], self.target_pos[1])), current_state) def play(self): self.state = self.get_current_state() self.player_pos = self.get_player_position(self.state) if self.phone == 'IOS': self.target_pos = self.get_target_position(self.state, self.player_pos) print('CNN-search: %04d' % self.step) else: try: self.target_pos = self.get_target_position_fast(self.state, self.player_pos) print('fast-search: %04d' % self.step) except UnboundLocalError: self.target_pos = self.get_target_position(self.state, self.player_pos) print('CNN-search: %04d' % self.step) if self.debug: self.debugging() self.jump(self.player_pos, self.target_pos) self.step += 1 time.sleep(1.5) def run(self): try: while True: self.play() except KeyboardInterrupt: pass
class JumpAI(object): def __init__(self, phone, sensitivity, serverURL, debug, resource_dir): self.phone = phone self.sensitivity = sensitivity self.debug = debug self.resource_dir = resource_dir self.step = 0 self.ckpt = os.path.join(self.resource_dir, 'train_logs/best_model.ckpt-14499') # self.ckpt_fine = os.path.join(self.resource_dir, 'train_logs_fine/best_model.ckpt-53999') self.serverURL = serverURL self.load_resource() if self.phone == 'IOS': import wda self.client = wda.Client(self.serverURL) self.wdaSession = self.client.session() def load_resource(self): self.player = cv2.imread(os.path.join(self.resource_dir, 'player.png'), 0) # network initization self.net = JumpModel() # self.net_fine = JumpModelFine() # (128, 144, 3) self.img = tf.placeholder(tf.float32, [None, 128, 144, 3], name='img') self.label = tf.placeholder(tf.float32, [None, 2], name='label') self.is_training = tf.placeholder(np.bool, name='is_training') self.keep_prob = tf.placeholder(np.float32, name='keep_prob') self.pred = self.net.forward(self.img, self.is_training, self.keep_prob) # self.pred_fine = self.net_fine.forward(self.img_fine, self.is_training, self.keep_prob) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) all_vars = tf.all_variables() var_coarse = [k for k in all_vars if k.name.startswith('coarse')] # var_fine = [k for k in all_vars if k.name.startswith('fine')] self.saver_coarse = tf.train.Saver(var_coarse) # self.saver_fine = tf.train.Saver(var_fine) self.saver_coarse.restore(self.sess, self.ckpt) # self.saver_fine.restore(self.sess, self.ckpt_fine) print('==== successfully restored ====') def get_current_state(self): self.client.screenshot('state.png') state = cv2.imread('state.png') print state.shape #(2208, 1242, 3), (height, width, channel) self.resolution = state.shape[:2] scale = state.shape[1] / 720. # 1242 / 720 = 1.725 # 2208 / 1.725 = 1280 state = cv2.resize(state, (720, int(state.shape[0] / scale)), interpolation=cv2.INTER_NEAREST) # state = (1280,720,3) return state def get_player_position(self, state): # state = (1280,720,3) state = cv2.cvtColor(state, cv2.COLOR_BGR2GRAY) pos = multi_scale_search(self.player, state, 0.3, 10) # start_h, start_w, end_h, end_w h, w = int((pos[0] + 13 * pos[2]) / 14.), (pos[1] + pos[3]) // 2 return np.array([h, w]) def get_target_position(self, state, player_pos): # (1280,720,3) state = state[320:-320] # (640,720,3) scale = 5 state = cv2.resize( state, (int(state.shape[1] / scale), int(state.shape[0] / scale)), interpolation=cv2.INTER_NEAREST) # (128,144,3) feed_dict = { self.img: np.expand_dims(state, 0), self.is_training: False, self.keep_prob: 1.0, } pred_out = self.sess.run(self.pred, feed_dict=feed_dict) # pred_out = pred_out[0].astype(int) # x1 = pred_out[0] - 160 # x2 = pred_out[0] + 160 # y1 = pred_out[1] - 160 # y2 = pred_out[1] + 160 # if y1 < 0: # y1 = 0 # y2 = 320 # if y2 > state.shape[1]: # y2 = state.shape[1] # y1 = y2 - 320 # img_fine_in = state[x1: x2, y1: y2, :] # feed_dict_fine = { # self.img_fine: np.expand_dims(img_fine_in, 0), # self.is_training: False, # self.keep_prob: 1.0, # } # pred_out_fine = self.sess.run(self.pred_fine, feed_dict=feed_dict_fine) # pred_out_fine = pred_out_fine[0].astype(int) # out = pred_out_fine + np.array([x1, y1]) # x, h pred_out[0] = pred_out[0] * scale + 320 pred_out[1] = pred_out[1] * scale print pred_out[0] print pred_out[1] return pred_out # def get_target_position_fast(self, state, player_pos): # state_cut = state[:player_pos[0],:,:] # m1 = (state_cut[:, :, 0] == 245) # m2 = (state_cut[:, :, 1] == 245) # m3 = (state_cut[:, :, 2] == 245) # m = np.uint8(np.float32(m1 * m2 * m3) * 255) # b1, b2 = cv2.connectedComponents(m) # for i in range(1, np.max(b2) + 1): # x, y = np.where(b2 == i) # if len(x) > 280 and len(x) < 310: # r_x, r_y = x, y # h, w = int(r_x.mean()), int(r_y.mean()) # return np.array([h, w]) def jump(self, player_pos, target_pos): # dist = numpy.linalg.norm(a-b) distance = np.linalg.norm(player_pos - target_pos) print 'distance = %2d' % distance # sensitivity = 2.045 press_time = distance * self.sensitivity press_time = int(np.rint(press_time)) # press_h, press_w doesn't matter press_h, press_w = int(0.82 * self.resolution[0]), self.resolution[1] // 2 self.wdaSession.tap_hold(press_w, press_h, press_time / 1000.) def debugging(self): current_state = self.state.copy() cv2.circle(current_state, (self.player_pos[1], self.player_pos[0]), 5, (0, 255, 0), -1) cv2.circle(current_state, (self.target_pos[1], self.target_pos[0]), 5, (0, 0, 255), -1) cv2.imwrite( os.path.join( self.debug, 'state_{:03d}_res_h_{}_w_{}.png'.format( self.step, self.target_pos[0], self.target_pos[1])), current_state) def play(self): # get current screen shot (2208, 1242, 3) , resize it to (1280,720,3) # (2208, 1242, 3) --> (1280,720,3) self.state = self.get_current_state() # get player's position self.player_pos = self.get_player_position(self.state) if self.phone == 'IOS': # state (1280,720,3) self.target_pos = self.get_target_position(self.state, self.player_pos) #self.player_pos[0] h #self.player_pos[1] w print self.player_pos[0], self.player_pos[1] print('CNN to search time: %04d ' % self.step) print( '------------------------------------------------------------------------' ) self.jump(self.player_pos, self.target_pos) self.step += 1 time.sleep(1.3) def run(self): try: while True: self.play() except KeyboardInterrupt: pass
class WechatAutoJump(object): def __init__(self, phone, sensitivity, debug, resource_dir): self.phone = phone self.sensitivity = sensitivity self.debug = debug self.resource_dir = resource_dir self.step = 0 # 小人第几跳 self.ckpt = os.path.join(self.resource_dir, 'train_logs_coarse/best_model.ckpt-13999') self.ckpt_fine = os.path.join(self.resource_dir, 'train_log_fine/best_model.ckpt-53999') self.player = None self.net = None self.net_fine = None self.img = None self.img_fine = None self.label = None self.is_training = None self.keep_prob = None self.pred = None self.pred_fine = None self.sess = None self.saver_coarse = None self.saver_fine = None self.resolution = None self.state = None self.player_pos = None self.target_pos = None self.load_resource() if self.phone == 'IOS': import wda self.client = wda.Client('http://localhost:8100') self.s = self.client.session() if self.debug: if not os.path.exists(self.debug): os.mkdir(self.debug) def load_resource(self): self.player = cv2.imread(os.path.join(self.resource_dir, 'player.png'), 0) # network initialization self.net = JumpModel() self.net_fine = JumpModelFine() self.img = tf.placeholder(tf.float32, shape=(None, 640, 720, 3), name='img') self.img_fine = tf.placeholder(tf.float32, shape=(None, 320, 320, 3), name='img_fine') self.label = tf.placeholder(tf.float32, [None, 2], name='label') self.is_training = tf.placeholder(np.bool, name='is_training') self.keep_prob = tf.placeholder( np.float32, name='keep_prob') # get_target_position()用到 # 这里的第三个参数self.keep_prob必须是string类型的 # self.pred = self.net.forward(self.img, self.is_training, self.keep_prob) # self.pred_fine = self.net_fine.forward(self.img_fine, self.is_training, self.keep_prob) # 第三个参数直接写成string类型,两个模型-分别为 coarse 与 fine self.pred = self.net.forward(self.img, self.is_training, "coarse") self.pred_fine = self.net_fine.forward(self.img_fine, self.is_training, "fine") self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) all_vars = tf.global_variables( ) # tf.all_variables() # Please use tf.global_variables instead. var_coarse = [k for k in all_vars if k.name.startswith('coarse')] var_fine = [k for k in all_vars if k.name.startswith('fine')] self.saver_coarse = tf.train.Saver(var_coarse) self.saver_fine = tf.train.Saver(var_fine) self.saver_coarse.restore(self.sess, self.ckpt) self.saver_fine.restore(self.sess, self.ckpt_fine) print('==== successfully restored ====') def get_current_state(self): if self.phone == 'Android': os.system('adb shell screencap -p /sdcard/1.png') os.system('adb pull /sdcard/1.png state.png') elif self.phone == 'IOS': self.client.screenshot('state.png') if self.debug: shutil.copyfile( 'state.png', os.path.join(self.debug, 'state_{:03d}.png'.format(self.step))) state = cv2.imread('state.png') self.resolution = state.shape[:2] scale = state.shape[1] / 720. state = cv2.resize(state, (720, int(state.shape[0] / scale)), interpolation=cv2.INTER_NEAREST) if state.shape[0] > 1280: s = state.shape[0] - 1280 state = state[s:, :, :] elif state.shape[0] < 1280: s = 1280 - state.shape[0] state = np.concatenate((255 * np.ones( (s, 720, 3), dtype=np.uint8), state), 0) return state def get_player_position(self, state): state = cv2.cvtColor(state, cv2.COLOR_BGR2GRAY) pos = multi_scale_search(self.player, state, 0.3, 10) h, w = int((pos[0] + 13 * pos[2]) / 14.), (pos[1] + pos[3]) // 2 return np.array([h, w]) def get_target_position(self, state): feed_dict = { self.img: np.expand_dims(state[320:-320], 0), self.is_training: False, self.keep_prob: 1.0, # } # self.pred -> "coarse" 模型 pred_out = self.sess.run(self.pred, feed_dict=feed_dict) pred_out = pred_out[0].astype(int) x1 = pred_out[0] - 160 x2 = pred_out[0] + 160 y1 = pred_out[1] - 160 y2 = pred_out[1] + 160 if y1 < 0: y1 = 0 y2 = 320 if y2 > state.shape[1]: y2 = state.shape[1] y1 = y2 - 320 img_fine_in = state[x1:x2, y1:y2, :] feed_dict_fine = { self.img_fine: np.expand_dims(img_fine_in, 0), self.is_training: False, self.keep_prob: 1.0, } # self.pred_fine -> "fine" 模型 pred_out_fine = self.sess.run(self.pred_fine, feed_dict=feed_dict_fine) pred_out_fine = pred_out_fine[0].astype(int) out = pred_out_fine + np.array([x1, y1]) return out @staticmethod def get_target_position_fast(state, player_pos): r_x, r_y = None, None state_cut = state[:player_pos[0], :, :] m1 = (state_cut[:, :, 0] == 245) m2 = (state_cut[:, :, 1] == 245) m3 = (state_cut[:, :, 2] == 245) m = np.uint8(np.float32(m1 * m2 * m3) * 255) b1, b2 = cv2.connectedComponents(m) for i in range(1, np.max(b2) + 1): x, y = np.where(b2 == i) # print('fast', len(x)) if 280 < len(x) < 310: r_x, r_y = x, y if r_x is not None and r_y is not None: # if r_x.any() and r_y.any(): h, w = int(r_x.mean()), int(r_y.mean()) return np.array([h, w]) else: return None def jump(self, player_pos, target_pos): distance = np.linalg.norm(player_pos - target_pos) press_time = distance * self.sensitivity press_time = int(press_time) if self.phone == 'Android': # press_h, press_w = int(0.82 * self.resolution[0]), self.resolution[1] // 2 # 按压点在一定范围内随机 press_h, press_w = random.randint(300, 800), random.randint(200, 800) cmd = 'adb shell input swipe {} {} {} {} {}'.format( press_w, press_h, press_w, press_h, press_time) print(cmd) os.system(cmd) elif self.phone == 'IOS': self.s.tap_hold(200, 200, press_time / 1000.) def debugging(self): current_state = self.state.copy() # 标出小人位置 绿点 cv2.circle(current_state, (self.player_pos[1], self.player_pos[0]), 5, (0, 255, 0), -1) # 标出目标位置 红点 cv2.circle(current_state, (self.target_pos[1], self.target_pos[0]), 5, (0, 0, 255), -1) # 保存在路径下 cv2.imwrite( os.path.join( self.debug, 'state_{:03d}_res_h_{}_w_{}.png'.format( self.step, self.target_pos[0], self.target_pos[1])), current_state) def play(self): self.state = self.get_current_state() self.player_pos = self.get_player_position(self.state) if self.phone == 'IOS': self.target_pos = self.get_target_position(self.state) print('CNN-search: %04d' % self.step) else: self.target_pos = self.get_target_position_fast( self.state, self.player_pos) if self.target_pos is not None: # if self.target_pos.any(): print('fast-search: %04d' % self.step) else: self.target_pos = self.get_target_position(self.state) print('CNN-search: %04d' % self.step) if self.debug: self.debugging() print(self.player_pos, self.target_pos) self.jump(self.player_pos, self.target_pos) # 等待时间 1~2秒随机 ts = random.uniform(1, 2) time.sleep(ts) def run(self): try: while True: self.play() except KeyboardInterrupt: pass