def _load_model(): global MODEL global EMOJI client = storage.Client() bucket = client.get_bucket(MODEL_BUCKET) blob = bucket.get_blob(MODEL_FILENAME) weights = blob.download_to_filename("model_weights.pth") MODEL = LSCCNN(checkpoint_path="model_weights.pth") # MODEL.cuda() MODEL.eval() EMOJI = cv2.imread("blm_fist.png", -1) logging.info("Model loaded")
def _load_model(): global MODEL global EMOJI logging.basicConfig(level=logging.INFO) logging.info("Loading model '" + MODEL_FILENAME + "' ...") MODEL = LSCCNN() MODEL.load_weights(MODEL_FILENAME) MODEL.eval() EMOJI = cv2.imread(EMOJI_FILENAME, -1) logging.info("Model loaded")
import numpy as np checkpoint_path = './weights/part_b_scale_4_epoch_24_weights.pth' save_dir = "./output/" data_path = "F:/PETS2006/newframes/" #output_dir = './output/' #model_name = os.path.basename(model_path).split('.')[0] #file_results = os.path.join(output_dir,'results_' + model_name + '_.txt') if not os.path.exists(save_dir): os.mkdir(save_dir) save_dir = os.path.join(save_dir, 'results') if not os.path.exists(save_dir): os.mkdir(save_dir) network = LSCCNN(checkpoint_path=checkpoint_path) #network.cuda() network.eval() def save_results(data_path, fname, save_dir): img = cv2.imread(os.path.join(data_path, fname)) print('Loaded ', fname) #image = cv2.imread('F:/PETS2006/manypeople/IMG_158.jpeg') #image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) pred_dot_map, pred_box_map, img_out = network.predict_single_image( img, nms_thresh=0.75) cnt = np.sum(pred_dot_map) text = "There are " + str(cnt) + " people in the pic"
import cv2 import os import torch from model import LSCCNN from matplotlib import pyplot as plt import numpy as np checkpoint_path = './weights/part_b_scale_4_epoch_24_weights.pth' checkpoint_path = './weights/qnrf_scale_4_epoch_46_weights.pth' checkpoint_path = './weights/part_a_scale_4_epoch_13_weights.pth' # checkpoint_path = './weights/part_a/scale_4_epoch_13.pth' network = LSCCNN(checkpoint_path=checkpoint_path) if torch.cuda.is_available(): network.cuda() network.eval() weights_tag = 'part_a' nms_thresh = 0.1 image_dir = 'outputs/head-detection-frames' output_dir = "outputs/" + os.path.basename( image_dir) + '-{}-{}-outputs'.format(weights_tag, nms_thresh) print(output_dir) if os.path.exists(image_dir) and not os.path.exists(output_dir): os.makedirs(output_dir) for image_file in os.listdir(image_dir): if image_file.endswith('jpg'): print(image_file) image_filepath = os.path.join(image_dir, image_file)