def beam_search(model: NMT, test_data_src: List[List[str]], beam_size: int, max_decoding_time_step: int) -> List[List[Hypothesis]]: """ Run beam search to construct hypotheses for a list of src-language sentences. @param model (NMT): NMT Model @param test_data_src (List[List[str]]): List of sentences (words) in source language, from test set. @param beam_size (int): beam_size (# of hypotheses to hold for a translation at every step) @param max_decoding_time_step (int): maximum sentence length that Beam search can produce @returns hypotheses (List[List[Hypothesis]]): List of Hypothesis translations for every source sentence. """ was_training = model.training model.eval() hypotheses = [] with torch.no_grad(): for src_sent in tqdm(test_data_src, desc='Decoding', file=sys.stdout): example_hyps = model.beam_search( src_sent, beam_size=beam_size, max_decoding_time_step=max_decoding_time_step) hypotheses.append(example_hyps) if was_training: model.train(was_training) return hypotheses
def beam(args): # load model params print('load model from [%s]' % args.model_bin, file=sys.stderr) params = torch.load(args.model_bin, map_location=lambda storage, loc: storage) vocab = params['vocab'] opt = params['args'] state_dict = params['state_dict'] # build model model = NMT(opt, vocab) model.load_state_dict(state_dict) model.train() # model.eval() model = model.cuda() # loss function loss_fn = torch.nn.NLLLoss() # sampling print('begin beam searching') src_sent = ['we', 'have', 'told', 'that', '.'] hyps = model.beam(src_sent) print('src_sent:', ' '.join(src_sent)) for ids, hyp, dist in hyps: print('tgt_sent:', ' '.join(hyp)) print('tgt_ids :', end=' ') for id in ids: print(id, end=', ') print() print('out_dist:', dist) var_ids = torch.autograd.Variable(torch.LongTensor(ids[1:]), requires_grad=False) loss = loss_fn(dist, var_ids) print('NLL loss =', loss) loss.backward()
def train(mode, checkpoint_path): # Data data_train = IWSLT15EnViDataSet(en_path="../data/train-en-vi/train.en", vi_path="../data/train-en-vi/train.vi") data_loader = DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, drop_last=False) if mode == EN2VI: src_vocab_size, tgt_vocab_size = data_train.en_vocab_size, data_train.vi_vocab_size else: src_vocab_size, tgt_vocab_size = data_train.vi_vocab_size, data_train.en_vocab_size print("Loading data done!") # Model & Optimizer model = NMT(mode=mode, src_vocab_size=src_vocab_size, tgt_vocab_size=tgt_vocab_size) model.to(device) criterion = MaskedPaddingCrossEntropyLoss().to(device) optimizer = Adam(model.parameters()) prev_epoch = 0 if checkpoint_path.exists(): # Resume training model, optimizer, prev_epoch = load_checkpoint(model, optimizer, checkpoint_path) print(f"Resume training from {prev_epoch} epochs!") else: model.apply(xavier_init_weights) print("Training from start!") model.train() for epoch in range(N_EPOCHS - prev_epoch): print(f"\nEpoch: {epoch+prev_epoch+1}") for b, (en_tokens, en_valid_len, vi_tokens, vi_valid_len) in enumerate(data_loader): en_tokens, vi_tokens = en_tokens.to(device), vi_tokens.to(device) en_valid_len, vi_valid_len = en_valid_len.to( device), vi_valid_len.to(device) en_padding_masks = mask_padding(en_tokens, en_valid_len, device) vi_padding_masks = mask_padding(vi_tokens, vi_valid_len, device) if mode == EN2VI: src, tgt = en_tokens, vi_tokens tgt_valid_len = vi_valid_len src_masks, tgt_masks = en_padding_masks, vi_padding_masks else: src, tgt = vi_tokens, en_tokens tgt_valid_len = en_valid_len src_masks, tgt_masks = vi_padding_masks, en_padding_masks optimizer.zero_grad() # Encoder's forward pass: encoder_state = model.encoder(src, src_masks) # Decoder's forward pass decoder_X = torch.tensor([[DEFAULT_SOS_INDEX] * tgt.shape[0]], device=device).reshape(-1, 1) decoder_state = encoder_state loss = torch.tensor(0, device=device, dtype=torch.float) for i in range(1, tgt.shape[1]): decoder_state, logit_pred = model.decoder( decoder_X, decoder_state) loss += criterion(pred=logit_pred[:, 0, :], label=tgt[:, i], device=device).sum() # Teacher forcing decoder_X = tgt[:, i].reshape(-1, 1) loss.backward() clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() if b % 50 == 0: seq_loss = loss / (MAX_LENGTH - 1) print(f"\tBatch {b}; Loss: {seq_loss:.2f}; " f"Mean Token Loss: {seq_loss/tgt_valid_len.sum():.4f}") ## Free up GPU memory del src, tgt, en_valid_len, vi_valid_len, decoder_state, logit_pred, loss torch.cuda.empty_cache() save_checkpoint(mode, src_vocab_size, tgt_vocab_size, model, optimizer, data_train.tokenizer_en, data_train.tokenizer_vi, prev_epoch + epoch + 1, checkpoint_path) for en in ens: vi = translate_en2vi(en_sentence=en, length=MAX_LENGTH, model=model, tokenizer_en=data_train.tokenizer_en, tokenizer_vi=data_train.tokenizer_vi, device=device) print("en:", en, "=> vi:", vi)
timer = Timer(epoch_size) init_output_log(save_dir) print('model load done.') # get model train_len = len(train_x) dev_len = len(dev_x) train_x, train_y, train_mask = data_padding(train_x, train_y) dev_x, dev_y, dev_mask = data_padding(dev_x, dev_y) print('training start.') best_loss = 998244353.0 for epoch in range(epoch_size): model.train() sum_loss = 0 batch_num = math.ceil(train_len / batch_size) for step in range(batch_num): inputs = batch_iter(train_x, step, batch_size) labels = batch_iter(train_y, step, batch_size) masks = batch_iter(train_mask, step, batch_size) inputs = torch.LongTensor(inputs).to(device) labels = torch.LongTensor(labels).to(device) masks = torch.ByteTensor(masks).to(device) optimizer.zero_grad() outputs = model(inputs, labels) Loss = Loss_fn(outputs, labels, masks) Loss.backward() optimizer.step()
class Trainer: """ 训练类,使用训练集训练模型 Args: _hparams (NameSpace): 人为设定的超参数,默认值见config.py,也可以在命令行指定。 """ def __init__(self, _hparams): self.hparams = _hparams set_seed(_hparams.fixed_seed) self.train_loader = get_dataloader(_hparams.train_src_path, _hparams.train_dst_path, _hparams.batch_size, _hparams.num_workers) self.src_vocab, self.dst_vocab = load_vocab(_hparams.train_src_pkl, _hparams.train_dst_pkl) self.device = torch.device(_hparams.device) self.model = NMT(_hparams.embed_size, _hparams.hidden_size, self.src_vocab, self.dst_vocab, self.device, _hparams.dropout_rate).to(self.device) self.optimizer = torch.optim.Adam(self.model.parameters(), lr=_hparams.lr) def train(self): print('*' * 20, 'train', '*' * 20) hist_valid_scores = [] patience = 0 num_trial = 0 for epoch in range(int(self.hparams.max_epochs)): self.model.train() epoch_loss_val = 0 epoch_steps = len(self.train_loader) for step, data_pairs in tqdm(enumerate(self.train_loader)): sents = [(dp.src, dp.dst) for dp in data_pairs] src_sents, tgt_sents = zip(*sents) self.optimizer.zero_grad() batch_size = len(src_sents) example_losses = -self.model(src_sents, tgt_sents) batch_loss = example_losses.sum() train_loss = batch_loss / batch_size epoch_loss_val += train_loss.item() train_loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.hparams.clip_gradient) self.optimizer.step() epoch_loss_val /= epoch_steps print('epoch: {}, epoch_loss_val: {}'.format(epoch, epoch_loss_val)) # perform validation if epoch % self.hparams.valid_niter == 0: print('*' * 20, 'validate', '*' * 20) dev_ppl = evaluate_ppl(self.model, self.hparams.val_src_path, self.hparams.val_dst_path, self.hparams.batch_val_size, self.hparams.num_workers) valid_metric = -dev_ppl is_better = len(hist_valid_scores) == 0 or valid_metric > max(hist_valid_scores) hist_valid_scores.append(valid_metric) if is_better: patience = 0 print('save currently the best model to {}'.format(self.hparams.model_save_path)) self.model.save(self.hparams.model_save_path) torch.save(self.optimizer.state_dict(), self.hparams.optimizer_save_path) elif patience < self.hparams.patience: patience += 1 print('hit patience %d' % patience) if patience == self.hparams.patience: num_trial += 1 print('hit #{} trial'.format(num_trial)) if num_trial == self.hparams.max_num_trial: print('early stop!') exit(0) # 兼容设计,考虑Adam不需要人工调整lr,而其他优化器需要 if hasattr(self.optimizer, 'param_group'): # decay lr, and restore from previously best checkpoint lr = self.optimizer.param_groups[0]['lr'] * self.hparams.lr_decay print('load previously best model and decay learning rate to %f' % lr) params = torch.load(self.hparams.model_save_path, map_location=lambda storage, loc: storage) self.model.load_state_dict(params['state_dict']) self.model = self.model.to(self.device) print('restore parameters of the optimizers') self.optimizer.load_state_dict(torch.load(self.hparams.optimizer_save_path)) # set new lr for param_group in self.optimizer.param_groups: param_group['lr'] = lr # reset patience patience = 0 print('*' * 20, 'end validate', '*' * 20) print('*' * 20, 'end train', '*' * 20)
def train(args: Dict): train_data_src = read_corpus(args['--train-src'], source='src') train_data_tgt = read_corpus(args['--train-tgt'], source='tgt') dev_data_src = read_corpus(args['--dev-src'], source='src') dev_data_tgt = read_corpus(args['--dev-tgt'], source='tgt') # [(src_0, tgt_0), (src_1, tgt_1), ..., ] train_data = list(zip(train_data_src, train_data_tgt)) dev_data = list(zip(dev_data_src, dev_data_tgt)) train_batch_size = int(args['--batch-size']) clip_grad = float(args['--clip-grad']) valid_niter = int(args['--valid-niter']) log_every = int(args['--log-every']) model_save_path = args['--save-to'] # vocab = Vocab.load(args['--vocab']) vocab = Vocab.build(train_data_src, train_data_tgt, int(args['--vocab-size']), 1) model = NMT(embed_size=int(args['--embed-size']), hidden_size=int(args['--hidden-size']), dropout_rate=float(args['--dropout']), vocab=vocab) model.train() print(model) uniform_init = float(args['--uniform-init']) if np.abs(uniform_init) > 0.: print('uniformly initialize parameters [-%f, +%f]' % (uniform_init, uniform_init), file=sys.stderr) for p in model.parameters(): p.data.uniform_(-uniform_init, uniform_init) # vocab_mask = torch.ones(len(vocab.tgt)) # vocab_mask[vocab.tgt['<pad>']] = 0 device = torch.device("cuda:0" if args['--cuda'] else "cpu") print('use device: %s' % device, file=sys.stderr) model = model.to(device) model.save(model_save_path) optimizer = torch.optim.Adam(model.parameters(), lr=float(args['--lr'])) num_trial = 0 train_iter = patience = cum_loss = report_loss = cum_tgt_words = report_tgt_words = 0 cum_examples = report_examples = epoch = valid_num = 0 hist_valid_scores = [] train_time = begin_time = time.time() print('begin Maximum Likelihood training') while True: epoch += 1 for src_sents, tgt_sents in batch_iter(train_data, batch_size=train_batch_size, shuffle=True): train_iter += 1 optimizer.zero_grad() batch_size = len(src_sents) #################### forward pass and compute loss ######################### # example_losses = -model(src_sents, tgt_sents) # (batch_size,) example_losses = model(src_sents, tgt_sents) # [batch_size,] batch_loss = example_losses.sum() loss = batch_loss / batch_size #################### backward pass to compute gradients #################### loss.backward() # clip gradient grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), clip_grad) #################### update model parameters ############################### optimizer.step() #################### do some statistics #################################### batch_losses_val = batch_loss.item() report_loss += batch_losses_val cum_loss += batch_losses_val tgt_words_num_to_predict = sum( len(s[1:]) for s in tgt_sents) # omitting leading `<s>` report_tgt_words += tgt_words_num_to_predict cum_tgt_words += tgt_words_num_to_predict report_examples += batch_size cum_examples += batch_size #################### print log ############################################# if train_iter % log_every == 0: print( 'epoch %d, iter %d, avg. loss %.2f, avg. ppl %.2f ' 'cum. examples %d, speed %.2f words/sec, time elapsed %.2f sec' % ( epoch, train_iter, report_loss / report_examples, # math.exp(report_loss / report_tgt_words), (report_loss / report_tgt_words), cum_examples, report_tgt_words / (time.time() - train_time), time.time() - begin_time), file=sys.stderr) train_time = time.time() report_loss = report_tgt_words = report_examples = 0. ##################### perform validation ################################## if train_iter % valid_niter == 0: print( 'epoch %d, iter %d, cum. loss %.2f, cum. ppl %.2f cum. examples %d' % (epoch, train_iter, cum_loss / cum_examples, np.exp(cum_loss / cum_tgt_words), cum_examples), file=sys.stderr) cum_loss = cum_examples = cum_tgt_words = 0. valid_num += 1 print('begin validation ...', file=sys.stderr) # compute dev. ppl and bleu dev_ppl = evaluate_ppl( model, dev_data, batch_size=128) # dev batch size can be a bit larger valid_metric = -dev_ppl print('validation: iter %d, dev. ppl %f' % (train_iter, dev_ppl), file=sys.stderr) is_better = len(hist_valid_scores ) == 0 or valid_metric > max(hist_valid_scores) hist_valid_scores.append(valid_metric) # hypotheses = beam_search(model, dev_data_src, # beam_size=4, # max_decoding_time_step=10) if is_better: patience = 0 print('save currently the best model to [%s]' % model_save_path, file=sys.stderr) model.save(model_save_path) # also save the optimizers' state torch.save(optimizer.state_dict(), model_save_path + '.optim') elif patience < int(args['--patience']): patience += 1 print('hit patience %d' % patience, file=sys.stderr) if patience == int(args['--patience']): num_trial += 1 print('hit #%d trial' % num_trial, file=sys.stderr) if num_trial == int(args['--max-num-trial']): print('early stop!', file=sys.stderr) exit(0) # decay lr, and restore from previously best checkpoint lr = optimizer.param_groups[0]['lr'] * float( args['--lr-decay']) print( 'load previously best model and decay learning rate to %f' % lr, file=sys.stderr) # load model params = torch.load( model_save_path, map_location=lambda storage, loc: storage) model.load_state_dict(params['state_dict']) model = model.to(device) print('restore parameters of the optimizers', file=sys.stderr) optimizer.load_state_dict( torch.load(model_save_path + '.optim')) # set new lr for param_group in optimizer.param_groups: param_group['lr'] = lr # reset patience patience = 0 if epoch == int(args['--max-epoch']): print('reached maximum number of epochs!', file=sys.stderr) exit(0)
def main(options): use_cuda = (len(options.gpuid) >= 1) if options.gpuid: cuda.set_device(options.gpuid[0]) src_train, src_dev, src_test, src_vocab = torch.load(open(options.data_file + "." + options.src_lang, 'rb')) trg_train, trg_dev, trg_test, trg_vocab = torch.load(open(options.data_file + "." + options.trg_lang, 'rb')) batched_train_src, batched_train_src_mask, sort_index = utils.tensor.advanced_batchize(src_train, options.batch_size, src_vocab.stoi["<blank>"]) batched_train_trg, batched_train_trg_mask = utils.tensor.advanced_batchize_no_sort(trg_train, options.batch_size, trg_vocab.stoi["<blank>"], sort_index) batched_dev_src, batched_dev_src_mask, sort_index = utils.tensor.advanced_batchize(src_dev, options.batch_size, src_vocab.stoi["<blank>"]) batched_dev_trg, batched_dev_trg_mask = utils.tensor.advanced_batchize_no_sort(trg_dev, options.batch_size, trg_vocab.stoi["<blank>"], sort_index) trg_vocab_size = len(trg_vocab) src_vocab_size = len(src_vocab) word_emb_size = 300 hidden_size = 1024 nmt = NMT(src_vocab_size, trg_vocab_size, word_emb_size, hidden_size, src_vocab, trg_vocab, attn_model = "general", use_cuda = True) if use_cuda > 0: nmt.cuda() if options.distributed: nmt = torch.nn.DataParallel(nmt) else: nmt.cpu() criterion = torch.nn.NLLLoss() # Configure optimization lr = options.learning_rate optimizer = eval("torch.optim." + options.optimizer)(nmt.parameters(), lr) # main training loop last_dev_avg_loss = float("inf") for epoch_i in range(options.epochs): logging.info("At {0}-th epoch.".format(epoch_i)) # Set training mode nmt.train() # srange generates a lazy sequence of shuffled range for i, batch_i in enumerate(utils.rand.srange(len(batched_train_src))): train_src_batch = Variable(batched_train_src[batch_i]) # of size (src_seq_len, batch_size) train_trg_batch = Variable(batched_train_trg[batch_i]) # of size (src_seq_len, batch_size) train_src_mask = Variable(batched_train_src_mask[batch_i]) train_trg_mask = Variable(batched_train_trg_mask[batch_i]) if use_cuda: train_src_batch = train_src_batch.cuda() train_trg_batch = train_trg_batch.cuda() train_src_mask = train_src_mask.cuda() train_trg_mask = train_trg_mask.cuda() sys_out_batch = nmt(train_src_batch, train_trg_batch, True) del train_src_batch train_trg_mask = train_trg_mask.view(-1) train_trg_batch = train_trg_batch.view(-1) train_trg_batch = train_trg_batch.masked_select(train_trg_mask) train_trg_mask = train_trg_mask.unsqueeze(1).expand(len(train_trg_mask), trg_vocab_size) sys_out_batch = sys_out_batch.view(-1, trg_vocab_size) sys_out_batch = sys_out_batch.masked_select(train_trg_mask).view(-1, trg_vocab_size) loss = criterion(sys_out_batch, train_trg_batch) logging.debug("loss at batch {0}: {1}".format(i, loss.data[0])) optimizer.zero_grad() loss.backward() # # gradient clipping torch.nn.utils.clip_grad_norm(nmt.parameters(), 5.0) optimizer.step() # validation -- this is a crude esitmation because there might be some paddings at the end dev_loss = 0.0 # Set validation mode nmt.eval() for batch_i in range(len(batched_dev_src)): dev_src_batch = Variable(batched_dev_src[batch_i], volatile=True) dev_trg_batch = Variable(batched_dev_trg[batch_i], volatile=True) dev_src_mask = Variable(batched_dev_src_mask[batch_i], volatile=True) dev_trg_mask = Variable(batched_dev_trg_mask[batch_i], volatile=True) if use_cuda: dev_src_batch = dev_src_batch.cuda() dev_trg_batch = dev_trg_batch.cuda() dev_src_mask = dev_src_mask.cuda() dev_trg_mask = dev_trg_mask.cuda() sys_out_batch = nmt(dev_src_batch, dev_trg_batch, False) dev_trg_mask = dev_trg_mask.view(-1) dev_trg_batch = dev_trg_batch.view(-1) dev_trg_batch = dev_trg_batch.masked_select(dev_trg_mask) dev_trg_mask = dev_trg_mask.unsqueeze(1).expand(len(dev_trg_mask), trg_vocab_size) sys_out_batch = sys_out_batch.view(-1, trg_vocab_size) sys_out_batch = sys_out_batch.masked_select(dev_trg_mask).view(-1, trg_vocab_size) loss = criterion(sys_out_batch, dev_trg_batch) logging.debug("dev loss at batch {0}: {1}".format(batch_i, loss.data[0])) dev_loss += loss dev_avg_loss = dev_loss / len(batched_dev_src) logging.info("Average loss value per instance is {0} at the end of epoch {1}".format(dev_avg_loss.data[0], epoch_i)) # if (last_dev_avg_loss - dev_avg_loss).data[0] < options.estop: # logging.info("Early stopping triggered with threshold {0} (previous dev loss: {1}, current: {2})".format(epoch_i, last_dev_avg_loss.data[0], dev_avg_loss.data[0])) # break torch.save(nmt, open(options.model_file + ".nll_{0:.2f}.epoch_{1}".format(dev_avg_loss.data[0], epoch_i), 'wb'), pickle_module=dill) last_dev_avg_loss = dev_avg_loss
def train(args: Dict): """ Train the NMT Model. @param args (Dict): args from cmd line """ do_bleu = '--ignore-test-bleu' not in args or not args['--ignore-test-bleu'] train_data_src = read_corpus(args['--train-src'], source='src', dev_mode=dev_mode) train_data_tgt = read_corpus(args['--train-tgt'], source='tgt', dev_mode=dev_mode) dev_data_src = read_corpus(args['--dev-src'], source='src', dev_mode=dev_mode) dev_data_tgt = read_corpus(args['--dev-tgt'], source='tgt', dev_mode=dev_mode) if do_bleu: test_data_src = read_corpus(args['--test-src'], source='src', dev_mode=dev_mode) test_data_tgt = read_corpus(args['--test-tgt'], source='tgt', dev_mode=dev_mode) train_data = list(zip(train_data_src, train_data_tgt)) dev_data = list(zip(dev_data_src, dev_data_tgt)) max_tokens_in_sentence = int(args['--max-decoding-time-step']) train_data = clean_data(train_data, max_tokens_in_sentence) dev_data = clean_data(dev_data, max_tokens_in_sentence) train_batch_size = int(args['--batch-size']) dev_batch_size = 128 clip_grad = float(args['--clip-grad']) valid_niter = int(args['--valid-niter']) bleu_niter = int(args['--bleu-niter']) log_every = int(args['--log-every']) model_save_path = args['--save-to'] vocab = Vocab.load(args['--vocab'], args['--word_freq']) model = NMT(embed_size=int(args['--embed-size']), hidden_size=int(args['--hidden-size']), dropout_rate=float(args['--dropout']), vocab=vocab) writer = SummaryWriter() # model = TransformerNMT(vocab, num_hidden_layers=3) model.train() uniform_init = float(args['--uniform-init']) if np.abs(uniform_init) > 0.: print('uniformly initialize parameters [-%f, +%f]' % (uniform_init, uniform_init), file=sys.stderr) for p in model.parameters(): if p.dim() > 1: torch.nn.init.xavier_uniform_(p) else: p.data.uniform_(-uniform_init, uniform_init) vocab_mask = torch.ones(len(vocab.tgt)) vocab_mask[vocab.tgt['<pad>']] = 0 device = torch.device("cuda:0" if args['--cuda'] else "cpu") print('use device: %s' % device, file=sys.stderr) model = model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=float(args['--lr'])) num_trial = 0 train_iter = patience = cum_loss = report_loss = cum_tgt_words = report_tgt_words = 0 cum_examples = report_examples = epoch = valid_num = 0 hist_valid_scores = [] train_time = begin_time = time.time() print("Sorting dataset based on difficulty...") dataset = (train_data, dev_data) ordered_dataset = load_order(args['--order-name'], dataset, vocab) # TODO: order = balance_order(order, dataset) (train_data, dev_data) = ordered_dataset visualize_scoring_examples = False if visualize_scoring_examples: visualize_scoring(ordered_dataset, vocab) n_iters = math.ceil(len(train_data) / train_batch_size) print("n_iters per epoch is {}: ({} / {})".format(n_iters, len(train_data), train_batch_size)) max_epoch = int(args['--max-epoch']) max_iters = max_epoch * n_iters print('begin Maximum Likelihood training') print('Using order function: {}'.format(args['--order-name'])) print('Using pacing function: {}'.format(args['--pacing-name'])) while True: epoch += 1 for _ in range(n_iters): # Get pacing data according to train_iter current_train_data, current_dev_data = pacing_data( train_data, dev_data, time=train_iter, warmup_iters=int(args["--warmup-iters"]), method=args['--pacing-name'], tb=writer) # Uniformly sample batches from the paced dataset src_sents, tgt_sents = get_pacing_batch( current_train_data, batch_size=train_batch_size, shuffle=True) train_iter += 1 # ERROR START optimizer.zero_grad() batch_size = len(src_sents) example_losses = -model(src_sents, tgt_sents) # (batch_size,) batch_loss = example_losses.sum() loss = batch_loss / batch_size loss.backward() # clip gradient grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), clip_grad) optimizer.step() batch_losses_val: int = batch_loss.item() report_loss += batch_losses_val cum_loss += batch_losses_val tgt_words_num_to_predict = sum( len(s[1:]) for s in tgt_sents) # omitting leading `<s>` report_tgt_words += tgt_words_num_to_predict cum_tgt_words += tgt_words_num_to_predict report_examples += batch_size cum_examples += batch_size if train_iter % log_every == 0: print( 'epoch %d, iter %d, avg. loss %.2f, avg. ppl %.2f ' 'cum. examples %d, speed %.2f words/sec, time elapsed %.2f sec' % (epoch, train_iter, report_loss / report_examples, math.exp(report_loss / report_tgt_words), cum_examples, report_tgt_words / (time.time() - train_time), time.time() - begin_time), file=sys.stderr) writer.add_scalar('Loss/train', report_loss / report_examples, train_iter) writer.add_scalar('ppl/train', math.exp(report_loss / report_tgt_words), train_iter) train_time = time.time() report_loss = report_tgt_words = report_examples = 0. # evaluate BLEU if train_iter % bleu_niter == 0 and do_bleu: bleu = decode_with_params( model, test_data_src, test_data_tgt, int(args['--beam-size']), int(args['--max-decoding-time-step'])) writer.add_scalar('bleu/test', bleu, train_iter) # perform validation if train_iter % valid_niter == 0: print( 'epoch %d, iter %d, cum. loss %.2f, cum. ppl %.2f cum. examples %d' % (epoch, train_iter, cum_loss / cum_examples, np.exp(cum_loss / cum_tgt_words), cum_examples), file=sys.stderr) cum_loss = cum_examples = cum_tgt_words = 0. valid_num += 1 print('begin validation ...', file=sys.stderr) # compute dev. ppl and bleu # dev batch size can be a bit larger dev_ppl = evaluate_ppl(model, current_dev_data, batch_size=dev_batch_size) valid_metric = -dev_ppl writer.add_scalar('ppl/valid', dev_ppl, train_iter) cum_loss = cum_examples = cum_tgt_words = 0. valid_num += 1 print('validation: iter %d, dev. ppl %f' % (train_iter, dev_ppl), file=sys.stderr) is_better = len(hist_valid_scores ) == 0 or valid_metric > max(hist_valid_scores) hist_valid_scores.append(valid_metric) if is_better: patience = 0 print('save currently the best model to [%s]' % model_save_path, file=sys.stderr) model.save(model_save_path) # also save the optimizers' state torch.save(optimizer.state_dict(), model_save_path + '.optim') elif patience < int(args['--patience']): patience += 1 print('hit patience %d' % patience, file=sys.stderr) if patience == int(args['--patience']): num_trial += 1 print('hit #%d trial' % num_trial, file=sys.stderr) if num_trial == int(args['--max-num-trial']): print('early stop!', file=sys.stderr) exit(0) # decay lr, and restore from previously best checkpoint lr = optimizer.param_groups[0]['lr'] * \ float(args['--lr-decay']) print( 'load previously best model and decay learning rate to %f' % lr, file=sys.stderr) # load model params = torch.load( model_save_path, map_location=lambda storage, loc: storage) model.load_state_dict(params['state_dict']) model = model.to(device) print('restore parameters of the optimizers', file=sys.stderr) optimizer.load_state_dict( torch.load(model_save_path + '.optim')) # set new lr for param_group in optimizer.param_groups: param_group['lr'] = lr # reset patience patience = 0 if epoch >= int(args['--max-epoch']): print('reached maximum number of epochs!', file=sys.stderr) exit(0)