コード例 #1
0
def load_checkpoint(file_dir, i_epoch, layer_sizes, input_size, device='cuda'):
    checkpoint = torch.load(os.path.join(file_dir, "ckpt_eps%d.pt" % i_epoch),
                            map_location=device)

    policy_net = PolicyNet(layer_sizes).to(device)
    value_net = ValueNet(input_size).to(device)
    policy_net.load_state_dict(checkpoint["policy_net"])
    policy_net.train()
    value_net.load_state_dict(checkpoint["value_net"])
    value_net.train()

    policy_lr = checkpoint["policy_lr"]
    valuenet_lr = checkpoint["valuenet_lr"]

    policynet_optim = optim.Adam(policy_net.parameters(), lr=policy_lr)
    policynet_optim.load_state_dict(checkpoint["policynet_optim"])
    valuenet_optim = optim.Adam(value_net.parameters(), lr=valuenet_lr)
    valuenet_optim.load_state_dict(checkpoint["valuenet_optim"])

    checkpoint.pop("policy_net")
    checkpoint.pop("value_net")
    checkpoint.pop("policynet_optim")
    checkpoint.pop("valuenet_optim")
    checkpoint.pop("i_epoch")
    checkpoint.pop("policy_lr")
    checkpoint.pop("valuenet_lr")

    return policy_net, value_net, policynet_optim, valuenet_optim, checkpoint
コード例 #2
0
def load_checkpoint(file_dir, i_epoch, layer_sizes, device='cuda'):
    checkpoint = torch.load(os.path.join(file_dir, "ckpt_eps%d.pt" % i_epoch))

    policy_net = PolicyNet(layer_sizes).to(device)
    policy_net.load_state_dict(checkpoint["policy_net"])
    policy_net.train()

    learning_rate = checkpoint["learning_rate"]

    optimizer = optim.Adam(policy_net.parameters())
    # optimizer = optim.SGD(policy_net.parameters(), lr=learning_rate)
    optimizer.load_state_dict(checkpoint["optimizer"])

    checkpoint.pop("policy_net")
    checkpoint.pop("optimizer")
    checkpoint.pop("i_epoch")
    checkpoint.pop("learning_rate")

    return policy_net, optimizer, checkpoint
コード例 #3
0
            policy_net, optimizer, training_info = load_checkpoint(ckpt_dir, i_epoch, layer_sizes, device=device)

        # Initialize the environment and state
        observation = env.reset()
        current_state = torch.tensor([observation], device=device, dtype=torch.float32)

        traj_log_prob = None
        traj_reward = None

        running_reward = 0
        episode_durations = []
        episode_rewards = []

        for t in count():
            # Make sure that policy net is in training mode
            policy_net.train()

            # Sample an action given the current state
            action, log_prob = policy_net(current_state)

            # Interact with the environment
            observation, reward, done, _ = env.step(action.item())

            # Render this episode
            if render_each_episode or (not finished_rendering_this_epoch):
                env.render()

            # Record action log_prob
            if traj_log_prob is None:
                traj_log_prob = log_prob
            else:
コード例 #4
0
def main():
    #Parse arguments
    #----------------------------
    parser = argparse.ArgumentParser()
    parser.add_argument("--env", default="CartPole-v0")
    parser.add_argument("--conti", action="store_true")
    parser.add_argument("--unwrap", action="store_true")
    args = parser.parse_args()

    #Parameters
    #----------------------------
    n_env = 8
    n_step = 128
    mb_size = n_env * n_step
    sample_mb_size = 64
    sample_n_epoch = 4
    clip_val = 0.2
    lamb = 0.95
    gamma = 0.99
    ent_weight = 0.0
    max_grad_norm = 0.5
    beta = 0.1
    lr = 1e-4
    n_iter = 30000
    disp_step = 30
    save_step = 300
    save_dir = "./save"
    device = "cuda:0"
    expert_path = "../save/{}_traj.pkl".format(args.env)

    #Create multiple environments
    #----------------------------
    env = MultiEnv([
        make_env(i,
                 env_id=args.env,
                 unwrap=args.unwrap,
                 rand_seed=int(time.time())) for i in range(n_env)
    ])

    if args.conti:
        s_dim = env.ob_space.shape[0]
        a_dim = env.ac_space.shape[0]
    else:
        s_dim = env.ob_space.shape[0]
        a_dim = env.ac_space.n

    runner = EnvRunner(env,
                       s_dim,
                       a_dim,
                       n_step,
                       gamma,
                       lamb,
                       device=device,
                       conti=args.conti)

    #Load expert trajectories
    #----------------------------
    if os.path.exists(expert_path):
        s_real, a_real = pkl.load(open(expert_path, "rb"))
        sa_real = []

        if args.conti:
            for i in range(len(s_real)):
                sa_real.append(np.concatenate([s_real[i], a_real[i]], 1))
        else:
            for i in range(len(s_real)):
                a_real_onehot = np.zeros((len(a_real[i]), a_dim),
                                         dtype=np.float32)

                for j in range(len(a_real[i])):
                    a_real_onehot[j, a_real[i][j]] = 1

                sa_real.append(np.concatenate([s_real[i], a_real_onehot], 1))

        sa_real = np.concatenate(sa_real, 0)
    else:
        print("ERROR: No expert trajectory file found")
        sys.exit(1)

    #Create model
    #----------------------------
    policy_net = PolicyNet(s_dim, a_dim, conti=args.conti).to(device)
    value_net = ValueNet(s_dim).to(device)
    dis_net = DiscriminatorNet(s_dim + a_dim).to(device)
    agent = PPO(policy_net,
                value_net,
                dis_net,
                a_dim,
                beta,
                lr,
                max_grad_norm,
                ent_weight,
                clip_val,
                sample_n_epoch,
                sample_mb_size,
                mb_size,
                device=device,
                conti=args.conti)

    #Load model
    #----------------------------
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)

    if os.path.exists(os.path.join(save_dir, "{}.pt".format(args.env))):
        print("Loading the model ... ", end="")
        checkpoint = torch.load(
            os.path.join(save_dir, "{}.pt".format(args.env)))
        policy_net.load_state_dict(checkpoint["PolicyNet"])
        value_net.load_state_dict(checkpoint["ValueNet"])
        dis_net.load_state_dict(checkpoint["DiscriminatorNet"])
        agent.beta = checkpoint["beta"]
        start_it = checkpoint["it"]
        print("Done.")
    else:
        start_it = 0

    #Start training
    #----------------------------
    t_start = time.time()
    policy_net.train()
    value_net.train()

    for it in range(start_it, n_iter):
        #Run the environment
        with torch.no_grad():
            mb_obs, mb_actions, mb_old_a_logps, mb_values, mb_returns = runner.run(
                policy_net, value_net, dis_net)
            mb_advs = mb_returns - mb_values
            mb_advs = (mb_advs - mb_advs.mean()) / (mb_advs.std() + 1e-6)

        #Train
        pg_loss, v_loss, ent, dis_loss, dis_real, dis_fake, avg_kl = agent.train(
            policy_net, value_net, dis_net, mb_obs, mb_actions, mb_values,
            mb_advs, mb_returns, mb_old_a_logps, sa_real)

        #Print the result
        if it % disp_step == 0:
            agent.lr_decay(it, n_iter)
            policy_net.eval()
            value_net.eval()
            n_sec = time.time() - t_start
            fps = int((it - start_it) * n_env * n_step / n_sec)
            mean_true_return, std_true_return, mean_return, std_return, mean_len = runner.get_performance(
            )
            policy_net.train()
            value_net.train()

            print("[{:5d} / {:5d}]".format(it, n_iter))
            print("----------------------------------")
            print("Timesteps        = {:d}".format((it - start_it) * mb_size))
            print("Elapsed time     = {:.2f} sec".format(n_sec))
            print("FPS              = {:d}".format(fps))
            print("actor loss       = {:.6f}".format(pg_loss))
            print("critic loss      = {:.6f}".format(v_loss))
            print("dis loss         = {:.6f}".format(dis_loss))
            print("entropy          = {:.6f}".format(ent))
            print("avg_kl           = {:.6f}".format(avg_kl))
            print("beta             = {:.6f}".format(agent.beta))
            print("mean true return = {:.6f}".format(mean_true_return))
            print("mean return      = {:.6f}".format(mean_return))
            print("mean length      = {:.2f}".format(mean_len))
            print("dis_real         = {:.3f}".format(dis_real))
            print("dis_fake         = {:.3f}".format(dis_fake))
            print()

        #Save model
        if it % save_step == 0:
            print("Saving the model ... ", end="")
            torch.save(
                {
                    "beta": agent.beta,
                    "it": it,
                    "PolicyNet": policy_net.state_dict(),
                    "ValueNet": value_net.state_dict(),
                    "DiscriminatorNet": dis_net.state_dict()
                }, os.path.join(save_dir, "{}.pt".format(args.env)))
            print("Done.")
            print()

    env.close()
コード例 #5
0
def main():
    #Parse arguments
    #----------------------------
    parser = argparse.ArgumentParser()
    parser.add_argument("--env", default="CartPole-v0")
    parser.add_argument("--conti", action="store_true")
    parser.add_argument("--unwrap", action="store_true")
    args = parser.parse_args()

    #Parameters
    #----------------------------
    n_env = 8
    n_step = 128
    mb_size = n_env * n_step
    sample_mb_size = 64
    sample_n_epoch = 4
    clip_val = 0.2
    lamb = 0.95
    gamma = 0.99
    ent_weight = 0.0
    max_grad_norm = 0.5
    lr = 1e-4
    n_iter = 30000
    disp_step = 30
    save_step = 300
    save_dir = "./save"
    device = "cuda:0"

    #Create multiple environments
    #----------------------------
    env = MultiEnv([
        make_env(i,
                 env_id=args.env,
                 unwrap=args.unwrap,
                 rand_seed=int(time.time())) for i in range(n_env)
    ])

    if args.conti:
        s_dim = env.ob_space.shape[0]
        a_dim = env.ac_space.shape[0]
    else:
        s_dim = env.ob_space.shape[0]
        a_dim = env.ac_space.n

    runner = EnvRunner(env,
                       s_dim,
                       a_dim,
                       n_step,
                       gamma,
                       lamb,
                       device=device,
                       conti=args.conti)

    #Create model
    #----------------------------
    policy_net = PolicyNet(s_dim, a_dim, conti=args.conti).to(device)
    value_net = ValueNet(s_dim).to(device)
    agent = PPO(policy_net,
                value_net,
                lr,
                max_grad_norm,
                ent_weight,
                clip_val,
                sample_n_epoch,
                sample_mb_size,
                mb_size,
                device=device)

    #Load model
    #----------------------------
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)

    if os.path.exists(os.path.join(save_dir, "{}.pt".format(args.env))):
        print("Loading the model ... ", end="")
        checkpoint = torch.load(
            os.path.join(save_dir, "{}.pt".format(args.env)))
        policy_net.load_state_dict(checkpoint["PolicyNet"])
        value_net.load_state_dict(checkpoint["ValueNet"])
        start_it = checkpoint["it"]
        print("Done.")
    else:
        start_it = 0

    #Start training
    #----------------------------
    t_start = time.time()
    policy_net.train()
    value_net.train()

    for it in range(start_it, n_iter):
        #Run the environment
        with torch.no_grad():
            mb_obs, mb_actions, mb_old_a_logps, mb_values, mb_returns = runner.run(
                policy_net, value_net)
            mb_advs = mb_returns - mb_values
            mb_advs = (mb_advs - mb_advs.mean()) / (mb_advs.std() + 1e-6)

        #Train
        pg_loss, v_loss, ent = agent.train(policy_net, value_net, mb_obs,
                                           mb_actions, mb_values, mb_advs,
                                           mb_returns, mb_old_a_logps)

        #Print the result
        if it % disp_step == 0:
            agent.lr_decay(it, n_iter)
            policy_net.eval()
            value_net.eval()
            n_sec = time.time() - t_start
            fps = int((it - start_it) * n_env * n_step / n_sec)
            mean_return, std_return, mean_len = runner.get_performance()
            policy_net.train()
            value_net.train()

            print("[{:5d} / {:5d}]".format(it, n_iter))
            print("----------------------------------")
            print("Timesteps    = {:d}".format((it - start_it) * mb_size))
            print("Elapsed time = {:.2f} sec".format(n_sec))
            print("FPS          = {:d}".format(fps))
            print("actor loss   = {:.6f}".format(pg_loss))
            print("critic loss  = {:.6f}".format(v_loss))
            print("entropy      = {:.6f}".format(ent))
            print("mean return  = {:.6f}".format(mean_return))
            print("mean length  = {:.2f}".format(mean_len))
            print()

        #Save model
        if it % save_step == 0:
            print("Saving the model ... ", end="")
            torch.save(
                {
                    "it": it,
                    "PolicyNet": policy_net.state_dict(),
                    "ValueNet": value_net.state_dict()
                }, os.path.join(save_dir, "{}.pt".format(args.env)))
            print("Done.")
            print()

    env.close()
コード例 #6
0
def main():
    #Parse arguments
    #----------------------------
    parser = argparse.ArgumentParser()
    parser.add_argument("--env", default="CartPole-v0")
    parser.add_argument("--conti", action="store_true")
    args = parser.parse_args()

    #Parameters
    #----------------------------
    env_id = args.env
    mb_size = 256
    lr = 1e-5
    n_iter = 100000
    disp_step = 1000
    save_step = 10000
    save_dir = "./save"
    device = "cuda:0"
    expert_path = "../save/{}_traj.pkl".format(args.env)

    #Create environment
    #----------------------------
    env = gym.make(env_id)

    if args.conti:
        s_dim = env.observation_space.shape[0]
        a_dim = env.action_space.shape[0]
    else:
        s_dim = env.observation_space.shape[0]
        a_dim = env.action_space.n

    #Load expert trajectories
    #----------------------------
    if os.path.exists(expert_path):
        s_traj, a_traj = pkl.load(open(expert_path, "rb"))
        s_traj = np.concatenate(s_traj, 0)
        a_traj = np.concatenate(a_traj, 0)
    else:
        print("ERROR: No expert trajectory file found")
        sys.exit(1)

    #Create model
    #----------------------------
    policy_net = PolicyNet(s_dim, a_dim, conti=args.conti).to(device)
    opt = torch.optim.Adam(policy_net.parameters(), lr)

    #Load model
    #----------------------------
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)

    if os.path.exists(os.path.join(save_dir, "{}.pt".format(args.env))):
        print("Loading the model ... ", end="")
        checkpoint = torch.load(
            os.path.join(save_dir, "{}.pt".format(args.env)))
        policy_net.load_state_dict(checkpoint["PolicyNet"])
        start_it = checkpoint["it"]
        print("Done.")
    else:
        start_it = 0

    #Start training
    #----------------------------
    t_start = time.time()
    policy_net.train()

    for it in range(start_it, n_iter + 1):
        #Train
        mb_obs, mb_actions = sample_batch(s_traj, a_traj, mb_size)
        mb_a_logps, mb_ents = policy_net.evaluate(
            torch.from_numpy(mb_obs).to(device),
            torch.from_numpy(mb_actions).to(device))
        loss = -mb_a_logps.mean()

        opt.zero_grad()
        loss.backward()
        opt.step()

        #Print the result
        if it % disp_step == 0:
            print("[{:5d} / {:5d}] Elapsed time = {:.2f}, actor loss = {:.6f}".
                  format(it, n_iter,
                         time.time() - t_start, loss.item()))

        #Save model
        if it % save_step == 0:
            print("Saving the model ... ", end="")
            torch.save({
                "it": it,
                "PolicyNet": policy_net.state_dict()
            }, os.path.join(save_dir, "{}.pt".format(args.env)))
            print("Done.")
            print()

    env.close()
コード例 #7
0
def main():
    #Parse arguments
    #----------------------------
    parser = argparse.ArgumentParser()
    parser.add_argument("--env", default="BipedalWalker-v3")
    parser.add_argument("--discrete", action="store_true")
    parser.add_argument("--unwrap", action="store_true")
    args = parser.parse_args()

    #Parameters
    #----------------------------
    clip_val = 0.2
    sample_mb_size = 64
    sample_n_epoch = 4
    lamb = 0.95
    gamma = 0.99
    ent_weight = 0.01
    max_grad_norm = 0.5
    lr = 1e-4
    n_iter = 10000
    disp_step = 30
    save_step = 300
    save_dir = "./save"
    device = "cuda:0" if torch.cuda.is_available() else "cpu"

    #Create environment
    #----------------------------
    env = gym.make(args.env)

    if args.discrete:
        s_dim = env.observation_space.shape[0]
        a_dim = env.action_space.n
    else:
        s_dim = env.observation_space.shape[0]
        a_dim = env.action_space.shape[0]

    if args.unwrap:
        env = env.unwrapped

    runner = EnvRunner(s_dim,
                       a_dim,
                       gamma,
                       lamb,
                       max_step=2048,
                       device=device,
                       conti=not args.discrete)

    #Create model
    #----------------------------
    policy_net = PolicyNet(s_dim, a_dim, conti=not args.discrete).to(device)
    value_net = ValueNet(s_dim).to(device)
    agent = PPO(policy_net,
                value_net,
                lr,
                max_grad_norm,
                ent_weight,
                clip_val,
                sample_n_epoch,
                sample_mb_size,
                device=device)

    #Load model
    #----------------------------
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)

    if os.path.exists(os.path.join(save_dir, "{}.pt".format(args.env))):
        print("Loading the model ... ", end="")
        checkpoint = torch.load(
            os.path.join(save_dir, "{}.pt".format(args.env)))
        policy_net.load_state_dict(checkpoint["PolicyNet"])
        value_net.load_state_dict(checkpoint["ValueNet"])
        start_it = checkpoint["it"]
        print("Done.")
    else:
        start_it = 0

    #Start training
    #----------------------------
    t_start = time.time()
    policy_net.train()
    value_net.train()
    mean_total_reward = 0
    mean_length = 0

    for it in range(start_it, n_iter):
        #Run the environment
        with torch.no_grad():
            mb_obs, mb_actions, mb_old_a_logps, mb_values, mb_returns, mb_rewards = runner.run(
                env, policy_net, value_net)
            mb_advs = mb_returns - mb_values
            mb_advs = (mb_advs - mb_advs.mean()) / (mb_advs.std() + 1e-6)

        #Train
        pg_loss, v_loss, ent = agent.train(policy_net, value_net, mb_obs,
                                           mb_actions, mb_values, mb_advs,
                                           mb_returns, mb_old_a_logps)
        mean_total_reward += mb_rewards.sum()
        mean_length += len(mb_obs)
        print("[Episode {:4d}] total reward = {:.6f}, length = {:d}".format(
            it, mb_rewards.sum(), len(mb_obs)))

        #Print the result
        if it % disp_step == 0:
            print("\n[{:5d} / {:5d}]".format(it, n_iter))
            print("----------------------------------")
            print("Elapsed time = {:.2f} sec".format(time.time() - t_start))
            print("actor loss   = {:.6f}".format(pg_loss))
            print("critic loss  = {:.6f}".format(v_loss))
            print("entropy      = {:.6f}".format(ent))
            print("mean return  = {:.6f}".format(mean_total_reward /
                                                 disp_step))
            print("mean length  = {:.2f}".format(mean_length / disp_step))
            print()

            agent.lr_decay(it, n_iter)
            mean_total_reward = 0
            mean_length = 0

        #Save model
        if it % save_step == 0:
            print("Saving the model ... ", end="")
            torch.save(
                {
                    "it": it,
                    "PolicyNet": policy_net.state_dict(),
                    "ValueNet": value_net.state_dict()
                }, os.path.join(save_dir, "{}.pt".format(args.env)))
            print("Done.")
            print()

    env.close()