コード例 #1
0
def start_training(train_arguments, folder_index):
    rcnn = RCNN(train_arguments.pos_loss_method, train_arguments.loss_weight_lambda,
                train_arguments.prevent_overfitting_method).cuda()
    rcnn.train()  # train mode    could use dropout.
    npz_path = train_arguments.get_train_data_path(folder_index)
    npz = np.load(npz_path)
    print("\n\n\nload from:  ", npz_path)
    train_arguments.train_sentences = npz['train_sentences']
    train_arguments.train_sentence_info = npz['train_sentence_info']
    train_arguments.train_roi = npz['train_roi']
    train_arguments.train_cls = npz['train_cls']
    if train_arguments.normalize:
        if train_arguments.dx_compute_method == "left_boundary":
            train_arguments.train_tbbox = npz["train_norm_lb_tbbox"]
        else:
            train_arguments.train_tbbox = npz["train_norm_tbbox"]
    else:
        train_arguments.train_tbbox = npz['train_tbbox']
    train_arguments.train_sentences = t.Tensor(train_arguments.train_sentences)
    train_arguments.train_set = np.random.permutation(train_arguments.train_sentences.size(0))  # like shuffle
    if train_arguments.prevent_overfitting_method.lower() == "l2 regu":
        if train_arguments.partial_l2_penalty:
            optimizer = optim.Adam([
                {"params": rcnn.conv1.parameters(), "weight_decay": 0},
                {"params": rcnn.cls_fc1.parameters(), "weight_decay": train_arguments.l2_beta},
                {"params": rcnn.cls_score.parameters(), "weight_decay": train_arguments.l2_beta},
                {"params": rcnn.bbox_fc1.parameters(), "weight_decay": train_arguments.l2_beta},
                {"params": rcnn.bbox.parameters(), "weight_decay": train_arguments.l2_beta}
            ], lr=train_arguments.learning_rate)
        else:
            optimizer = optim.Adam(rcnn.parameters(), lr=train_arguments.learning_rate,
                                   weight_decay=train_arguments.l2_beta)
    else:  # dropout optimizer
        optimizer = optim.Adam(rcnn.parameters(), lr=train_arguments.learning_rate)
    rcnn.optimizer = optimizer

    for epoch_time in range(train_arguments.max_iter_epoch):
        print('===========================================')
        print('[Training Epoch {}]'.format(epoch_time + 1))

        train_epoch(train_arguments, rcnn)
        if epoch_time >= train_arguments.start_save_epoch:
            save_directory = train_arguments.get_save_directory(folder_index)
            save_path = save_directory + "model_epoch" + str(epoch_time + 1) + ".pth"
            t.save(rcnn.state_dict(), save_path)
            print("Model save in ", save_path)
コード例 #2
0
def main(args):
    model = RCNN(vocab_size=args.vocab_size,
                 embedding_dim=args.embedding_dim,
                 hidden_size=args.hidden_size,
                 hidden_size_linear=args.hidden_size_linear,
                 class_num=args.class_num,
                 dropout=args.dropout).to(args.device)

    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model, dim=0)

    train_texts, train_labels = read_file(args.train_file_path)
    word2idx = build_dictionary(train_texts, vocab_size=args.vocab_size)
    logger.info('Dictionary Finished!')

    full_dataset = CustomTextDataset(train_texts, train_labels, word2idx)
    num_train_data = len(full_dataset) - args.num_val_data
    train_dataset, val_dataset = random_split(
        full_dataset, [num_train_data, args.num_val_data])
    train_dataloader = DataLoader(dataset=train_dataset,
                                  collate_fn=lambda x: collate_fn(x, args),
                                  batch_size=args.batch_size,
                                  shuffle=True)

    valid_dataloader = DataLoader(dataset=val_dataset,
                                  collate_fn=lambda x: collate_fn(x, args),
                                  batch_size=args.batch_size,
                                  shuffle=True)

    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    train(model, optimizer, train_dataloader, valid_dataloader, args)
    logger.info('******************** Train Finished ********************')

    # Test
    if args.test_set:
        test_texts, test_labels = read_file(args.test_file_path)
        test_dataset = CustomTextDataset(test_texts, test_labels, word2idx)
        test_dataloader = DataLoader(dataset=test_dataset,
                                     collate_fn=lambda x: collate_fn(x, args),
                                     batch_size=args.batch_size,
                                     shuffle=True)

        model.load_state_dict(
            torch.load(os.path.join(args.model_save_path, "best.pt")))
        _, accuracy, precision, recall, f1, cm = evaluate(
            model, test_dataloader, args)
        logger.info('-' * 50)
        logger.info(
            f'|* TEST SET *| |ACC| {accuracy:>.4f} |PRECISION| {precision:>.4f} |RECALL| {recall:>.4f} |F1| {f1:>.4f}'
        )
        logger.info('-' * 50)
        logger.info('---------------- CONFUSION MATRIX ----------------')
        for i in range(len(cm)):
            logger.info(cm[i])
        logger.info('--------------------------------------------------')
コード例 #3
0
def main(args):
    acc_list = []
    f1_score_list = []
    prec_list = []
    recall_list = []
    for i in range(10):
        setup_data()
        model = RCNN(vocab_size=args.vocab_size,
                     embedding_dim=args.embedding_dim,
                     hidden_size=args.hidden_size,
                     hidden_size_linear=args.hidden_size_linear,
                     class_num=args.class_num,
                     dropout=args.dropout).to(args.device)

        if args.n_gpu > 1:
            model = torch.nn.DataParallel(model, dim=0)

        train_texts, train_labels = read_file(args.train_file_path)
        word2idx, embedding = build_dictionary(train_texts, args.vocab_size,
                                               args.lexical, args.syntactic,
                                               args.semantic)

        logger.info('Dictionary Finished!')

        full_dataset = CustomTextDataset(train_texts, train_labels, word2idx,
                                         args)
        num_train_data = len(full_dataset) - args.num_val_data
        train_dataset, val_dataset = random_split(
            full_dataset, [num_train_data, args.num_val_data])
        train_dataloader = DataLoader(dataset=train_dataset,
                                      collate_fn=lambda x: collate_fn(x, args),
                                      batch_size=args.batch_size,
                                      shuffle=True)

        valid_dataloader = DataLoader(dataset=val_dataset,
                                      collate_fn=lambda x: collate_fn(x, args),
                                      batch_size=args.batch_size,
                                      shuffle=True)

        optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
        train(model, optimizer, train_dataloader, valid_dataloader, embedding,
              args)
        logger.info('******************** Train Finished ********************')

        # Test
        if args.test_set:
            test_texts, test_labels = read_file(args.test_file_path)
            test_dataset = CustomTextDataset(test_texts, test_labels, word2idx,
                                             args)
            test_dataloader = DataLoader(
                dataset=test_dataset,
                collate_fn=lambda x: collate_fn(x, args),
                batch_size=args.batch_size,
                shuffle=True)

            model.load_state_dict(
                torch.load(os.path.join(args.model_save_path, "best.pt")))
            _, accuracy, precision, recall, f1, cm = evaluate(
                model, test_dataloader, embedding, args)
            logger.info('-' * 50)
            logger.info(
                f'|* TEST SET *| |ACC| {accuracy:>.4f} |PRECISION| {precision:>.4f} |RECALL| {recall:>.4f} |F1| {f1:>.4f}'
            )
            logger.info('-' * 50)
            logger.info('---------------- CONFUSION MATRIX ----------------')
            for i in range(len(cm)):
                logger.info(cm[i])
            logger.info('--------------------------------------------------')
            acc_list.append(accuracy / 100)
            prec_list.append(precision)
            recall_list.append(recall)
            f1_score_list.append(f1)

    avg_acc = sum(acc_list) / len(acc_list)
    avg_prec = sum(prec_list) / len(prec_list)
    avg_recall = sum(recall_list) / len(recall_list)
    avg_f1_score = sum(f1_score_list) / len(f1_score_list)
    logger.info('--------------------------------------------------')
    logger.info(
        f'|* TEST SET *| |Avg ACC| {avg_acc:>.4f} |Avg PRECISION| {avg_prec:>.4f} |Avg RECALL| {avg_recall:>.4f} |Avg F1| {avg_f1_score:>.4f}'
    )
    logger.info('--------------------------------------------------')
    plot_df = pd.DataFrame({
        'x_values': range(10),
        'avg_acc': acc_list,
        'avg_prec': prec_list,
        'avg_recall': recall_list,
        'avg_f1_score': f1_score_list
    })
    plt.plot('x_values',
             'avg_acc',
             data=plot_df,
             marker='o',
             markerfacecolor='blue',
             markersize=12,
             color='skyblue',
             linewidth=4)
    plt.plot('x_values',
             'avg_prec',
             data=plot_df,
             marker='',
             color='olive',
             linewidth=2)
    plt.plot('x_values',
             'avg_recall',
             data=plot_df,
             marker='',
             color='olive',
             linewidth=2,
             linestyle='dashed')
    plt.plot('x_values',
             'avg_f1_score',
             data=plot_df,
             marker='',
             color='olive',
             linewidth=2,
             linestyle='dashed')
    plt.legend()
    fname = 'lexical-semantic-syntactic.png' if args.lexical and args.semantic and args.syntactic \
                            else 'semantic-syntactic.png' if args.semantic and args.syntactic \
                            else 'lexical-semantic.png' if args.lexical and args.semantic \
                            else 'lexical-syntactic.png'if args.lexical and args.syntactic \
                            else 'lexical.png' if args.lexical \
                            else 'syntactic.png' if args.syntactic \
                            else 'semantic.png' if args.semantic \
                            else 'plain.png'
    if not (path.exists('./images')):
        mkdir('./images')
    plt.savefig(path.join('./images', fname))
コード例 #4
0
    model.train()
    return score


if __name__ == "__main__":
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    
    train_data = pickle.load(open(os.path.join(data_path, train_name), "rb"))
    dev_data = pickle.load(open(os.path.join(data_path, dev_name), "rb"))
    vocabulary = pickle.load(open(os.path.join(data_path, vocabulary_name), "rb"))
    print('dataset', len(train_data), len(dev_data))

    # load w2v data
    weight = pickle.load(open(os.path.join(data_path, weight_name), "rb"))
    
    # model
    train_device = torch.device(device if torch.cuda.is_available() else "cpu")
    model = RCNN(vocab_size=len(vocabulary), embed_dim=embed_dim,
                  output_dim=class_num, hidden_dim=hidden_dim,
                  num_layers=num_layers, dropout=dropout, weight=weight)
    model.to(train_device)
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
    
    # train
    writer = SummaryWriter(log_dir=log_path)
    train()
    writer.close()
コード例 #5
0
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

from model import RCNN
from dataloader_mnist import dataloader,batch_size,test_dataset_len,train_dataset_len

n_classes = 10
net = RCNN(n_classes=n_classes)

learning_rate = 1e-3
epoch = 30

criterion = nn.CrossEntropyLoss()
# optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9)
optimizer = optim.Adam(net.parameters(), lr=learning_rate)
# scheduler = optim.lr_scheduler.ReduceLROnPlateau(
# 	optimizer, 'min' ,
# 	factor=0.1 ,
# 	patience=(train_dataset_len/batch_size)*3,
# 	verbose=True)



use_gpu = torch.cuda.is_available()

if use_gpu:
	net = net.cuda()


loss_trend = []