def srgan_model(features, labels, mode, params): del params global load_flag if mode == tf.estimator.ModeKeys.PREDICT: net_g_test = SRGAN_g(features, is_train=False) predictions = {'generated_images': net_g_test.outputs} return tf.estimator.EstimatorSpec(mode, predictions=predictions) net_g = SRGAN_g(features, is_train=True) net_d, logits_real = SRGAN_d(labels, is_train=True) _, logits_fake = SRGAN_d(net_g.outputs, is_train=True) t_target_image_224 = tf.image.resize_images(labels, size=[224, 224], method=0, align_corners=False) t_predict_image_224 = tf.image.resize_images( net_g.outputs, size=[224, 224], method=0, align_corners=False) # resize_generate_image_for_vgg net_vgg, vgg_target_emb = Vgg19_simple_api((t_target_image_224 + 1) / 2) _, vgg_predict_emb = Vgg19_simple_api((t_predict_image_224 + 1) / 2) d_loss1 = tl.cost.sigmoid_cross_entropy(logits_real, tf.ones_like(logits_real), name='d1') d_loss2 = tl.cost.sigmoid_cross_entropy(logits_fake, tf.zeros_like(logits_fake), name='d2') d_loss = d_loss1 + d_loss2 g_gan_loss = 1e-3 * tl.cost.sigmoid_cross_entropy( logits_fake, tf.ones_like(logits_fake), name='g') mse_loss = tl.cost.mean_squared_error(net_g.outputs, labels, is_mean=True) vgg_loss = 2e-6 * tl.cost.mean_squared_error( vgg_predict_emb.outputs, vgg_target_emb.outputs, is_mean=True) g_loss = mse_loss + vgg_loss + g_gan_loss g_vars = tl.layers.get_variables_with_name('SRGAN_g', True, True) d_vars = tl.layers.get_variables_with_name('SRGAN_d', True, True) with tf.variable_scope('learning_rate'): lr_v = tf.Variable(config.TRAIN.lr_init, trainable=False) # SRGAN g_optim = tf.train.AdamOptimizer(lr_v, beta1=config.TRAIN.beta1) \ .minimize(g_loss, var_list=g_vars, global_step=tf.train.get_global_step()) d_optim = tf.train.AdamOptimizer(lr_v, beta1=config.TRAIN.beta1) \ .minimize(d_loss, var_list=d_vars, global_step=tf.train.get_global_step()) joint_op = tf.group([g_optim, d_optim]) load_vgg(net_vgg) return tf.estimator.EstimatorSpec(mode, loss=g_loss, train_op=joint_op)
def g_init_model(features, labels, mode, params): del params if mode == tf.estimator.ModeKeys.PREDICT: net_g_test = SRGAN_g(features, is_train=False) predictions = {'generated_images': net_g_test.outputs} return tf.contrib.tpu.TPUEstimatorSpec(mode, predictions=predictions) net_g = SRGAN_g(features, is_train=True) _ = SRGAN_d(labels, is_train=True) mse_loss = tl.cost.mean_squared_error(net_g.outputs, labels, is_mean=True) g_vars = tl.layers.get_variables_with_name('SRGAN_g', True, True) with tf.variable_scope('learning_rate'): lr_v = tf.Variable(config.TRAIN.lr_init, trainable=False) g_optimizer = tf.train.AdamOptimizer(lr_v, beta1=config.TRAIN.beta1) g_optimizer = tf.contrib.tpu.CrossShardOptimizer(g_optimizer) init_ops = g_optimizer.minimize(mse_loss, var_list=g_vars, global_step=tf.train.get_global_step()) return tf.contrib.tpu.TPUEstimatorSpec(mode, loss=mse_loss, train_op=init_ops)
def train(): ## create folders to save result images and trained model save_dir_ginit = "samples/{}_ginit".format(tl.global_flag['mode']) save_dir_gan = "samples/{}_gan".format(tl.global_flag['mode']) tl.files.exists_or_mkdir(save_dir_ginit) tl.files.exists_or_mkdir(save_dir_gan) checkpoint_dir = "checkpoint" # checkpoint_resize_conv tl.files.exists_or_mkdir(checkpoint_dir) ###====================== PRE-LOAD DATA ===========================### train_hr_img_list = sorted( tl.files.load_file_list(path=config.TRAIN.hr_img_path, regx='.*.png', printable=False)) train_lr_img_list = sorted( tl.files.load_file_list(path=config.TRAIN.lr_img_path, regx='.*.png', printable=False)) valid_hr_img_list = sorted( tl.files.load_file_list(path=config.VALID.hr_img_path, regx='.*.png', printable=False)) valid_lr_img_list = sorted( tl.files.load_file_list(path=config.VALID.lr_img_path, regx='.*.png', printable=False)) ## If your machine have enough memory, please pre-load the whole train set. train_hr_imgs = tl.vis.read_images(train_hr_img_list, path=config.TRAIN.hr_img_path, n_threads=32) # for im in train_hr_imgs: # print(im.shape) # valid_lr_imgs = tl.vis.read_images(valid_lr_img_list, path=config.VALID.lr_img_path, n_threads=32) # for im in valid_lr_imgs: # print(im.shape) # valid_hr_imgs = tl.vis.read_images(valid_hr_img_list, path=config.VALID.hr_img_path, n_threads=32) # for im in valid_hr_imgs: # print(im.shape) # exit() ###========================== DEFINE MODEL ============================### ## train inference t_image = tf.placeholder('float32', [batch_size, 96, 96, 3], name='t_image_input_to_SRGAN_generator') t_target_image = tf.placeholder('float32', [batch_size, 384, 384, 3], name='t_target_image') net_g = SRGAN_g(t_image, is_train=True, reuse=False) net_d, logits_real = SRGAN_d(t_target_image, is_train=True, reuse=False) _, logits_fake = SRGAN_d(net_g.outputs, is_train=True, reuse=True) net_g.print_params(False) net_g.print_layers() net_d.print_params(False) net_d.print_layers() ## vgg inference. 0, 1, 2, 3 BILINEAR NEAREST BICUBIC AREA t_target_image_224 = tf.image.resize_images( t_target_image, size=[224, 224], method=0, align_corners=False ) # resize_target_image_for_vgg # http://tensorlayer.readthedocs.io/en/latest/_modules/tensorlayer/layers.html#UpSampling2dLayer t_predict_image_224 = tf.image.resize_images( net_g.outputs, size=[224, 224], method=0, align_corners=False) # resize_generate_image_for_vgg net_vgg, vgg_target_emb = Vgg19_simple_api((t_target_image_224 + 1) / 2, reuse=False) _, vgg_predict_emb = Vgg19_simple_api((t_predict_image_224 + 1) / 2, reuse=True) ## test inference net_g_test = SRGAN_g(t_image, is_train=False, reuse=True) # ###========================== DEFINE TRAIN OPS ==========================### d_loss1 = tl.cost.sigmoid_cross_entropy(logits_real, tf.ones_like(logits_real), name='d1') d_loss2 = tl.cost.sigmoid_cross_entropy(logits_fake, tf.zeros_like(logits_fake), name='d2') d_loss = d_loss1 + d_loss2 g_gan_loss = 1e-3 * tl.cost.sigmoid_cross_entropy( logits_fake, tf.ones_like(logits_fake), name='g') mse_loss = tl.cost.mean_squared_error(net_g.outputs, t_target_image, is_mean=True) vgg_loss = 2e-6 * tl.cost.mean_squared_error( vgg_predict_emb.outputs, vgg_target_emb.outputs, is_mean=True) g_loss = mse_loss + vgg_loss + g_gan_loss g_vars = tl.layers.get_variables_with_name('SRGAN_g', True, True) d_vars = tl.layers.get_variables_with_name('SRGAN_d', True, True) with tf.variable_scope('learning_rate'): lr_v = tf.Variable(lr_init, trainable=False) ## Pretrain g_optim_init = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize( mse_loss, var_list=g_vars) ## SRGAN g_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(g_loss, var_list=g_vars) d_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(d_loss, var_list=d_vars) ###========================== RESTORE MODEL =============================### sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) tl.layers.initialize_global_variables(sess) if tl.files.load_and_assign_npz( sess=sess, name=checkpoint_dir + '/g_{}.npz'.format(tl.global_flag['mode']), network=net_g) is None: tl.files.load_and_assign_npz( sess=sess, name=checkpoint_dir + '/g_{}_init.npz'.format(tl.global_flag['mode']), network=net_g) tl.files.load_and_assign_npz(sess=sess, name=checkpoint_dir + '/d_{}.npz'.format(tl.global_flag['mode']), network=net_d) ###============================= LOAD VGG ===============================### vgg19_npy_path = "vgg19.npy" if not os.path.isfile(vgg19_npy_path): print( "Please download vgg19.npz from : https://github.com/machrisaa/tensorflow-vgg" ) exit() npz = np.load(vgg19_npy_path, encoding='latin1').item() params = [] for val in sorted(npz.items()): W = np.asarray(val[1][0]) b = np.asarray(val[1][1]) print(" Loading %s: %s, %s" % (val[0], W.shape, b.shape)) params.extend([W, b]) tl.files.assign_params(sess, params, net_vgg) # net_vgg.print_params(False) # net_vgg.print_layers() ###============================= TRAINING ===============================### ## use first `batch_size` of train set to have a quick test during training sample_imgs = train_hr_imgs[0:batch_size] # sample_imgs = tl.vis.read_images(train_hr_img_list[0:batch_size], path=config.TRAIN.hr_img_path, n_threads=32) # if no pre-load train set sample_imgs_384 = tl.prepro.threading_data(sample_imgs, fn=crop_sub_imgs_fn, is_random=False) print('sample HR sub-image:', sample_imgs_384.shape, sample_imgs_384.min(), sample_imgs_384.max()) sample_imgs_96 = tl.prepro.threading_data(sample_imgs_384, fn=downsample_fn) print('sample LR sub-image:', sample_imgs_96.shape, sample_imgs_96.min(), sample_imgs_96.max()) tl.vis.save_images(sample_imgs_96, [ni, ni], save_dir_ginit + '/_train_sample_96.png') tl.vis.save_images(sample_imgs_384, [ni, ni], save_dir_ginit + '/_train_sample_384.png') tl.vis.save_images(sample_imgs_96, [ni, ni], save_dir_gan + '/_train_sample_96.png') tl.vis.save_images(sample_imgs_384, [ni, ni], save_dir_gan + '/_train_sample_384.png') ###========================= initialize G ====================### ## fixed learning rate sess.run(tf.assign(lr_v, lr_init)) print(" ** fixed learning rate: %f (for init G)" % lr_init) for epoch in range(0, n_epoch_init + 1): epoch_time = time.time() total_mse_loss, n_iter = 0, 0 ## If your machine cannot load all images into memory, you should use ## this one to load batch of images while training. # random.shuffle(train_hr_img_list) # for idx in range(0, len(train_hr_img_list), batch_size): # step_time = time.time() # b_imgs_list = train_hr_img_list[idx : idx + batch_size] # b_imgs = tl.prepro.threading_data(b_imgs_list, fn=get_imgs_fn, path=config.TRAIN.hr_img_path) # b_imgs_384 = tl.prepro.threading_data(b_imgs, fn=crop_sub_imgs_fn, is_random=True) # b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn) ## If your machine have enough memory, please pre-load the whole train set. for idx in range(0, len(train_hr_imgs), batch_size): step_time = time.time() b_imgs_384 = tl.prepro.threading_data(train_hr_imgs[idx:idx + batch_size], fn=crop_sub_imgs_fn, is_random=True) b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn) ## update G errM, _ = sess.run([mse_loss, g_optim_init], { t_image: b_imgs_96, t_target_image: b_imgs_384 }) print("Epoch [%2d/%2d] %4d time: %4.4fs, mse: %.8f " % (epoch, n_epoch_init, n_iter, time.time() - step_time, errM)) total_mse_loss += errM n_iter += 1 log = "[*] Epoch: [%2d/%2d] time: %4.4fs, mse: %.8f" % ( epoch, n_epoch_init, time.time() - epoch_time, total_mse_loss / n_iter) print(log) ## quick evaluation on train set if (epoch != 0) and (epoch % 10 == 0): out = sess.run(net_g_test.outputs, { t_image: sample_imgs_96 }) #; print('gen sub-image:', out.shape, out.min(), out.max()) print("[*] save images") tl.vis.save_images(out, [ni, ni], save_dir_ginit + '/train_%d.png' % epoch) ## save model if (epoch != 0) and (epoch % 10 == 0): tl.files.save_npz(net_g.all_params, name=checkpoint_dir + '/g_{}_init.npz'.format(tl.global_flag['mode']), sess=sess) ###========================= train GAN (SRGAN) =========================### for epoch in range(0, n_epoch + 1): ## update learning rate if epoch != 0 and (epoch % decay_every == 0): new_lr_decay = lr_decay**(epoch // decay_every) sess.run(tf.assign(lr_v, lr_init * new_lr_decay)) log = " ** new learning rate: %f (for GAN)" % (lr_init * new_lr_decay) print(log) elif epoch == 0: sess.run(tf.assign(lr_v, lr_init)) log = " ** init lr: %f decay_every_init: %d, lr_decay: %f (for GAN)" % ( lr_init, decay_every, lr_decay) print(log) epoch_time = time.time() total_d_loss, total_g_loss, n_iter = 0, 0, 0 ## If your machine cannot load all images into memory, you should use ## this one to load batch of images while training. # random.shuffle(train_hr_img_list) # for idx in range(0, len(train_hr_img_list), batch_size): # step_time = time.time() # b_imgs_list = train_hr_img_list[idx : idx + batch_size] # b_imgs = tl.prepro.threading_data(b_imgs_list, fn=get_imgs_fn, path=config.TRAIN.hr_img_path) # b_imgs_384 = tl.prepro.threading_data(b_imgs, fn=crop_sub_imgs_fn, is_random=True) # b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn) ## If your machine have enough memory, please pre-load the whole train set. for idx in range(0, len(train_hr_imgs), batch_size): step_time = time.time() b_imgs_384 = tl.prepro.threading_data(train_hr_imgs[idx:idx + batch_size], fn=crop_sub_imgs_fn, is_random=True) b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn) ## update D errD, _ = sess.run([d_loss, d_optim], { t_image: b_imgs_96, t_target_image: b_imgs_384 }) ## update G errG, errM, errV, errA, _ = sess.run( [g_loss, mse_loss, vgg_loss, g_gan_loss, g_optim], { t_image: b_imgs_96, t_target_image: b_imgs_384 }) print( "Epoch [%2d/%2d] %4d time: %4.4fs, d_loss: %.8f g_loss: %.8f (mse: %.6f vgg: %.6f adv: %.6f)" % (epoch, n_epoch, n_iter, time.time() - step_time, errD, errG, errM, errV, errA)) total_d_loss += errD total_g_loss += errG n_iter += 1 log = "[*] Epoch: [%2d/%2d] time: %4.4fs, d_loss: %.8f g_loss: %.8f" % ( epoch, n_epoch, time.time() - epoch_time, total_d_loss / n_iter, total_g_loss / n_iter) print(log) ## quick evaluation on train set if (epoch != 0) and (epoch % 10 == 0): out = sess.run(net_g_test.outputs, { t_image: sample_imgs_96 }) #; print('gen sub-image:', out.shape, out.min(), out.max()) print("[*] save images") tl.vis.save_images(out, [ni, ni], save_dir_gan + '/train_%d.png' % epoch) ## save model if (epoch != 0) and (epoch % 10 == 0): tl.files.save_npz(net_g.all_params, name=checkpoint_dir + '/g_{}.npz'.format(tl.global_flag['mode']), sess=sess) tl.files.save_npz(net_d.all_params, name=checkpoint_dir + '/d_{}.npz'.format(tl.global_flag['mode']), sess=sess)
def train(): ## create folders to save result images and trained model save_dir_ginit = "samples/{}_ginit".format(tl.global_flag['mode']) save_dir_gan = "samples/{}_gan".format(tl.global_flag['mode']) tl.files.exists_or_mkdir(save_dir_ginit) tl.files.exists_or_mkdir(save_dir_gan) checkpoint_dir = "checkpoint" # checkpoint_resize_conv tl.files.exists_or_mkdir(checkpoint_dir) ###====================== PRE-LOAD DATA ===========================### train_hr_img_list = sorted( tl.files.load_file_list(path=config.TRAIN.hr_img_path, regx='.*.png', printable=False)) train_lr_img_list = sorted( tl.files.load_file_list(path=config.TRAIN.lr_img_path, regx='.*.png', printable=False)) ## If your machine have enough memory, please pre-load the whole train set. print("reading images") train_hr_imgs = [] #[None] * len(train_hr_img_list) train_lr_imgs = [] #[None] * len(train_hr_img_list) #sess = tf.Session() for img__ in train_lr_img_list: image_loaded = scipy.misc.imread( os.path.join(config.TRAIN.hr_img_path, img__)) image_loaded = image_loaded.reshape( (image_loaded.shape[0], image_loaded.shape[1], 1)) print(image_loaded.shape) image_loaded = image_loaded / (np.max(image_loaded) + 1) train_hr_imgs.append(image_loaded) aug1, aug2, aug3 = data_augment(image_loaded, is_mask=True) train_hr_imgs.append(aug1) train_hr_imgs.append(aug2) train_hr_imgs.append(aug3) for img__ in train_lr_img_list: image_loaded = scipy.misc.imread( os.path.join(config.TRAIN.lr_img_path, img__)) image_loaded = image_loaded.reshape( (image_loaded.shape[0], image_loaded.shape[1], 1)) print(image_loaded.shape) image_loaded = image_loaded / (np.max(image_loaded) + 1) train_lr_imgs.append(image_loaded) aug1, aug2, aug3 = data_augment(image_loaded, is_mask=False) train_lr_imgs.append(aug1) train_lr_imgs.append(aug2) train_lr_imgs.append(aug3) #shuffle lists random.seed(2018) shuffle(train_hr_imgs) random.seed(2018) shuffle(train_lr_imgs) ###========================== DEFINE MODEL ============================### ## train inference t_image = tf.placeholder('float32', [batch_size, 128, 128, 1], name='t_image_input_to_SRGAN_generator') t_target_image = tf.placeholder( 'float32', [batch_size, 128, 128, 1], name='t_target_image' ) # may have to convert 224x224x1 into 224x224x3, with channel 1 & 2 as 0. May have to have separate place-holder ? net_g = SRGAN_g(t_image, is_train=True, reuse=False) #net_g = u_net(t_image, is_train=True, reuse=False) net_d, logits_real = SRGAN_d(t_target_image, is_train=True, reuse=False) _, logits_fake = SRGAN_d(net_g.outputs, is_train=True, reuse=True) net_g.print_params(False) net_g.print_layers() net_d.print_params(False) net_d.print_layers() ## vgg inference. 0, 1, 2, 3 BILINEAR NEAREST BICUBIC AREA t_target_image_224 = tf.image.resize_images( t_target_image, size=[224, 224], method=0, align_corners=False ) # resize_target_image_for_vgg # http://tensorlayer.readthedocs.io/en/latest/_modules/tensorlayer/layers.html#UpSampling2dLayer t_predict_image_224 = tf.image.resize_images( net_g.outputs, size=[224, 224], method=0, align_corners=False) # resize_generate_image_for_vgg ## test inference net_g_test = SRGAN_g(t_image, is_train=False, reuse=True) # ###========================== DEFINE TRAIN OPS ==========================### d_loss1 = tl.cost.sigmoid_cross_entropy(logits_real, tf.ones_like(logits_real), name='d1') d_loss2 = tl.cost.sigmoid_cross_entropy(logits_fake, tf.zeros_like(logits_fake), name='d2') d_loss = d_loss1 + d_loss2 g_gan_loss = 1e-4 * tl.cost.sigmoid_cross_entropy( logits_fake, tf.ones_like(logits_fake), name='g') w_t_target_image = t_target_image weight = 3 weights = tf.multiply(tf.cast(weight, tf.float32), tf.cast(w_t_target_image, tf.float32)) + 1 mse_loss = tf.reduce_mean( tf.losses.mean_squared_error(w_t_target_image, net_g.outputs, weights=weights)) bce_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=t_target_image, logits=net_g.outputs)) vgg_loss = 0 #2e-3 * tl.cost.mean_squared_error(vgg_predict_emb.outputs, vgg_target_emb.outputs, is_mean=True) #-6 g_loss = mse_loss + g_gan_loss #+vgg_loss d_loss1_summary = tf.summary.scalar('Disciminator logits_real loss', d_loss1) d_loss2_summary = tf.summary.scalar('Disciminator logits_fake loss', d_loss2) d_loss_summary = tf.summary.scalar('Disciminator total loss', d_loss) g_gan_loss_summary = tf.summary.scalar('Generator GAN loss', g_gan_loss) mse_loss_summary = tf.summary.scalar('Generator MSE loss', mse_loss) vgg_loss_summary = tf.summary.scalar('Generator VGG loss', vgg_loss) g_loss_summary = tf.summary.scalar('Generator total loss', g_loss) g_vars = tl.layers.get_variables_with_name('SRGAN_g', True, True) #SRGAN_g d_vars = tl.layers.get_variables_with_name('SRGAN_d', True, True) with tf.variable_scope('learning_rate'): lr_v = tf.Variable(lr_init, trainable=False) ## Pretrain g_optim_init = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize( mse_loss, var_list=g_vars) ## SRGAN g_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(g_loss, var_list=g_vars) d_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(d_loss, var_list=d_vars) ###========================== RESTORE MODEL =============================### sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) tl.layers.initialize_global_variables(sess) # restore model from .ckpt saver = tf.train.Saver() saver.restore(sess, checkpoint_dir + '/model_init_srgan_35.ckpt') #tl.files.load_and_assign_npz(sess=sess, name=checkpoint_dir + '/g_srgan_20.npz', network=net_g) #init of generator #tl.files.load_and_assign_npz(sess=sess, name=checkpoint_dir + '/g_srgan_35_init.npz', network=net_g) #ac dis #tl.files.load_and_assign_npz(sess=sess, name=checkpoint_dir + '/d_srgan_25.npz', network=net_d) ###============================= LOAD VGG ===============================### # vgg19_npy_path = "vgg19.npy" # if not os.path.isfile(vgg19_npy_path): # print("Please download vgg19.npz from : https://github.com/machrisaa/tensorflow-vgg") # exit() # npz = np.load(vgg19_npy_path, encoding='latin1').item() # # params = [] # for val in sorted(npz.items()): # W = np.asarray(val[1][0]) # b = np.asarray(val[1][1]) # print(" Loading %s: %s, %s" % (val[0], W.shape, b.shape)) # params.extend([W, b]) # tl.files.assign_params(sess, params, net_vgg) # # net_vgg.print_params(False) # # net_vgg.print_layers() # ###============================= TRAINING ===============================### ## use first `batch_size` of train set to have a quick test during training sample_imgs = train_hr_imgs[0:batch_size] sample_imgs1 = train_lr_imgs[0:batch_size] # sample_imgs = tl.vis.read_images(train_hr_img_list[0:batch_size], path=config.TRAIN.hr_img_path, n_threads=32) # if no pre-load train set print("sample_imgs size:", len(sample_imgs), sample_imgs[0].shape) sample_imgs_384 = sample_imgs #tl.prepro.threading_data(sample_imgs, fn=crop_sub_imgs_fn, is_random=False) #print('sample HR sub-image:', sample_imgs_384.shape, sample_imgs_384.min(), sample_imgs_384.max()) sample_imgs_96 = sample_imgs1 #tl.prepro.threading_data(sample_imgs_384, fn=downsample_fn) #Ankit print list of input images print(sample_imgs_96) ###========================= initialize G ===================mse# merged_summary_initial_G = tf.summary.merge([mse_loss_summary]) summary_intial_G_writer = tf.summary.FileWriter("./log/train/initial_G") ## fixed learning rate sess.run(tf.assign(lr_v, lr_init)) print(" ** fixed learning rate: %f (for init G)" % lr_init) count = 0 for epoch in range(0, n_epoch_init + 1): epoch_time = time.time() total_mse_loss, n_iter = 0, 0 ## If your machine cannot load all images into memory, you should use ## this one to load batch of images while training. # random.shuffle(train_hr_img_list) # for idx in range(0, len(train_hr_img_list), batch_size): # step_time = time.time() # b_imgs_list = train_hr_img_list[idx : idx + batch_size] # b_imgs = tl.prepro.threading_data(b_imgs_list, fn=get_imgs_fn, path=config.TRAIN.hr_img_path) # b_imgs_384 = tl.prepro.threading_data(b_imgs, fn=crop_sub_imgs_fn, is_random=True) # b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn) ## If your machine have enough memory, please pre-load the whole train set. intial_MSE_G_summary_per_epoch = [] train_hr = [] train_lr = [] for idx in range(0, len(train_hr_imgs) - 4, batch_size): step_time = time.time() train_hr = train_hr_imgs[idx:idx + batch_size] train_lr = train_lr_imgs[idx:idx + batch_size] ## update G errM, _, mse_summary_initial_G, out1 = sess.run( [ mse_loss, g_optim_init, merged_summary_initial_G, net_g.outputs ], { t_image: train_lr, t_target_image: train_hr }) print("Epoch [%2d/%2d] %4d time: %4.4fs, mse: %.8f " % (epoch, n_epoch_init, n_iter, time.time() - step_time, errM)) summary_pb = tf.summary.Summary() summary_pb.ParseFromString(mse_summary_initial_G) intial_G_summaries = {} for val in summary_pb.value: # Assuming all summaries are scalars. intial_G_summaries[val.tag] = val.simple_value intial_MSE_G_summary_per_epoch.append( intial_G_summaries['Generator_MSE_loss']) total_mse_loss += errM n_iter += 1 log = "[*] Epoch: [%2d/%2d] time: %4.4fs, mse: %.8f" % ( epoch, n_epoch_init, time.time() - epoch_time, total_mse_loss / n_iter) print(log) summary_intial_G_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Generator_Initial_MSE_loss per epoch", simple_value=np.mean( intial_MSE_G_summary_per_epoch)), ]), (epoch)) ## quick evaluation on train set #if (epoch != 0) and (epoch % 10 == 0): out = sess.run( net_g_test.outputs, {t_image: sample_imgs_96 }) #; print('gen sub-image:', out.shape, out.min(), out.max()) print("[*] save images") tl.vis.save_images(out, [2, 4], save_dir_ginit + '/train_%d.png' % epoch) tl.vis.save_images(np.asarray(sample_imgs_384), [2, 4], save_dir_ginit + '/train_gt_%d.png' % epoch) tl.vis.save_images(np.asarray(sample_imgs_96), [2, 4], save_dir_ginit + '/train_in_%d.png' % epoch) tl.vis.save_images(out1, [2, 4], save_dir_ginit + '/train_out_%d.png' % epoch) # save model as .ckpt saver = tf.train.Saver(tf.global_variables()) save_path = saver.save( sess, checkpoint_dir + "/model_init_{}_{}.ckpt".format(tl.global_flag['mode'], epoch)) ###========================= train GAN (SRGAN) =========================### merged_summary_discriminator = tf.summary.merge( [d_loss1_summary, d_loss2_summary, d_loss_summary]) summary_discriminator_writer = tf.summary.FileWriter( "./log/train/discriminator") merged_summary_generator = tf.summary.merge([ g_gan_loss_summary, mse_loss_summary, vgg_loss_summary, g_loss_summary ]) summary_generator_writer = tf.summary.FileWriter("./log/train/generator") learning_rate_writer = tf.summary.FileWriter("./log/train/learning_rate") count = 0 for epoch in range(0, n_epoch + 1): ## update learning rate if epoch != 0 and (epoch % decay_every == 0): new_lr_decay = lr_decay**(epoch // decay_every) sess.run(tf.assign(lr_v, lr_init * new_lr_decay)) log = " ** new learning rate: %f (for GAN)" % (lr_init * new_lr_decay) print(log) learning_rate_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Learning_rate per epoch", simple_value=(lr_init * new_lr_decay)), ]), (epoch)) elif epoch == 0: sess.run(tf.assign(lr_v, lr_init)) log = " ** init lr: %f decay_every_init: %d, lr_decay: %f (for GAN)" % ( lr_init, decay_every, lr_decay) print(log) learning_rate_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Learning_rate per epoch", simple_value=lr_init), ]), (epoch)) epoch_time = time.time() total_d_loss, total_g_loss, n_iter = 0, 0, 0 ## If your machine cannot load all images into memory, you should use ## this one to load batch of images while training. # random.shuffle(train_hr_img_list) # for idx in range(0, len(train_hr_img_list), batch_size): # step_time = time.time() # b_imgs_list = train_hr_img_list[idx : idx + batch_size] # b_imgs = tl.prepro.threading_data(b_imgs_list, fn=get_imgs_fn, path=config.TRAIN.hr_img_path) # b_imgs_384 = tl.prepro.threading_data(b_imgs, fn=crop_sub_imgs_fn, is_random=True) # b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn) ## If your machine have enough memory, please pre-load the whole train set. loss_per_batch = [] d_loss1_summary_per_epoch = [] d_loss2_summary_per_epoch = [] d_loss_summary_per_epoch = [] g_gan_loss_summary_per_epoch = [] mse_loss_summary_per_epoch = [] vgg_loss_summary_per_epoch = [] g_loss_summary_per_epoch = [] img_target = [] img_in = [] for idx in range(0, len(train_hr_imgs) - 4, batch_size): step_time = time.time() ## update D img_in = train_lr_imgs[idx:idx + batch_size] img_target = train_hr_imgs[idx:idx + batch_size] errD, _, discriminator_summary = sess.run( [d_loss, d_optim, merged_summary_discriminator], { t_image: img_in, t_target_image: img_target }) summary_pb = tf.summary.Summary() summary_pb.ParseFromString(discriminator_summary) discriminator_summaries = {} for val in summary_pb.value: # Assuming all summaries are scalars. discriminator_summaries[val.tag] = val.simple_value d_loss1_summary_per_epoch.append( discriminator_summaries['Disciminator_logits_real_loss']) d_loss2_summary_per_epoch.append( discriminator_summaries['Disciminator_logits_fake_loss']) d_loss_summary_per_epoch.append( discriminator_summaries['Disciminator_total_loss']) ## update G- GMV errG, errM, errA, _, generator_summary = sess.run( [ g_loss, mse_loss, g_gan_loss, g_optim, merged_summary_generator ], { t_image: img_in, t_target_image: img_target }) summary_pb = tf.summary.Summary() summary_pb.ParseFromString(generator_summary) #print("generator_summary", summary_pb, type(summary_pb)) generator_summaries = {} for val in summary_pb.value: # Assuming all summaries are scalars. generator_summaries[val.tag] = val.simple_value #print("generator_summaries:", generator_summaries) g_gan_loss_summary_per_epoch.append( generator_summaries['Generator_GAN_loss']) mse_loss_summary_per_epoch.append( generator_summaries['Generator_MSE_loss']) vgg_loss_summary_per_epoch.append( generator_summaries['Generator_VGG_loss']) g_loss_summary_per_epoch.append( generator_summaries['Generator_total_loss']) print( "Epoch [%2d/%2d] %4d time: %4.4fs, d_loss: %.8f g_loss: %.8f (mse: %.6f adv: %.6f)" % (epoch, n_epoch, n_iter, time.time() - step_time, errD, errG, errM, errA)) total_d_loss += errD total_g_loss += errG n_iter += 1 log = "[*] Epoch: [%2d/%2d] time: %4.4fs, d_loss: %.8f g_loss: %.8f" % ( epoch, n_epoch, time.time() - epoch_time, total_d_loss / n_iter, total_g_loss / n_iter) print(log) ##### # # logging discriminator summary # ###### # logging per epcoch summary of logit_real_loss per epoch. Value logged is averaged across batches used per epoch. summary_discriminator_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Disciminator_logits_real_loss per epoch", simple_value=np.mean( d_loss1_summary_per_epoch)), ]), (epoch)) # logging per epcoch summary of logit_fake_loss per epoch. Value logged is averaged across batches used per epoch. summary_discriminator_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Disciminator_logits_fake_loss per epoch", simple_value=np.mean( d_loss2_summary_per_epoch)), ]), (epoch)) # logging per epcoch summary of total_loss per epoch. Value logged is averaged across batches used per epoch. summary_discriminator_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Disciminator_total_loss per epoch", simple_value=np.mean( d_loss_summary_per_epoch)), ]), (epoch)) ##### # # logging generator summary # ###### summary_generator_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Generator_GAN_loss per epoch", simple_value=np.mean( g_gan_loss_summary_per_epoch)), ]), (epoch)) summary_generator_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Generator_MSE_loss per epoch", simple_value=np.mean( mse_loss_summary_per_epoch)), ]), (epoch)) summary_generator_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Generator_VGG_loss per epoch", simple_value=np.mean( vgg_loss_summary_per_epoch)), ]), (epoch)) summary_generator_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Generator_total_loss per epoch", simple_value=np.mean( g_loss_summary_per_epoch)), ]), (epoch)) ## quick evaluation on train set #if (epoch != 0) and (epoch % 10 == 0): out = sess.run( net_g_test.outputs, {t_image: sample_imgs_96 }) #; print('gen sub-image:', out.shape, out.min(), out.max()) print("[*] save images") tl.vis.save_images(out, [2, 4], save_dir_gan + '/train_%d.png' % epoch) tl.vis.save_images(np.asarray(sample_imgs_384), [2, 4], save_dir_gan + '/train_gt_%d.png' % epoch) tl.vis.save_images(np.asarray(sample_imgs_96), [2, 4], save_dir_gan + '/train_in_%d.png' % epoch) ## save model if (epoch % 5 == 0): # save model as .ckpt saver = tf.train.Saver(tf.global_variables()) save_path = saver.save( sess, checkpoint_dir + "/model_{}_{}.ckpt".format(tl.global_flag['mode'], epoch))
def train(train_lr_imgs, train_hr_imgs): ## create folders to save result images and trained model checkpoint_dir = "models_checkpoints" tl.files.exists_or_mkdir(checkpoint_dir) ###========================== DEFINE MODEL ============================### ## train inference t_image = tf.placeholder(dtype='float32', shape=(batch_size, 512, 512, 1), name='t_image_input_to_SRGAN_generator') t_target_image = tf.placeholder(dtype='float32', shape=(batch_size, 512, 512, 1), name='t_target_image') net_g = SRGAN_g(t_image, is_train=True, reuse=False) net_d, logits_real = SRGAN_d(t_target_image, is_train=True, reuse=False) _, logits_fake = SRGAN_d(net_g.outputs, is_train=True, reuse=True) ## vgg inference. 0, 1, 2, 3 BILINEAR NEAREST BICUBIC AREA t_target_image_224 = tf.image.resize_images( t_target_image, size=[224, 224], method=0, align_corners=False ) # resize_target_image_for_vgg # http://tensorlayer.readthedocs.io/en/latest/_modules/tensorlayer/layers.html#UpSampling2dLayer t_predict_image_224 = tf.image.resize_images( net_g.outputs, size=[224, 224], method=0, align_corners=False) # resize_generate_image_for_vgg net_vgg, vgg_target_emb = Vgg19_simple_api(input=(t_target_image_224 + 1) / 2, reuse=False) _, vgg_predict_emb = Vgg19_simple_api(input=(t_predict_image_224 + 1) / 2, reuse=True) # ###========================== DEFINE TRAIN OPS ==========================### d_loss1 = tl.cost.sigmoid_cross_entropy(logits_real, tf.ones_like(logits_real), name='d1') d_loss2 = tl.cost.sigmoid_cross_entropy(logits_fake, tf.zeros_like(logits_fake), name='d2') d_loss = d_loss1 + d_loss2 g_gan_loss = 1e-3 * tl.cost.sigmoid_cross_entropy( logits_fake, tf.ones_like(logits_fake), name='g') mse_loss = tl.cost.mean_squared_error(net_g.outputs, t_target_image, is_mean=True) vgg_loss = 2e-6 * tl.cost.mean_squared_error( vgg_predict_emb.outputs, vgg_target_emb.outputs, is_mean=True) g_loss = mse_loss + vgg_loss + g_gan_loss g_vars = tl.layers.get_variables_with_name('SRGAN_g', True, True) d_vars = tl.layers.get_variables_with_name('SRGAN_d', True, True) with tf.variable_scope('learning_rate'): lr_v = tf.Variable(lr_init, trainable=False) ## Pretrain g_optim_init = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize( mse_loss, var_list=g_vars) ## SRGAN g_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(g_loss, var_list=g_vars) d_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(d_loss, var_list=d_vars) ###========================== RESTORE MODEL =============================### sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) tl.layers.initialize_global_variables(sess) if tl.files.load_and_assign_npz( sess=sess, name=checkpoint_dir + '/g_{}.npz'.format(tl.global_flag['mode']), network=net_g) is False: tl.files.load_and_assign_npz( sess=sess, name=checkpoint_dir + '/g_{}_init.npz'.format(tl.global_flag['mode']), network=net_g) tl.files.load_and_assign_npz(sess=sess, name=checkpoint_dir + '/d_{}.npz'.format(tl.global_flag['mode']), network=net_d) ###============================= LOAD VGG ===============================### vgg19_npy_path = "vgg19.npy" npz = np.load(vgg19_npy_path, encoding='latin1').item() params = [] for val in sorted(npz.items()): W = np.asarray(val[1][0]) b = np.asarray(val[1][1]) if val[0] == 'conv1_1': W = np.mean(W, axis=2) W = W.reshape((3, 3, 1, 64)) print(" Loading %s: %s, %s" % (val[0], W.shape, b.shape)) params.extend([W, b]) tl.files.assign_params(sess, params, net_vgg) ###============================= TRAINING ===============================### ###========================= initialize G ====================### ## fixed learning rate sess.run(tf.assign(lr_v, lr_init)) print(" ** fixed learning rate: %f (for init G)" % lr_init) start_time = time.time() for epoch in range(0, n_epoch_init): epoch_time = time.time() total_mse_loss, n_iter = 0, 0 step_time = None for idx in range(0, len(train_hr_imgs), batch_size): if idx % 1000 == 0: step_time = time.time() b_imgs_hr = train_hr_imgs[idx:idx + batch_size] b_imgs_lr = train_lr_imgs[idx:idx + batch_size] b_imgs_hr = np.asarray(b_imgs_hr).reshape( (batch_size, 512, 512, 1)) b_imgs_lr = np.asarray(b_imgs_lr).reshape( (batch_size, 512, 512, 1)) ## update G errM, _ = sess.run([mse_loss, g_optim_init], { t_image: b_imgs_lr, t_target_image: b_imgs_hr }) if idx % 1000 == 0: print("Epoch [%2d/%2d] %4d time: %4.4fs, mse: %.8f " % (epoch, n_epoch_init, n_iter, time.time() - step_time, errM)) tl.files.save_npz( net_g.all_params, name=checkpoint_dir + '/g_{}_init.npz'.format(tl.global_flag['mode']), sess=sess) total_mse_loss += errM n_iter += 1 log = "[*] Epoch: [%2d/%2d] time: %4.4fs, mse: %.8f" % ( epoch, n_epoch_init, time.time() - epoch_time, total_mse_loss / n_iter) print(log) ## save model tl.files.save_npz(net_g.all_params, name=checkpoint_dir + '/g_{}_init.npz'.format(tl.global_flag['mode']), sess=sess) print("G init took: %4.4fs" % (time.time() - start_time)) ###========================= train GAN (SRGAN) =========================### start_time = time.time() epoch_losses = defaultdict(list) iter_losses = defaultdict(list) for epoch in range(0, n_epoch): ## update learning rate if epoch != 0 and decay_every != 0 and (epoch % decay_every == 0): new_lr_decay = lr_decay**(epoch // decay_every) sess.run(tf.assign(lr_v, lr_init * new_lr_decay)) log = " ** new learning rate: %f (for GAN)" % (lr_init * new_lr_decay) print(log) elif epoch == 0: sess.run(tf.assign(lr_v, lr_init)) log = " ** init lr: %f decay_every_init: %d, lr_decay: %f (for GAN)" % ( lr_init, decay_every, lr_decay) print(log) epoch_time = time.time() total_d_loss, total_g_loss, n_iter = 0, 0, 0 step_time = None for idx in range(0, len(train_hr_imgs), batch_size): if idx % 1000 == 0: step_time = time.time() b_imgs_hr = train_hr_imgs[idx:idx + batch_size] b_imgs_lr = train_lr_imgs[idx:idx + batch_size] b_imgs_hr = np.asarray(b_imgs_hr).reshape( (batch_size, 512, 512, 1)) b_imgs_lr = np.asarray(b_imgs_lr).reshape( (batch_size, 512, 512, 1)) ## update D errD, _ = sess.run([d_loss, d_optim], { t_image: b_imgs_lr, t_target_image: b_imgs_hr }) ## update G errG, errM, errV, errA, _ = sess.run( [g_loss, mse_loss, vgg_loss, g_gan_loss, g_optim], { t_image: b_imgs_lr, t_target_image: b_imgs_hr }) if idx % 1000 == 0: print( "Epoch [%2d/%2d] %4d time: %4.4fs, d_loss: %.8f g_loss: %.8f (mse: %.6f vgg: %.6f adv: %.6f)" % (epoch, n_epoch, n_iter, time.time() - step_time, errD, errG, errM, errV, errA)) tl.files.save_npz(net_g.all_params, name=checkpoint_dir + '/g_{}.npz'.format(tl.global_flag['mode']), sess=sess) tl.files.save_npz(net_d.all_params, name=checkpoint_dir + '/d_{}.npz'.format(tl.global_flag['mode']), sess=sess) total_d_loss += errD total_g_loss += errG n_iter += 1 iter_losses['d_loss'].append(errD) iter_losses['g_loss'].append(errG) iter_losses['mse_loss'].append(errM) iter_losses['vgg_loss'].append(errV) iter_losses['adv_loss'].append(errA) log = "[*] Epoch: [%2d/%2d] time: %4.4fs, d_loss: %.8f g_loss: %.8f" % ( epoch, n_epoch, time.time() - epoch_time, total_d_loss / n_iter, total_g_loss / n_iter) print(log) epoch_losses['d_loss'].append(total_d_loss) epoch_losses['g_loss'].append(total_g_loss) ## save model tl.files.save_npz(net_g.all_params, name=checkpoint_dir + '/g_{}.npz'.format(tl.global_flag['mode']), sess=sess) tl.files.save_npz(net_d.all_params, name=checkpoint_dir + '/d_{}.npz'.format(tl.global_flag['mode']), sess=sess) print("G train took: %4.4fs" % (time.time() - start_time)) ## create visualizations for losses from training plot_total_losses(epoch_losses) plot_iterative_losses(iter_losses) for loss, values in epoch_losses.items(): np.save(checkpoint_dir + "/epoch_" + loss + '.npy', np.asarray(values)) for loss, values in iter_losses.items(): np.save(checkpoint_dir + "/iter_" + loss + '.npy', np.asarray(values)) print("[*] saved losses")
def train(): n_epoch_init = 12 ## create folders to save result images and trained model # save_dir_ginit = "samples/{}_ginit".format(tl.global_flag['mode']) # save_dir_gan = "samples/{}_gan".format(tl.global_flag['mode']) # tl.files.exists_or_mkdir(save_dir_ginit) # tl.files.exists_or_mkdir(save_dir_gan) checkpoint_dir = "checkpoint" # checkpoint_resize_conv log_dir = "logs" # checkpoint_resize_conv tl.files.exists_or_mkdir(checkpoint_dir) ###====================== PRE-LOAD DATA ===========================### train_hr_img_list = sorted( get_synthia_imgs_list(config.VALID.hr_img_path, is_train=True, synthia_dataset=config.TRAIN.hr_img_path)) valid_hr_img_list = sorted( get_synthia_imgs_list(config.VALID.hr_img_path, is_train=False, synthia_dataset=config.TRAIN.hr_img_path)) print(len(train_hr_img_list)) print(len(valid_hr_img_list)) ###========================== DEFINE MODEL ============================### ## train inference t_input = tf.placeholder(tf.float32, shape=(None, None, None, 1), name='t_input') # try with log? t_input = tf.log(t_input) d_flg = tf.placeholder(tf.bool, name='is_train') t_image, t_target_image, t_interpolated = preprocess(t_input) net_g_outputs = SRGAN_g(t_image, t_interpolated, is_train=d_flg, reuse=False) net_d, logits_real = SRGAN_d(t_target_image, is_train=d_flg, reuse=False) _, logits_fake = SRGAN_d(net_g_outputs, is_train=d_flg, reuse=True) vgg_model_true = VGG16(vgg16_npy_path) vgg_model_gen = VGG16(vgg16_npy_path) ## vgg inference. 0, 1, 2, 3 BILINEAR NEAREST BICUBIC AREA # to 3 channels y_true_normalized = (t_target_image - tf.reduce_min(t_target_image)) / ( tf.reduce_max(t_target_image) - tf.reduce_min(t_target_image)) gen_normalized = (net_g_outputs - tf.reduce_min(net_g_outputs)) / ( tf.reduce_max(net_g_outputs) - tf.reduce_min(net_g_outputs)) t_target_image_3ch = tf.concat([y_true_normalized] * 3, 3) t_predict_image_3ch = tf.concat([gen_normalized] * 3, 3) vgg_model_true.build(t_target_image_3ch) true_features = vgg_model_true.conv3_1 vgg_model_gen.build(t_predict_image_3ch) gen_features = vgg_model_gen.conv3_1 ## test inference net_g_test = SRGAN_g(t_image, t_interpolated, is_train=d_flg, reuse=True) # ###========================== DEFINE TRAIN OPS ==========================### d_loss1 = tl.cost.sigmoid_cross_entropy(logits_real, tf.ones_like(logits_real), name='d1') d_loss2 = tl.cost.sigmoid_cross_entropy(logits_fake, tf.zeros_like(logits_fake), name='d2') # d_vgg_loss = 2e-6*tl.cost.mean_squared_error(true_features, gen_features, is_mean=True) d_loss = d_loss1 + d_loss2 g_gan_loss = 1e-2 * tl.cost.sigmoid_cross_entropy( logits_fake, tf.ones_like(logits_fake), name='g') # 1e-3 * mse_loss = tl.cost.mean_squared_error(net_g_outputs, t_target_image, is_mean=True) vgg_loss = 2e-6 * tl.cost.mean_squared_error( true_features, gen_features, is_mean=True) # 2e-6 * tv_loss = 2e-6 * tf.reduce_mean(tf.square(net_g_outputs[:, :-1, :, :] - net_g_outputs[:, 1:, :, :])) + \ tf.reduce_mean(tf.square(net_g_outputs[:, :, :-1, :] - net_g_outputs[:, :, 1:, :])) # 2e-6* g_init_loss = mse_loss + vgg_loss # mse_loss # + vgg_loss + tv_loss g_loss = g_gan_loss + mse_loss + vgg_loss # + mse_loss g_vars = tl.layers.get_variables_with_name('G_Depth_SR', True, True) d_vars = tl.layers.get_variables_with_name('SRGAN_d', True, True) glob_step_t = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') with tf.variable_scope('learning_rate'): lr_v = tf.Variable(lr_init, trainable=False) ## Pretrain g_optim_init = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize( g_init_loss, var_list=g_vars, global_step=glob_step_t) ## SRGAN g_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize( g_loss, var_list=g_vars, global_step=glob_step_t) d_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(d_loss, var_list=d_vars) ###========================== RESTORE MODEL =============================### saver = tf.train.Saver(max_to_keep=5) saver_d = tf.train.Saver(d_vars, max_to_keep=5) saver_g = tf.train.Saver(g_vars, max_to_keep=5) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) tl.layers.initialize_global_variables(sess) with tf.variable_scope('summaries'): tf.summary.scalar('d_loss', d_loss) tf.summary.scalar('g_loss', g_loss) tf.summary.scalar('mse_loss', mse_loss) tf.summary.scalar('vgg_loss', vgg_loss) tf.summary.scalar('tv_loss', tv_loss) tf.summary.scalar('g_gan_loss', g_gan_loss) mae = tf.reduce_mean( tf.abs(net_g_outputs - t_target_image) / (t_target_image + tf.constant(1e-8))) rmse = tf.sqrt( tf.reduce_mean(tf.square(net_g_outputs - t_target_image))) tf.summary.scalar('MAE', mae) tf.summary.scalar('RMSE', rmse) tf.summary.scalar('learning_rate', lr_v) # tf.summary.image('input', t_input , max_outputs=1) tf.summary.image('GT', t_target_image, max_outputs=1) tf.summary.image('input_small_size', t_image, max_outputs=1) tf.summary.image('interpolated', t_interpolated, max_outputs=1) tf.summary.image('result', net_g_outputs, max_outputs=1) summary_op = tf.summary.merge_all() train_writer = tf.summary.FileWriter(log_dir + '/train', sess.graph) test_writer = tf.summary.FileWriter(log_dir + '/test') ###============================= TRAINING ===============================### ## use first `batch_size` of train set to have a quick test during training # sample_imgs = train_hr_imgs[0:batch_size] # sample_imgs = tl.vis.read_images(train_hr_img_list[0:batch_size], path=config.TRAIN.hr_img_path, n_threads=32) # if no pre-load train set # sample_imgs = tl.prepro.threading_data(train_hr_img_list[0:batch_size], fn=get_imgs_fn) # if no pre-load train set # print('sample images:', sample_imgs.shape, sample_imgs.min(), sample_imgs.max()) n_batches = int(len(train_hr_img_list) / batch_size) n_batches_valid = int(len(valid_hr_img_list) / batch_size) ###========================= initialize G ====================### if not do_init_g: n_epoch_init = -1 try: saver_g.restore( sess, tf.train.latest_checkpoint(checkpoint_dir + '/g_init')) except Exception as e: print( ' ** You need to initialize generator: put do_init_g to True or provide a valid restore path' ) raise e else: try: #saver.restore(sess, tf.train.latest_checkpoint(checkpoint_dir+'/gan')) # 2 round saver.restore( sess, tf.train.latest_checkpoint(checkpoint_dir + '/g_init')) except: print(' ** Creating new g_init model') pass ## fixed learning rate sess.run(tf.assign(lr_v, lr_init)) print(" ** fixed learning rate: %f (for init G)" % lr_init) train_iter, test_iter = 0, 0 for epoch in range(0, n_epoch_init + 1): try: epoch_time = time.time() val_mae, val_mse, val_g_loss = 0, 0, 0 batch_it = tqdm(SynthiaIterator(valid_hr_img_list, batchsize=batch_size, shuffle=True, buffer_size=70), total=n_batches_valid, leave=False) for b in batch_it: xb = b[0] errM, errG, mae_score = sess.run([mse_loss, g_loss, mae], feed_dict={ t_input: xb, d_flg: False }) val_mae += mae_score val_mse += errM val_g_loss += errG print("Validation: Epoch {0} val mae {1} val mse {2}".format( epoch - 1, val_mae / n_batches_valid, val_mse / n_batches_valid)) total_mse_loss, total_g_loss = 0, 0 batch_it = tqdm(SynthiaIterator(train_hr_img_list, batchsize=batch_size, shuffle=True, buffer_size=70), total=n_batches, leave=False) for b in batch_it: xb = b[0] xb = augment_imgs(xb) glob_step, errM, errG, _ = sess.run( [glob_step_t, mse_loss, g_loss, g_optim_init], feed_dict={ t_input: xb, d_flg: True }) total_mse_loss += errM total_g_loss += errG if (train_iter + 1) % 200 == 0: summary = sess.run(summary_op, feed_dict={ t_input: xb, d_flg: False }) train_writer.add_summary(summary, train_iter + 1) train_iter += 1 log = "[*] Epoch: [%2d/%2d] time: %4.4fs, mse: %.8f" % ( epoch, n_epoch_init, time.time() - epoch_time, total_mse_loss / n_batches) val_mse_summary = tf.Summary.Value(tag='g_init/val_mse_loss', simple_value=val_mse / n_batches_valid) val_g_loss_summary = tf.Summary.Value(tag='g_init/val_loss', simple_value=val_g_loss / n_batches_valid) train_mse_loss_summary = tf.Summary.Value( tag='g_init/train_mse_loss', simple_value=total_mse_loss / n_batches) train_g_loss_summary = tf.Summary.Value(tag='g_init/train_loss', simple_value=total_g_loss / n_batches) epoch_summary = tf.Summary(value=[ val_mse_summary, val_g_loss_summary, train_mse_loss_summary, train_g_loss_summary ]) train_writer.add_summary(epoch_summary, glob_step) print(log) saver.save( sess, os.path.join(checkpoint_dir + '/g_init', 'model' + str(epoch) + '.ckpt')) except Exception as e: batch_it.iterable.stop() raise e ###========================= train GAN (SRGAN) =========================### try: # saver.restore(sess, tf.train.latest_checkpoint(checkpoint_dir+'/g_init')) # saver.restore(sess, tf.train.latest_checkpoint(checkpoint_dir+'/gan')) pass except: print(' ** Creating new GAN model') pass train_iter, test_iter = 0, 0 for epoch in range(0, n_epoch + 1): ## update learning rate if epoch != 0 and (epoch % decay_every == 0): new_lr_decay = lr_decay**(epoch // decay_every) sess.run(tf.assign(lr_v, lr_init * new_lr_decay)) log = " ** new learning rate: %f (for GAN)" % (lr_init * new_lr_decay) print(log) elif epoch == 0: sess.run(tf.assign(lr_v, lr_init)) log = " ** init lr: %f decay_every_init: %d, lr_decay: %f (for GAN)" % ( lr_init, decay_every, lr_decay) print(log) try: epoch_time = time.time() val_mae, val_mse, val_g_loss, val_d_loss = 0, 0, 0, 0 batch_it = tqdm(SynthiaIterator(valid_hr_img_list, batchsize=batch_size, shuffle=True, buffer_size=70), total=n_batches_valid, leave=False) for b in batch_it: xb = b[0] errM, mae_score, errG, errD = sess.run( [mse_loss, mae, g_loss, d_loss], feed_dict={ t_input: xb, d_flg: False }) val_mae += mae_score val_mse += errM val_g_loss += errG val_d_loss += errD print("Validation (GAN): Epoch {0} val mae {1} val mse {2}".format( epoch - 1, val_mae / n_batches_valid, val_mse / n_batches_valid)) total_d_loss, total_g_loss, total_mse_loss = 0, 0, 0 batch_it = tqdm(SynthiaIterator(train_hr_img_list, batchsize=batch_size, shuffle=True, buffer_size=70), total=n_batches, leave=False) for b in batch_it: xb = b[0] xb = augment_imgs(xb) ## update D errD, _ = sess.run([d_loss, d_optim], { t_input: xb, d_flg: True }) ## update G glob_step, errG, errM, _, summary = sess.run( [glob_step_t, g_loss, mse_loss, g_optim, summary_op], { t_input: xb, d_flg: True }) total_mse_loss += errM total_d_loss += errD total_g_loss += errG if (train_iter + 1) % 10 == 0: train_writer.add_summary(summary, train_iter + 1) train_iter += 1 except Exception as e: batch_it.iterable.stop() raise e break log = "[*] Epoch: [%2d/%2d] time: %4.4fs, d_loss: %.8f g_loss: %.8f mse_loss: %.8f" % ( epoch, n_epoch, time.time() - epoch_time, total_d_loss / n_batches, total_g_loss / n_batches, total_mse_loss / n_batches) val_mse_summary = tf.Summary.Value(tag='gan/val_mse_loss', simple_value=val_mse / n_batches_valid) val_g_loss_summary = tf.Summary.Value(tag='gan/val_g_loss', simple_value=val_g_loss / n_batches_valid) val_d_loss_summary = tf.Summary.Value(tag='gan/val_d_loss', simple_value=val_d_loss / n_batches_valid) train_mse_loss_summary = tf.Summary.Value(tag='gan/train_mse_loss', simple_value=total_mse_loss / n_batches) train_g_loss_summary = tf.Summary.Value(tag='gan/train_g_loss', simple_value=total_g_loss / n_batches) train_d_loss_summary = tf.Summary.Value(tag='gan/train_d_loss', simple_value=total_d_loss / n_batches) epoch_summary = tf.Summary(value=[ val_mse_summary, val_g_loss_summary, val_d_loss_summary, train_mse_loss_summary, train_g_loss_summary, train_d_loss_summary ]) train_writer.add_summary(epoch_summary, glob_step) print(log) saver.save( sess, os.path.join(checkpoint_dir + '/gan', 'model' + str(n_epoch_init + epoch) + '.ckpt'))
def train(): ## create folders to save result images and trained model save_dir_gan = samples_path + "gan" tl.files.exists_or_mkdir(save_dir_gan) tl.files.exists_or_mkdir(checkpoint_path) ###====================== PRE-LOAD DATA ===========================### valid_hr_img_list = sorted( tl.files.load_file_list(path=valid_hr_img_path, regx='.*\.(bmp|png|webp|jpg)', printable=False)) ###========================== DEFINE MODEL ============================### ## train inference sample_t_image = tf.compat.v1.placeholder( 'float32', [sample_batch_size, 96, 96, 3], name='sample_t_image_input_to_SRGAN_generator') t_image = tf.compat.v1.placeholder('float32', [batch_size, 96, 96, 3], name='t_image_input_to_SRGAN_generator') t_target_image = tf.compat.v1.placeholder('float32', [batch_size, 384, 384, 3], name='t_target_image') net_g = SRGAN_g(t_image, is_train=True, reuse=False) net_d, logits_real = SRGAN_d(t_target_image, is_train=True, reuse=False) _, logits_fake = SRGAN_d(net_g.outputs, is_train=True, reuse=True) net_g.print_params(False) net_g.print_layers() net_d.print_params(False) net_d.print_layers() ## test inference net_g_test = SRGAN_g(sample_t_image, is_train=False, reuse=True) # ###========================== DEFINE TRAIN OPS ==========================### # MAE Loss mae_loss = tf.reduce_mean(tf.map_fn(tf.abs, t_target_image - net_g.outputs)) # GAN Loss d_loss = 0.5 * ( tf.reduce_mean( tf.square(logits_real - tf.reduce_mean(logits_fake) - 1)) + tf.reduce_mean( tf.square(logits_fake - tf.reduce_mean(logits_real) + 1))) g_gan_loss = 0.5 * ( tf.reduce_mean( tf.square(logits_real - tf.reduce_mean(logits_fake) + 1)) + tf.reduce_mean( tf.square(logits_fake - tf.reduce_mean(logits_real) - 1))) g_loss = 1e-1 * g_gan_loss + mae_loss d_real = tf.reduce_mean(logits_real) d_fake = tf.reduce_mean(logits_fake) with tf.variable_scope('learning_rate'): learning_rate_var = tf.Variable(learning_rate, trainable=False) g_vars = tl.layers.get_variables_with_name('SRGAN_g', True, True) d_vars = tl.layers.get_variables_with_name('SRGAN_d', True, True) ## SRGAN g_optim = tf.compat.v1.train.AdamOptimizer( learning_rate=learning_rate_var).minimize(g_loss, var_list=g_vars) d_optim = tf.compat.v1.train.AdamOptimizer( learning_rate=learning_rate_var).minimize(d_loss, var_list=d_vars) ###========================== RESTORE MODEL =============================### sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) sess.run(tf.variables_initializer(tf.global_variables())) tl.files.load_and_assign_npz(sess=sess, name=checkpoint_path + 'g.npz', network=net_g) tl.files.load_and_assign_npz(sess=sess, name=checkpoint_path + 'd.npz', network=net_d) ###============================= TRAINING ===============================### sample_imgs = tl.prepro.threading_data( valid_hr_img_list[0:sample_batch_size], fn=get_imgs_fn, path=valid_hr_img_path) sample_imgs_384 = tl.prepro.threading_data(sample_imgs, fn=crop_sub_imgs_fn, is_random=False) print('sample HR sub-image:', sample_imgs_384.shape, sample_imgs_384.min(), sample_imgs_384.max()) sample_imgs_96 = tl.prepro.threading_data(sample_imgs_384, fn=downsample_fn) print('sample LR sub-image:', sample_imgs_96.shape, sample_imgs_96.min(), sample_imgs_96.max()) save_images(sample_imgs_96, [ni, ni], save_file_format, save_dir_gan + '/_train_sample_96') save_images(sample_imgs_384, [ni, ni], save_file_format, save_dir_gan + '/_train_sample_384') ###========================= train GAN =========================### sess.run(tf.assign(learning_rate_var, learning_rate)) for epoch in range(0, n_epoch_gan + 1): epoch_time = time.time() total_d_loss, total_g_loss_mae, total_g_loss_gan, n_iter = 0, 0, 0, 0 train_hr_img_list = load_deep_file_list(path=train_hr_img_path, regx='.*\.(bmp|png|webp|jpg)', recursive=True, printable=False) random.shuffle(train_hr_img_list) list_length = len(train_hr_img_list) print("Number of images: %d" % (list_length)) if list_length % batch_size != 0: train_hr_img_list += train_hr_img_list[0:batch_size - list_length % batch_size:1] list_length = len(train_hr_img_list) print("Length of list: %d" % (list_length)) for idx in range(0, list_length, batch_size): step_time = time.time() b_imgs_list = train_hr_img_list[idx:idx + batch_size] b_imgs = tl.prepro.threading_data(b_imgs_list, fn=get_imgs_fn, path=train_hr_img_path) b_imgs_384 = tl.prepro.threading_data(b_imgs, fn=crop_data_augment_fn, is_random=True) b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn) b_imgs_384 = tl.prepro.threading_data(b_imgs_384, fn=rescale_m1p1) ## update D errD, d_r, d_f, _ = sess.run([d_loss, d_real, d_fake, d_optim], { t_image: b_imgs_96, t_target_image: b_imgs_384 }) ## update G errM, errA, _, _ = sess.run( [mae_loss, g_gan_loss, g_loss, g_optim], { t_image: b_imgs_96, t_target_image: b_imgs_384 }) print( "Epoch[%2d/%2d] %4d time: %4.2fs d_loss: %.8f g_loss_mae: %.8f g_loss_gan: %.8f d_r: %.8f d_f: %.8f" % (epoch, n_epoch_gan, n_iter, time.time() - step_time, errD, errM, errA, d_r, d_f)) total_d_loss += errD total_g_loss_mae += errM total_g_loss_gan += errA n_iter += 1 log = ( "[*] Epoch[%2d/%2d] time: %4.2fs d_loss: %.8f g_loss_mae: %.8f g_loss_gan: %.8f" % (epoch, n_epoch_gan, time.time() - epoch_time, total_d_loss / n_iter, total_g_loss_mae / n_iter, total_g_loss_gan / n_iter)) print(log) ## quick evaluation on train set out = sess.run(net_g_test.outputs, {sample_t_image: sample_imgs_96}) print("[*] save images") save_images(out, [ni, ni], save_file_format, save_dir_gan + '/train_%d' % epoch) ## save model tl.files.save_npz(net_g.all_params, name=checkpoint_path + 'g.npz', sess=sess) tl.files.save_npz(net_d.all_params, name=checkpoint_path + 'd.npz', sess=sess)
def train(): ## create folders to save result images and trained model save_dir_ginit = "samples/{}_ginit".format(tl.global_flag['mode']) save_dir_gan = "samples/{}_gan".format(tl.global_flag['mode']) tl.files.exists_or_mkdir(save_dir_ginit) tl.files.exists_or_mkdir(save_dir_gan) checkpoint_dir = "checkpoint" # checkpoint_resize_conv tl.files.exists_or_mkdir(checkpoint_dir) ###====================== PRE-LOAD DATA ===========================### train_hr_img_list = sorted(tl.files.load_file_list(path=config.TRAIN.hr_img_path, regx='.*.png', printable=False)) train_lr_img_list = sorted(tl.files.load_file_list(path=config.TRAIN.lr_img_path, regx='.*.png', printable=False)) valid_hr_img_list = sorted(tl.files.load_file_list(path=config.VALID.hr_img_path, regx='.*.png', printable=False)) valid_lr_img_list = sorted(tl.files.load_file_list(path=config.VALID.lr_img_path, regx='.*.png', printable=False)) ## If your machine have enough memory, please pre-load the whole train set. train_hr_imgs = tl.vis.read_images(train_hr_img_list, path=config.TRAIN.hr_img_path, n_threads=32) # for im in train_hr_imgs: # print(im.shape) # valid_lr_imgs = tl.vis.read_images(valid_lr_img_list, path=config.VALID.lr_img_path, n_threads=32) # for im in valid_lr_imgs: # print(im.shape) # valid_hr_imgs = tl.vis.read_images(valid_hr_img_list, path=config.VALID.hr_img_path, n_threads=32) # for im in valid_hr_imgs: # print(im.shape) # exit() ###========================== DEFINE MODEL ============================### ## train inference t_image = tf.placeholder('float32', [batch_size, 96, 96, 3], name='t_image_input_to_SRGAN_generator') t_target_image = tf.placeholder('float32', [batch_size, 384, 384, 3], name='t_target_image') net_g = SRGAN_g(t_image, is_train=True, reuse=False) net_d, logits_real = SRGAN_d(t_target_image, is_train=True, reuse=False) _, logits_fake = SRGAN_d(net_g.outputs, is_train=True, reuse=True) net_g.print_params(False) net_g.print_layers() net_d.print_params(False) net_d.print_layers() ## vgg inference. 0, 1, 2, 3 BILINEAR NEAREST BICUBIC AREA t_target_image_224 = tf.image.resize_images( t_target_image, size=[224, 224], method=0, align_corners=False) # resize_target_image_for_vgg # http://tensorlayer.readthedocs.io/en/latest/_modules/tensorlayer/layers.html#UpSampling2dLayer t_predict_image_224 = tf.image.resize_images(net_g.outputs, size=[224, 224], method=0, align_corners=False) # resize_generate_image_for_vgg net_vgg, vgg_target_emb = Vgg19_simple_api((t_target_image_224 + 1) / 2, reuse=False) _, vgg_predict_emb = Vgg19_simple_api((t_predict_image_224 + 1) / 2, reuse=True) ## test inference net_g_test = SRGAN_g(t_image, is_train=False, reuse=True) # ###========================== DEFINE TRAIN OPS ==========================### d_loss1 = tl.cost.sigmoid_cross_entropy(logits_real, tf.ones_like(logits_real), name='d1') d_loss2 = tl.cost.sigmoid_cross_entropy(logits_fake, tf.zeros_like(logits_fake), name='d2') d_loss = d_loss1 + d_loss2 g_gan_loss = 1e-3 * tl.cost.sigmoid_cross_entropy(logits_fake, tf.ones_like(logits_fake), name='g') mse_loss = tl.cost.mean_squared_error(net_g.outputs, t_target_image, is_mean=True) vgg_loss = 2e-6 * tl.cost.mean_squared_error(vgg_predict_emb.outputs, vgg_target_emb.outputs, is_mean=True) g_loss = mse_loss + vgg_loss + g_gan_loss g_vars = tl.layers.get_variables_with_name('SRGAN_g', True, True) d_vars = tl.layers.get_variables_with_name('SRGAN_d', True, True) with tf.variable_scope('learning_rate'): lr_v = tf.Variable(lr_init, trainable=False) ## Pretrain g_optim_init = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(mse_loss, var_list=g_vars) ## SRGAN g_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(g_loss, var_list=g_vars) d_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(d_loss, var_list=d_vars) ###========================== RESTORE MODEL =============================### sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) tl.layers.initialize_global_variables(sess) if tl.files.load_and_assign_npz(sess=sess, name=checkpoint_dir + '/g_{}.npz'.format(tl.global_flag['mode']), network=net_g) is False: tl.files.load_and_assign_npz(sess=sess, name=checkpoint_dir + '/g_{}_init.npz'.format(tl.global_flag['mode']), network=net_g) tl.files.load_and_assign_npz(sess=sess, name=checkpoint_dir + '/d_{}.npz'.format(tl.global_flag['mode']), network=net_d) ###============================= LOAD VGG ===============================### vgg19_npy_path = "vgg19.npy" if not os.path.isfile(vgg19_npy_path): print("Please download vgg19.npz from : https://github.com/machrisaa/tensorflow-vgg") exit() npz = np.load(vgg19_npy_path, encoding='latin1').item() params = [] for val in sorted(npz.items()): W = np.asarray(val[1][0]) b = np.asarray(val[1][1]) print(" Loading %s: %s, %s" % (val[0], W.shape, b.shape)) params.extend([W, b]) tl.files.assign_params(sess, params, net_vgg) # net_vgg.print_params(False) # net_vgg.print_layers() ###============================= TRAINING ===============================### ## use first `batch_size` of train set to have a quick test during training sample_imgs = train_hr_imgs[0:batch_size] # sample_imgs = tl.vis.read_images(train_hr_img_list[0:batch_size], path=config.TRAIN.hr_img_path, n_threads=32) # if no pre-load train set sample_imgs_384 = tl.prepro.threading_data(sample_imgs, fn=crop_sub_imgs_fn, is_random=False) print('sample HR sub-image:', sample_imgs_384.shape, sample_imgs_384.min(), sample_imgs_384.max()) sample_imgs_96 = tl.prepro.threading_data(sample_imgs_384, fn=downsample_fn) print('sample LR sub-image:', sample_imgs_96.shape, sample_imgs_96.min(), sample_imgs_96.max()) tl.vis.save_images(sample_imgs_96, [ni, ni], save_dir_ginit + '/_train_sample_96.png') tl.vis.save_images(sample_imgs_384, [ni, ni], save_dir_ginit + '/_train_sample_384.png') tl.vis.save_images(sample_imgs_96, [ni, ni], save_dir_gan + '/_train_sample_96.png') tl.vis.save_images(sample_imgs_384, [ni, ni], save_dir_gan + '/_train_sample_384.png') ###========================= initialize G ====================### ## fixed learning rate sess.run(tf.assign(lr_v, lr_init)) print(" ** fixed learning rate: %f (for init G)" % lr_init) for epoch in range(0, n_epoch_init + 1): epoch_time = time.time() total_mse_loss, n_iter = 0, 0 ## If your machine cannot load all images into memory, you should use ## this one to load batch of images while training. # random.shuffle(train_hr_img_list) # for idx in range(0, len(train_hr_img_list), batch_size): # step_time = time.time() # b_imgs_list = train_hr_img_list[idx : idx + batch_size] # b_imgs = tl.prepro.threading_data(b_imgs_list, fn=get_imgs_fn, path=config.TRAIN.hr_img_path) # b_imgs_384 = tl.prepro.threading_data(b_imgs, fn=crop_sub_imgs_fn, is_random=True) # b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn) ## If your machine have enough memory, please pre-load the whole train set. for idx in range(0, len(train_hr_imgs), batch_size): step_time = time.time() b_imgs_384 = tl.prepro.threading_data(train_hr_imgs[idx:idx + batch_size], fn=crop_sub_imgs_fn, is_random=True) b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn) ## update G errM, _ = sess.run([mse_loss, g_optim_init], {t_image: b_imgs_96, t_target_image: b_imgs_384}) print("Epoch [%2d/%2d] %4d time: %4.4fs, mse: %.8f " % (epoch, n_epoch_init, n_iter, time.time() - step_time, errM)) total_mse_loss += errM n_iter += 1 log = "[*] Epoch: [%2d/%2d] time: %4.4fs, mse: %.8f" % (epoch, n_epoch_init, time.time() - epoch_time, total_mse_loss / n_iter) print(log) ## quick evaluation on train set if (epoch != 0) and (epoch % 10 == 0): out = sess.run(net_g_test.outputs, {t_image: sample_imgs_96}) #; print('gen sub-image:', out.shape, out.min(), out.max()) print("[*] save images") tl.vis.save_images(out, [ni, ni], save_dir_ginit + '/train_%d.png' % epoch) ## save model if (epoch != 0) and (epoch % 10 == 0): tl.files.save_npz(net_g.all_params, name=checkpoint_dir + '/g_{}_init.npz'.format(tl.global_flag['mode']), sess=sess) ###========================= train GAN (SRGAN) =========================### for epoch in range(0, n_epoch + 1): ## update learning rate if epoch != 0 and (epoch % decay_every == 0): new_lr_decay = lr_decay**(epoch // decay_every) sess.run(tf.assign(lr_v, lr_init * new_lr_decay)) log = " ** new learning rate: %f (for GAN)" % (lr_init * new_lr_decay) print(log) elif epoch == 0: sess.run(tf.assign(lr_v, lr_init)) log = " ** init lr: %f decay_every_init: %d, lr_decay: %f (for GAN)" % (lr_init, decay_every, lr_decay) print(log) epoch_time = time.time() total_d_loss, total_g_loss, n_iter = 0, 0, 0 ## If your machine cannot load all images into memory, you should use ## this one to load batch of images while training. # random.shuffle(train_hr_img_list) # for idx in range(0, len(train_hr_img_list), batch_size): # step_time = time.time() # b_imgs_list = train_hr_img_list[idx : idx + batch_size] # b_imgs = tl.prepro.threading_data(b_imgs_list, fn=get_imgs_fn, path=config.TRAIN.hr_img_path) # b_imgs_384 = tl.prepro.threading_data(b_imgs, fn=crop_sub_imgs_fn, is_random=True) # b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn) ## If your machine have enough memory, please pre-load the whole train set. for idx in range(0, len(train_hr_imgs), batch_size): step_time = time.time() b_imgs_384 = tl.prepro.threading_data(train_hr_imgs[idx:idx + batch_size], fn=crop_sub_imgs_fn, is_random=True) b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn) ## update D errD, _ = sess.run([d_loss, d_optim], {t_image: b_imgs_96, t_target_image: b_imgs_384}) ## update G errG, errM, errV, errA, _ = sess.run([g_loss, mse_loss, vgg_loss, g_gan_loss, g_optim], {t_image: b_imgs_96, t_target_image: b_imgs_384}) print("Epoch [%2d/%2d] %4d time: %4.4fs, d_loss: %.8f g_loss: %.8f (mse: %.6f vgg: %.6f adv: %.6f)" % (epoch, n_epoch, n_iter, time.time() - step_time, errD, errG, errM, errV, errA)) total_d_loss += errD total_g_loss += errG n_iter += 1 log = "[*] Epoch: [%2d/%2d] time: %4.4fs, d_loss: %.8f g_loss: %.8f" % (epoch, n_epoch, time.time() - epoch_time, total_d_loss / n_iter, total_g_loss / n_iter) print(log) ## quick evaluation on train set if (epoch != 0) and (epoch % 10 == 0): out = sess.run(net_g_test.outputs, {t_image: sample_imgs_96}) #; print('gen sub-image:', out.shape, out.min(), out.max()) print("[*] save images") tl.vis.save_images(out, [ni, ni], save_dir_gan + '/train_%d.png' % epoch) ## save model if (epoch != 0) and (epoch % 10 == 0): tl.files.save_npz(net_g.all_params, name=checkpoint_dir + '/g_{}.npz'.format(tl.global_flag['mode']), sess=sess) tl.files.save_npz(net_d.all_params, name=checkpoint_dir + '/d_{}.npz'.format(tl.global_flag['mode']), sess=sess)
def train(): ## create folders to save result images and trained model save_dir_ginit = "samples/{}_ginit".format(tl.global_flag['mode']) save_dir_gan = "samples/{}_gan".format(tl.global_flag['mode']) tl.files.exists_or_mkdir(save_dir_ginit) tl.files.exists_or_mkdir(save_dir_gan) checkpoint_dir = "checkpoint" # checkpoint_resize_conv tl.files.exists_or_mkdir(checkpoint_dir) ###====================== PRE-LOAD DATA ===========================### train_hr_img_list = sorted( tl.files.load_file_list(path=config.TRAIN.hr_img_path, regx='.*.png', printable=False)) train_lr_img_list = sorted( tl.files.load_file_list(path=config.TRAIN.lr_img_path, regx='.*.png', printable=False)) valid_hr_img_list = sorted( tl.files.load_file_list(path=config.VALID.hr_img_path, regx='.*.png', printable=False)) valid_lr_img_list = sorted( tl.files.load_file_list(path=config.VALID.lr_img_path, regx='.*.png', printable=False)) ## If your machine have enough memory, please pre-load the whole train set. print("reading images") train_hr_imgs = [] #[None] * len(train_hr_img_list) #sess = tf.Session() for img__ in train_hr_img_list: image_loaded = scipy.misc.imread(os.path.join(config.TRAIN.hr_img_path, img__), mode='L') image_loaded = image_loaded.reshape( (image_loaded.shape[0], image_loaded.shape[1], 1)) train_hr_imgs.append(image_loaded) print(type(train_hr_imgs), len(train_hr_img_list)) ###========================== DEFINE MODEL ============================### ## train inference #t_image = tf.placeholder('float32', [batch_size, 96, 96, 3], name='t_image_input_to_SRGAN_generator') #t_target_image = tf.placeholder('float32', [batch_size, 384, 384, 3], name='t_target_image') t_image = tf.placeholder('float32', [batch_size, 28, 224, 1], name='t_image_input_to_SRGAN_generator') t_target_image = tf.placeholder( 'float32', [batch_size, 224, 224, 1], name='t_target_image' ) # may have to convert 224x224x1 into 224x224x3, with channel 1 & 2 as 0. May have to have separate place-holder ? print("t_image:", tf.shape(t_image)) print("t_target_image:", tf.shape(t_target_image)) net_g = SRGAN_g(t_image, is_train=True, reuse=False) print("net_g.outputs:", tf.shape(net_g.outputs)) net_d, logits_real = SRGAN_d(t_target_image, is_train=True, reuse=False) _, logits_fake = SRGAN_d(net_g.outputs, is_train=True, reuse=True) net_g.print_params(False) net_g.print_layers() net_d.print_params(False) net_d.print_layers() ## vgg inference. 0, 1, 2, 3 BILINEAR NEAREST BICUBIC AREA t_target_image_224 = tf.image.resize_images( t_target_image, size=[224, 224], method=0, align_corners=False ) # resize_target_image_for_vgg # http://tensorlayer.readthedocs.io/en/latest/_modules/tensorlayer/layers.html#UpSampling2dLayer t_predict_image_224 = tf.image.resize_images( net_g.outputs, size=[224, 224], method=0, align_corners=False) # resize_generate_image_for_vgg ## Added as VGG works for RGB and expects 3 channels. t_target_image_224 = tf.image.grayscale_to_rgb(t_target_image_224) t_predict_image_224 = tf.image.grayscale_to_rgb(t_predict_image_224) print("net_g.outputs:", tf.shape(net_g.outputs)) print("t_predict_image_224:", tf.shape(t_predict_image_224)) net_vgg, vgg_target_emb = Vgg19_simple_api((t_target_image_224 + 1) / 2, reuse=False) _, vgg_predict_emb = Vgg19_simple_api((t_predict_image_224 + 1) / 2, reuse=True) ## test inference net_g_test = SRGAN_g(t_image, is_train=False, reuse=True) # ###========================== DEFINE TRAIN OPS ==========================### d_loss1 = tl.cost.sigmoid_cross_entropy(logits_real, tf.ones_like(logits_real), name='d1') d_loss2 = tl.cost.sigmoid_cross_entropy(logits_fake, tf.zeros_like(logits_fake), name='d2') d_loss = d_loss1 + d_loss2 g_gan_loss = 1e-3 * tl.cost.sigmoid_cross_entropy( logits_fake, tf.ones_like(logits_fake), name='g') mse_loss = tl.cost.mean_squared_error(net_g.outputs, t_target_image, is_mean=True) vgg_loss = 2e-6 * tl.cost.mean_squared_error( vgg_predict_emb.outputs, vgg_target_emb.outputs, is_mean=True) g_loss = mse_loss + vgg_loss + g_gan_loss d_loss1_summary = tf.summary.scalar('Disciminator logits_real loss', d_loss1) d_loss2_summary = tf.summary.scalar('Disciminator logits_fake loss', d_loss2) d_loss_summary = tf.summary.scalar('Disciminator total loss', d_loss) g_gan_loss_summary = tf.summary.scalar('Generator GAN loss', g_gan_loss) mse_loss_summary = tf.summary.scalar('Generator MSE loss', mse_loss) vgg_loss_summary = tf.summary.scalar('Generator VGG loss', vgg_loss) g_loss_summary = tf.summary.scalar('Generator total loss', g_loss) g_vars = tl.layers.get_variables_with_name('SRGAN_g', True, True) d_vars = tl.layers.get_variables_with_name('SRGAN_d', True, True) with tf.variable_scope('learning_rate'): lr_v = tf.Variable(lr_init, trainable=False) ## Pretrain # UNCOMMENT THE LINE BELOW!!! #g_optim_init = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(mse_loss, var_list=g_vars) ## SRGAN g_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(g_loss, var_list=g_vars) d_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(d_loss, var_list=d_vars) ###========================== RESTORE MODEL =============================### sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) tl.layers.initialize_global_variables(sess) #if tl.files.load_and_assign_npz(sess=sess, name=checkpoint_dir + '/g_{}.npz'.format(tl.global_flag['mode']), network=net_g) is False: # tl.fites.load_and_assign_npz(sess=sess, name=checkpoint_dir + '/g_{}_init.npz'.format(tl.global_flag['mode']), network=net_g) #tl.files.load_and_assign_npz(sess=sess, name=checkpoint_dir + '/d_{}.npz'.format(tl.global_flag['mode']), network=net_d) ###============================= LOAD VGG ===============================### vgg19_npy_path = "vgg19.npy" if not os.path.isfile(vgg19_npy_path): print( "Please download vgg19.npz from : https://github.com/machrisaa/tensorflow-vgg" ) exit() npz = np.load(vgg19_npy_path, encoding='latin1').item() params = [] for val in sorted(npz.items()): W = np.asarray(val[1][0]) b = np.asarray(val[1][1]) print(" Loading %s: %s, %s" % (val[0], W.shape, b.shape)) params.extend([W, b]) tl.files.assign_params(sess, params, net_vgg) # net_vgg.print_params(False) # net_vgg.print_layers() ###============================= TRAINING ===============================### ## use first `batch_size` of train set to have a quick test during training sample_imgs = train_hr_imgs[0:batch_size] # sample_imgs = tl.vis.read_images(train_hr_img_list[0:batch_size], path=config.TRAIN.hr_img_path, n_threads=32) # if no pre-load train set print("sample_imgs size:", len(sample_imgs), sample_imgs[0].shape) sample_imgs_384 = tl.prepro.threading_data(sample_imgs, fn=crop_sub_imgs_fn, is_random=False) print('sample HR sub-image:', sample_imgs_384.shape, sample_imgs_384.min(), sample_imgs_384.max()) sample_imgs_96 = tl.prepro.threading_data(sample_imgs_384, fn=downsample_fn_mod) print('sample LR sub-image:', sample_imgs_96.shape, sample_imgs_96.min(), sample_imgs_96.max()) #tl.vis.save_images(sample_imgs_96, [ni, ni], save_dir_ginit + '/_train_sample_96.png') #tl.vis.save_images(sample_imgs_384, [ni, ni], save_dir_ginit + '/_train_sample_384.png') #tl.vis.save_images(sample_imgs_96, [ni, ni], save_dir_gan + '/_train_sample_96.png') #tl.vis.save_images(sample_imgs_384, [ni, ni], save_dir_gan + '/_train_sample_384.png') ''' ###========================= initialize G ====================### merged_summary_initial_G = tf.summary.merge([mse_loss_summary]) summary_intial_G_writer = tf.summary.FileWriter("./log/train/initial_G") ## fixed learning rate sess.run(tf.assign(lr_v, lr_init)) print(" ** fixed learning rate: %f (for init G)" % lr_init) count = 0 for epoch in range(0, n_epoch_init + 1): epoch_time = time.time() total_mse_loss, n_iter = 0, 0 ## If your machine cannot load all images into memory, you should use ## this one to load batch of images while training. # random.shuffle(train_hr_img_list) # for idx in range(0, len(train_hr_img_list), batch_size): # step_time = time.time() # b_imgs_list = train_hr_img_list[idx : idx + batch_size] # b_imgs = tl.prepro.threading_data(b_imgs_list, fn=get_imgs_fn, path=config.TRAIN.hr_img_path) # b_imgs_384 = tl.prepro.threading_data(b_imgs, fn=crop_sub_imgs_fn, is_random=True) # b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn) ## If your machine have enough memory, please pre-load the whole train set. intial_MSE_G_summary_per_epoch = [] for idx in range(0, len(train_hr_imgs), batch_size): step_time = time.time() b_imgs_384 = tl.prepro.threading_data(train_hr_imgs[idx:idx + batch_size], fn=crop_sub_imgs_fn, is_random=True) b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn_mod) ## update G errM, _, mse_summary_initial_G = sess.run([mse_loss, g_optim_init, merged_summary_initial_G], {t_image: b_imgs_96, t_target_image: b_imgs_384}) print("Epoch [%2d/%2d] %4d time: %4.4fs, mse: %.8f " % (epoch, n_epoch_init, n_iter, time.time() - step_time, errM)) summary_pb = tf.summary.Summary() summary_pb.ParseFromString(mse_summary_initial_G) intial_G_summaries = {} for val in summary_pb.value: # Assuming all summaries are scalars. intial_G_summaries[val.tag] = val.simple_value #print("intial_G_summaries:", intial_G_summaries) intial_MSE_G_summary_per_epoch.append(intial_G_summaries['Generator_MSE_loss']) #summary_intial_G_writer.add_summary(mse_summary_initial_G, (count + 1)) #(epoch + 1)*(n_iter+1)) #count += 1 total_mse_loss += errM n_iter += 1 log = "[*] Epoch: [%2d/%2d] time: %4.4fs, mse: %.8f" % (epoch, n_epoch_init, time.time() - epoch_time, total_mse_loss / n_iter) print(log) summary_intial_G_writer.add_summary(tf.Summary(value=[tf.Summary.Value(tag="Generator_Initial_MSE_loss per epoch", simple_value=np.mean(intial_MSE_G_summary_per_epoch)),]), (epoch)) ## quick evaluation on train set #if (epoch != 0) and (epoch % 10 == 0): out = sess.run(net_g_test.outputs, {t_image: sample_imgs_96}) #; print('gen sub-image:', out.shape, out.min(), out.max()) print("[*] save images") for im in range(len(out)): if(im%4==0 or im==1197): tl.vis.save_image(out[im], save_dir_ginit + '/train_%d_%d.png' % (epoch,im)) ## save model saver=tf.train.Saver() if (epoch%10==0 and epoch!=0): saver.save(sess, 'checkpoint/init_'+str(epoch)+'.ckpt') #if (epoch != 0) and (epoch % 10 == 0): #tl.files.save_npz(net_g.all_params, name=checkpoint_dir + '/g_{}_{}_init.npz'.format(tl.global_flag['mode'], epoch), sess=sess) ''' ###========================= train GAN (SRGAN) =========================### saver = tf.train.Saver() saver.restore(sess, 'checkpoint/main_10.ckpt') print('Restored main_10, begin 11/50') merged_summary_discriminator = tf.summary.merge( [d_loss1_summary, d_loss2_summary, d_loss_summary]) summary_discriminator_writer = tf.summary.FileWriter( "./log/train/discriminator") merged_summary_generator = tf.summary.merge([ g_gan_loss_summary, mse_loss_summary, vgg_loss_summary, g_loss_summary ]) summary_generator_writer = tf.summary.FileWriter("./log/train/generator") learning_rate_writer = tf.summary.FileWriter("./log/train/learning_rate") count = 0 for epoch in range(11, n_epoch + 11): ## update learning rate if epoch != 0 and (epoch % decay_every == 0): new_lr_decay = lr_decay**(epoch // decay_every) sess.run(tf.assign(lr_v, lr_init * new_lr_decay)) log = " ** new learning rate: %f (for GAN)" % (lr_init * new_lr_decay) print(log) learning_rate_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Learning_rate per epoch", simple_value=(lr_init * new_lr_decay)), ]), (epoch)) elif epoch == 0: sess.run(tf.assign(lr_v, lr_init)) log = " ** init lr: %f decay_every_init: %d, lr_decay: %f (for GAN)" % ( lr_init, decay_every, lr_decay) print(log) learning_rate_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Learning_rate per epoch", simple_value=lr_init), ]), (epoch)) epoch_time = time.time() total_d_loss, total_g_loss, n_iter = 0, 0, 0 ## If your machine cannot load all images into memory, you should use ## this one to load batch of images while training. # random.shuffle(train_hr_img_list) # for idx in range(0, len(train_hr_img_list), batch_size): # step_time = time.time() # b_imgs_list = train_hr_img_list[idx : idx + batch_size] # b_imgs = tl.prepro.threading_data(b_imgs_list, fn=get_imgs_fn, path=config.TRAIN.hr_img_path) # b_imgs_384 = tl.prepro.threading_data(b_imgs, fn=crop_sub_imgs_fn, is_random=True) # b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn) ## If your machine have enough memory, please pre-load the whole train set. loss_per_batch = [] d_loss1_summary_per_epoch = [] d_loss2_summary_per_epoch = [] d_loss_summary_per_epoch = [] g_gan_loss_summary_per_epoch = [] mse_loss_summary_per_epoch = [] vgg_loss_summary_per_epoch = [] g_loss_summary_per_epoch = [] for idx in range(0, len(train_hr_imgs), batch_size): step_time = time.time() b_imgs_384 = tl.prepro.threading_data(train_hr_imgs[idx:idx + batch_size], fn=crop_sub_imgs_fn, is_random=True) b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn_mod) ## update D errD, _, discriminator_summary = sess.run( [d_loss, d_optim, merged_summary_discriminator], { t_image: b_imgs_96, t_target_image: b_imgs_384 }) summary_pb = tf.summary.Summary() summary_pb.ParseFromString(discriminator_summary) #print("discriminator_summary", summary_pb, type(summary_pb)) discriminator_summaries = {} for val in summary_pb.value: # Assuming all summaries are scalars. discriminator_summaries[val.tag] = val.simple_value d_loss1_summary_per_epoch.append( discriminator_summaries['Disciminator_logits_real_loss']) d_loss2_summary_per_epoch.append( discriminator_summaries['Disciminator_logits_fake_loss']) d_loss_summary_per_epoch.append( discriminator_summaries['Disciminator_total_loss']) ## update G errG, errM, errV, errA, _, generator_summary = sess.run( [ g_loss, mse_loss, vgg_loss, g_gan_loss, g_optim, merged_summary_generator ], { t_image: b_imgs_96, t_target_image: b_imgs_384 }) summary_pb = tf.summary.Summary() summary_pb.ParseFromString(generator_summary) #print("generator_summary", summary_pb, type(summary_pb)) generator_summaries = {} for val in summary_pb.value: # Assuming all summaries are scalars. generator_summaries[val.tag] = val.simple_value #print("generator_summaries:", generator_summaries) g_gan_loss_summary_per_epoch.append( generator_summaries['Generator_GAN_loss']) mse_loss_summary_per_epoch.append( generator_summaries['Generator_MSE_loss']) vgg_loss_summary_per_epoch.append( generator_summaries['Generator_VGG_loss']) g_loss_summary_per_epoch.append( generator_summaries['Generator_total_loss']) #summary_generator_writer.add_summary(generator_summary, (count + 1)) #summary_total = sess.run(summary_total_merged, {t_image: b_imgs_96, t_target_image: b_imgs_384}) #summary_total_merged_writer.add_summary(summary_total, (count + 1)) #count += 1 tot_epoch = n_epoch + 10 print( "Epoch [%2d/%2d] %4d time: %4.4fs, d_loss: %.8f g_loss: %.8f (mse: %.6f vgg: %.6f adv: %.6f)" % (epoch, tot_epoch, n_iter, time.time() - step_time, errD, errG, errM, errV, errA)) total_d_loss += errD total_g_loss += errG n_iter += 1 #remove this for normal running: log = "[*] Epoch: [%2d/%2d] time: %4.4fs, d_loss: %.8f g_loss: %.8f" % ( epoch, tot_epoch, time.time() - epoch_time, total_d_loss / n_iter, total_g_loss / n_iter) print(log) ##### # # logging discriminator summary # ###### # logging per epcoch summary of logit_real_loss per epoch. Value logged is averaged across batches used per epoch. summary_discriminator_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Disciminator_logits_real_loss per epoch", simple_value=np.mean( d_loss1_summary_per_epoch)), ]), (epoch)) # logging per epcoch summary of logit_fake_loss per epoch. Value logged is averaged across batches used per epoch. summary_discriminator_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Disciminator_logits_fake_loss per epoch", simple_value=np.mean( d_loss2_summary_per_epoch)), ]), (epoch)) # logging per epcoch summary of total_loss per epoch. Value logged is averaged across batches used per epoch. summary_discriminator_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Disciminator_total_loss per epoch", simple_value=np.mean( d_loss_summary_per_epoch)), ]), (epoch)) ##### # # logging generator summary # ###### summary_generator_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Generator_GAN_loss per epoch", simple_value=np.mean( g_gan_loss_summary_per_epoch)), ]), (epoch)) summary_generator_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Generator_MSE_loss per epoch", simple_value=np.mean( mse_loss_summary_per_epoch)), ]), (epoch)) summary_generator_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Generator_VGG_loss per epoch", simple_value=np.mean( vgg_loss_summary_per_epoch)), ]), (epoch)) summary_generator_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag="Generator_total_loss per epoch", simple_value=np.mean( g_loss_summary_per_epoch)), ]), (epoch)) ## quick evaluation on train set #if (epoch != 0) and (epoch % 10 == 0): out = sess.run( net_g_test.outputs, {t_image: sample_imgs_96 }) #; print('gen sub-image:', out.shape, out.min(), out.max()) ## save model if (epoch % 10 == 0 and epoch != 0): saver.save(sess, 'checkpoint/main_' + str(epoch) + '.ckpt') print("[*] save images") for im in range(len(out)): tl.vis.save_image( out[im], save_dir_gan + '/train_%d_%d.png' % (epoch, im))
def train(): ## create folders to save result images and trained model save_dir_ginit = "samples/{}_ginit".format(tl.global_flag['mode']) save_dir_gan = "samples/{}_gan".format(tl.global_flag['mode']) save_dir_valid = "samples/{}_valid".format(tl.global_flag['mode']) tl.files.exists_or_mkdir(save_dir_ginit) tl.files.exists_or_mkdir(save_dir_gan) tl.files.exists_or_mkdir(save_dir_valid) checkpoint_dir = "checkpoint" # checkpoint_resize_conv tl.files.exists_or_mkdir(checkpoint_dir) train_hr_imgs = read_csv_data(config.TRAIN.hr_img_path, width=48, height=48, channel=1) valid_hr_imgs = read_csv_data(config.VALID.hr_img_path, width=48, height=48, channel=1) ###========================== DEFINE MODEL ============================### ## train inference ## t = train t_image = tf.placeholder('float32', [None, 16, 16, 1], name='t_image_input_to_SRGAN_generator') t_target_image = tf.placeholder('float32', [None, 48, 48, 1], name='t_target_image') net_g = SRGAN_g(t_image, is_train=True, reuse=False, nb_block=16) net_d, logits_real = SRGAN_d(t_target_image, is_train=True, reuse=False) _, logits_fake = SRGAN_d(net_g.outputs, is_train=True, reuse=True) net_g.print_params(False) net_g.print_layers() net_d.print_params(False) net_d.print_layers() ## test inference net_g_test = SRGAN_g(t_image, is_train=False, reuse=True) # ###========================== DEFINE TRAIN OPS ==========================### # d_loss: for discriminator d_loss1 = tl.cost.sigmoid_cross_entropy(logits_real, tf.ones_like(logits_real), name='d1') d_loss2 = tl.cost.sigmoid_cross_entropy(logits_fake, tf.zeros_like(logits_fake), name='d2') d_loss = d_loss1 + d_loss2 # g_loss: for generator g_gan_loss = 1e-3 * tl.cost.sigmoid_cross_entropy( logits_fake, tf.ones_like(logits_fake), name='g') mse_loss = tl.cost.mean_squared_error(net_g.outputs, t_target_image, is_mean=True) # vgg_loss = 2e-6 * tl.cost.mean_squared_error(vgg_predict_emb.outputs, vgg_target_emb.outputs, is_mean=True) g_loss = mse_loss + g_gan_loss # g_loss = mse_loss + vgg_loss + g_gan_loss g_vars = tl.layers.get_variables_with_name('SRGAN_g', True, True) d_vars = tl.layers.get_variables_with_name('SRGAN_d', True, True) with tf.variable_scope('learning_rate'): lr_v = tf.Variable(lr_init, trainable=False) ## Pretrain g_optim_init = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize( mse_loss, var_list=g_vars) ## SRGAN g_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(g_loss, var_list=g_vars) d_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(d_loss, var_list=d_vars) ###============================= TRAINING ===============================### ## use first `batch_size` of train set to have a quick test during training sample_imgs = train_hr_imgs[0:9] valid_imgs = valid_hr_imgs[44:53] # sample_imgs = tl.vis.read_images(train_hr_img_list[0:batch_size], path=config.TRAIN.hr_img_path, n_threads=32) # if no pre-load train set sample_imgs_384 = tl.prepro.threading_data(sample_imgs, fn=crop_sub_imgs_fn, is_random=False) valid_imgs_48 = tl.prepro.threading_data(valid_imgs, fn=crop_sub_imgs_fn, is_random=False) print('sample HR sub-image:', sample_imgs_384.shape, sample_imgs_384.min(), sample_imgs_384.max()) sample_imgs_96 = tl.prepro.threading_data(sample_imgs_384, fn=downsample_fn, down_rate=3) valid_imgs_16 = tl.prepro.threading_data(valid_imgs_48, fn=downsample_fn, down_rate=3) print('sample LR sub-image:', sample_imgs_96.shape, sample_imgs_96.min(), sample_imgs_96.max()) tl.vis.save_images(sample_imgs_96, [ni, ni], save_dir_ginit + '/_train_sample_16.png') tl.vis.save_images(sample_imgs_384, [ni, ni], save_dir_ginit + '/_train_sample_48.png') tl.vis.save_images(sample_imgs_96, [ni, ni], save_dir_gan + '/_train_sample_16.png') tl.vis.save_images(sample_imgs_384, [ni, ni], save_dir_gan + '/_train_sample_48.png') tl.vis.save_images(valid_imgs_48, [ni, ni], save_dir_valid + '/_valid_sample_48.png') tl.vis.save_images(valid_imgs_16, [ni, ni], save_dir_valid + '/_valid_sample_16.png') sample_hr_imgs_bicubic = tl.prepro.threading_data(sample_imgs_96, fn=upsample_fn, up_rate=3) valid_hr_imgs_bicubic = tl.prepro.threading_data(valid_imgs_16, fn=upsample_fn, up_rate=3) tl.vis.save_images(sample_hr_imgs_bicubic, [ni, ni], save_dir_ginit + '/_sample_bicubic_48.png') tl.vis.save_images(valid_hr_imgs_bicubic, [ni, ni], save_dir_valid + '/_valid_sample_bicubic_48.png') ###========================= initialize G ====================### ## fixed learning rate sess.run(tf.assign(lr_v, lr_init)) train_writer_path = "./log/train" tl.files.exists_or_mkdir(train_writer_path) train_writer = tf.summary.FileWriter(train_writer_path, graph=tf.get_default_graph()) print(" ** fixed learning rate: %f (for init G)" % lr_init) for epoch in range(0, n_epoch_init + 1): epoch_time = time.time() total_mse_loss, n_iter = 0, 0 ## If your machine have enough memory, please pre-load the whole train set. for idx in range(0, len(train_hr_imgs), batch_size): if idx + batch_size > len(train_hr_imgs): break step_time = time.time() b_imgs_384 = tl.prepro.threading_data(train_hr_imgs[idx:idx + batch_size], fn=crop_sub_imgs_fn, is_random=True) b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn) ## update G errM, _ = sess.run([mse_loss, g_optim_init], { t_image: b_imgs_96, t_target_image: b_imgs_384 }) sys.stdout.write( "Epoch [%2d/%2d] %4d time: %4.4fs, mse: %.8f \r" % (epoch, n_epoch_init, n_iter, time.time() - step_time, errM)) sys.stdout.flush() total_mse_loss += errM n_iter += 1 log = "\n[*] Epoch: [%2d/%2d] time: %4.4fs, mse: %.8f" % ( epoch, n_epoch_init, time.time() - epoch_time, total_mse_loss / n_iter) print(log) ## quick evaluation on train set if (epoch != 0) and (epoch % 10 == 0): out = sess.run(net_g_test.outputs, { t_image: sample_imgs_96 }) #; print('gen sub-image:', out.shape, out.min(), out.max()) print("[*] save images") tl.vis.save_images(out, [ni, ni], save_dir_ginit + '/train_%d.png' % epoch) ## quick evaluation on validation set if (epoch != 0) and (epoch % 10 == 0): out = sess.run(net_g_test.outputs, { t_image: valid_imgs_16 }) #; print('gen sub-image:', out.shape, out.min(), out.max()) tl.vis.save_images(out, [ni, ni], save_dir_valid + '/valid_ganit_%d.png' % epoch) ## save model if (epoch != 0) and (epoch % 10 == 0): tl.files.save_npz( net_g.all_params, name=checkpoint_dir + '/g_{}_init_{}.npz'.format(tl.global_flag['mode'], epoch), sess=sess) ###========================= train GAN (SRGAN) =========================### for epoch in range(0, n_epoch + 1): ## update learning rate if epoch != 0 and (epoch % decay_every == 0): new_lr_decay = lr_decay**(epoch // decay_every) sess.run(tf.assign(lr_v, lr_init * new_lr_decay)) log = " ** new learning rate: %f (for GAN)" % (lr_init * new_lr_decay) print(log) elif epoch == 0: sess.run(tf.assign(lr_v, lr_init)) log = " ** init lr: %f decay_every_init: %d, lr_decay: %f (for GAN)" % ( lr_init, decay_every, lr_decay) print(log) epoch_time = time.time() total_d_loss, total_g_loss, n_iter = 0, 0, 0 ## If your machine have enough memory, please pre-load the whole train set. for idx in range(0, len(train_hr_imgs), batch_size): step_time = time.time() b_imgs_384 = tl.prepro.threading_data(train_hr_imgs[idx:idx + batch_size], fn=crop_sub_imgs_fn, is_random=True) b_imgs_96 = tl.prepro.threading_data(b_imgs_384, fn=downsample_fn) ## update D errD, _ = sess.run([d_loss, d_optim], { t_image: b_imgs_96, t_target_image: b_imgs_384 }) ## update G # errG, errM, errV, errA, _ = sess.run([g_loss, mse_loss, vgg_loss, g_gan_loss, g_optim], {t_image: b_imgs_96, t_target_image: b_imgs_384}) errG, errM, errA, _ = sess.run( [g_loss, mse_loss, g_gan_loss, g_optim], { t_image: b_imgs_96, t_target_image: b_imgs_384 }) # sys.stdout.write("Epoch [%2d/%2d] %4d time: %4.4fs, d_loss: %.8f g_loss: %.8f (mse: %.6f vgg: %.6f adv: %.6f)\n" % # (epoch, n_epoch, n_iter, time.time() - step_time, errD, errG, errM, errV, errA)) sys.stdout.write( "Epoch [%2d/%2d] %4d time: %4.4fs, d_loss: %.8f g_loss: %.8f (mse: %.6f adv: %.6f) \r" % (epoch, n_epoch, n_iter, time.time() - step_time, errD, errG, errM, errA)) sys.stdout.flush() total_d_loss += errD total_g_loss += errG n_iter += 1 log = "[*] Epoch: [%2d/%2d] time: %4.4fs, d_loss: %.8f g_loss: %.8f" % ( epoch, n_epoch, time.time() - epoch_time, total_d_loss / n_iter, total_g_loss / n_iter) print(log) ## quick evaluation on train set if (epoch != 0) and (epoch % 10 == 0): out = sess.run(net_g_test.outputs, { t_image: sample_imgs_96 }) #; print('gen sub-image:', out.shape, out.min(), out.max()) print("[*] save images") tl.vis.save_images(out, [ni, ni], save_dir_gan + '/train_%d.png' % epoch) ## quick evaluation on validation set if (epoch != 0) and (epoch % 10 == 0): out = sess.run(net_g_test.outputs, { t_image: valid_imgs_16 }) #; print('gen sub-image:', out.shape, out.min(), out.max()) tl.vis.save_images(out, [ni, ni], save_dir_valid + '/valid_gan_%d.png' % epoch) ## save model if (epoch != 0) and (epoch % 10 == 0): tl.files.save_npz( net_g.all_params, name=checkpoint_dir + '/g_{}_{}.npz'.format(tl.global_flag['mode'], epoch), sess=sess) tl.files.save_npz( net_d.all_params, name=checkpoint_dir + '/d_{}_{}.npz'.format(tl.global_flag['mode'], epoch), sess=sess)
def train(train_lr_path, train_hr_path, save_path, save_every_epoch=2, validation=True, ratio=0.9, batch_size=16, lr_init=1e-4, beta1=0.9, n_epoch_init=10, n_epoch=20, lr_decay=0.1): ''' Parameters: data: train_lr_path/train_hr_path: path of data save_path: the parent folder to save model result validation: whether to split data into train set and validation set save_every_epoch: how frequent to save the checkpoints and sample images Adam: batch_size lr_init beta1 Generator Initialization n_epoch_init Adversarial Net n_epoch lr_decay ''' ## Folders to save results save_dir_ginit = os.path.join(save_path, 'srgan_ginit') save_dir_gan = os.path.join(save_path, 'srgan_gan') checkpoint_dir = os.path.join(save_path, 'checkpoint') tl.files.exists_or_mkdir(save_dir_ginit) tl.files.exists_or_mkdir(save_dir_gan) tl.files.exists_or_mkdir(checkpoint_dir) ###======LOAD DATA======### train_lr_img_list = sorted( tl.files.load_file_list(path=train_lr_path, regx='.*.jpg', printable=False)) train_hr_img_list = sorted( tl.files.load_file_list(path=train_hr_path, regx='.*.jpg', printable=False)) if validation: idx = np.random.choice(len(train_lr_img_list), int(len(train_lr_img_list) * ratio), replace=False) valid_lr_img_list = sorted( [x for i, x in enumerate(train_lr_img_list) if i not in idx]) valid_hr_img_list = sorted( [x for i, x in enumerate(train_hr_img_list) if i not in idx]) train_lr_img_list = sorted( [x for i, x in enumerate(train_lr_img_list) if i in idx]) train_hr_img_list = sorted( [x for i, x in enumerate(train_hr_img_list) if i in idx]) valid_lr_imgs = tl.vis.read_images(valid_lr_img_list, path=train_lr_path, n_threads=32) valid_hr_imgs = tl.vis.read_images(valid_hr_img_list, path=train_hr_path, n_threads=32) train_lr_imgs = tl.vis.read_images(train_lr_img_list, path=train_lr_path, n_threads=32) train_hr_imgs = tl.vis.read_images(train_hr_img_list, path=train_hr_path, n_threads=32) ###======DEFINE MODEL======### ## train inference lr_image = tf.placeholder('float32', [None, 96, 96, 3], name='lr_image') hr_image = tf.placeholder('float32', [None, 192, 192, 3], name='hr_image') net_g = SRGAN_g(lr_image, is_train=True, reuse=False) net_d, logits_real = SRGAN_d(hr_image, is_train=True, reuse=False) _, logits_fake = SRGAN_d(net_g.outputs, is_train=True, reuse=True) # net_g.print_params(False) # net_g.print_layers() # net_d.print_params(False) # net_d.print_layers() ## resize original hr images for VGG19 hr_image_224 = tf.image.resize_images( hr_image, size=[224, 224], method=0, # BICUBIC align_corners=False) ## generated hr image for VGG19 generated_image_224 = tf.image.resize_images( net_g.outputs, size=[224, 224], method=0, #BICUBIC align_corners=False) ## scale image to [0,1] and get conv characteristics net_vgg, vgg_target_emb = Vgg19_simple_api((hr_image_224 + 1) / 2, reuse=False) _, vgg_predict_emb = Vgg19_simple_api((generated_image_224 + 1) / 2, reuse=True) ## test inference net_g_test = SRGAN_g(lr_image, is_train=False, reuse=True) ###======DEFINE TRAIN PROCESS======### d_loss1 = tl.cost.sigmoid_cross_entropy(logits_real, tf.ones_like(logits_real), name='d1') d_loss2 = tl.cost.sigmoid_cross_entropy(logits_fake, tf.zeros_like(logits_fake), name='d2') d_loss = d_loss1 + d_loss2 prediction1 = tf.greater(logits_real, tf.fill(tf.shape(logits_real), 0.5)) acc_metric1 = tf.reduce_mean(tf.cast(prediction1, tf.float32)) prediction2 = tf.less(logits_fake, tf.fill(tf.shape(logits_fake), 0.5)) acc_metric2 = tf.reduce_mean(tf.cast(prediction2, tf.float32)) acc_metric = acc_metric1 + acc_metric2 g_gan_loss = 1e-3 * tl.cost.sigmoid_cross_entropy( logits_fake, tf.ones_like(logits_fake), name='g') mse_loss = tl.cost.mean_squared_error(net_g.outputs, hr_image, is_mean=True) vgg_loss = 2e-6 * tl.cost.mean_squared_error( vgg_predict_emb.outputs, vgg_target_emb.outputs, is_mean=True) g_loss = mse_loss + g_gan_loss + vgg_loss psnr_metric = tf.image.psnr(net_g.outputs, hr_image, max_val=2.0, name='psnr') g_vars = tl.layers.get_variables_with_name('SRGAN_g', True, True) d_vars = tl.layers.get_variables_with_name('SRGAN_d', True, True) with tf.variable_scope('learning_rate'): lr_v = tf.Variable(lr_init, trainable=False) ## Pretrain g_optim_init = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize( mse_loss, var_list=g_vars) ## SRGAN g_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(g_loss, var_list=g_vars) d_optim = tf.train.AdamOptimizer(lr_v, beta1=beta1).minimize(d_loss, var_list=d_vars) ###========================== RESTORE MODEL =============================### sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) sess.run(tf.global_variables_initializer()) if tl.files.file_exists(os.path.join(checkpoint_dir, 'g_srgan.npz')): tl.files.load_and_assign_npz(sess=sess, name=os.path.join(checkpoint_dir, 'g_srgan.npz'), network=net_g) else: tl.files.load_and_assign_npz(sess=sess, name=os.path.join(checkpoint_dir, 'g_srgan_init.npz'), network=net_g) tl.files.load_and_assign_npz(sess=sess, name=os.path.join(checkpoint_dir, 'd_srgan.npz'), network=net_d) ###======LOAD VGG======### vgg19_npy_path = '../lib/SRGAN/vgg19.npy' npz = np.load(vgg19_npy_path, encoding='latin1').item() params = [] for val in sorted(npz.items()): W = np.asarray(val[1][0]) b = np.asarray(val[1][1]) print(" Loading %s: %s, %s" % (val[0], W.shape, b.shape)) params.extend([W, b]) tl.files.assign_params(sess, params, net_vgg) # net_vgg.print_params(False) # net_vgg.print_layers() ###======TRAINING======### ## use train set to have a quick test during training ni = 4 num_sample = ni * ni idx = np.random.choice(len(train_lr_imgs), num_sample, replace=False) sample_imgs_lr = tl.prepro.threading_data( [img for i, img in enumerate(train_lr_imgs) if i in idx], fn=crop_sub_imgs_fn, size=(96, 96), is_random=False) sample_imgs_hr = tl.prepro.threading_data( [img for i, img in enumerate(train_hr_imgs) if i in idx], fn=crop_sub_imgs_fn, size=(192, 192), is_random=False) print('sample LR sub-image:', sample_imgs_lr.shape, sample_imgs_lr.min(), sample_imgs_lr.max()) print('sample HR sub-image:', sample_imgs_hr.shape, sample_imgs_hr.min(), sample_imgs_hr.max()) ## save the images tl.vis.save_images(sample_imgs_lr, [ni, ni], os.path.join(save_dir_ginit, '_train_sample_96.jpg')) tl.vis.save_images(sample_imgs_hr, [ni, ni], os.path.join(save_dir_ginit, '_train_sample_192.jpg')) tl.vis.save_images(sample_imgs_lr, [ni, ni], os.path.join(save_dir_gan, '_train_sample_96.jpg')) tl.vis.save_images(sample_imgs_hr, [ni, ni], os.path.join(save_dir_gan, '_train_sample_192.jpg')) print('finish saving sample images') ###====== initialize G ======### ## fixed learning rate sess.run(tf.assign(lr_v, lr_init)) print(" ** fixed learning rate: %f (for init G)" % lr_init) for epoch in range(0, n_epoch_init + 1): epoch_time = time.time() total_mse_loss, total_psnr, n_iter = 0, 0, 0 # random shuffle the train set for each epoch random.shuffle(train_hr_imgs) for idx in range(0, len(train_lr_imgs), batch_size): step_time = time.time() b_imgs_192 = tl.prepro.threading_data(train_hr_imgs[idx:idx + batch_size], fn=crop_sub_imgs_fn, size=(192, 192), is_random=True) b_imgs_96 = tl.prepro.threading_data(b_imgs_192, fn=downsample_fn, size=(96, 96)) ## update G errM, metricP, _ = sess.run([mse_loss, psnr_metric, g_optim_init], { lr_image: b_imgs_96, hr_image: b_imgs_192 }) print("Epoch [%2d/%2d] %4d time: %4.2fs, mse: %.4f, psnr: %.4f " % (epoch, n_epoch_init, n_iter, time.time() - step_time, errM, metricP.mean())) total_mse_loss += errM total_psnr += metricP.mean() n_iter += 1 log = "[*] Epoch: [%2d/%2d] time: %4.2fs, mse: %.4f, psnr: %.4f" % ( epoch, n_epoch_init, time.time() - epoch_time, total_mse_loss / n_iter, total_psnr / n_iter) print(log) if validation: b_imgs_192_V = tl.prepro.threading_data(valid_hr_imgs, fn=crop_sub_imgs_fn, size=(192, 192), is_random=True) b_imgs_96_V = tl.prepro.threading_data(b_imgs_192_V, fn=downsample_fn, size=(96, 96)) errM_V, metricP_V, _ = sess.run( [mse_loss, psnr_metric, g_optim_init], { lr_image: b_imgs_96_V, hr_image: b_imgs_192_V }) print("Validation | mse: %.4f, psnr: %.4f" % (errM_V, metricP_V.mean())) ## quick evaluation on train set if (epoch != 0) and (epoch % save_every_epoch == 0): out = sess.run(net_g_test.outputs, {lr_image: sample_imgs_lr}) print("[*] save sample images") tl.vis.save_images( out, [ni, ni], os.path.join(save_dir_ginit, 'train_{}.jpg'.format(epoch))) ## save model if (epoch != 0) and (epoch % save_every_epoch == 0): tl.files.save_npz(net_g.all_params, name=os.path.join(checkpoint_dir, 'g_srgan_init.npz'), sess=sess) ###========================= train GAN (SRGAN) =========================### ## Learning rate decay decay_every = int(n_epoch / 2) if int(n_epoch / 2) > 0 else 1 for epoch in range(0, n_epoch + 1): # random shuffle the train set for each epoch random.shuffle(train_hr_imgs) ## update learning rate if epoch != 0 and (epoch % decay_every == 0): new_lr_decay = lr_decay**(epoch // decay_every) sess.run(tf.assign(lr_v, lr_init * new_lr_decay)) log = " ** new learning rate: %f (for GAN)" % (lr_init * new_lr_decay) print(log) elif epoch == 0: sess.run(tf.assign(lr_v, lr_init)) log = " ** init lr: %f decay_every_init: %d, lr_decay: %f (for GAN)" % ( lr_init, decay_every, lr_decay) print(log) epoch_time = time.time() total_d_loss, total_g_loss, total_mse_loss, total_psnr, total_acc, n_iter = 0, 0, 0, 0, 0, 0 for idx in range(0, len(train_lr_imgs), batch_size): step_time = time.time() b_imgs_192 = tl.prepro.threading_data(train_hr_imgs[idx:idx + batch_size], fn=crop_sub_imgs_fn, size=(192, 192), is_random=True) b_imgs_96 = tl.prepro.threading_data(b_imgs_192, fn=downsample_fn, size=(96, 96)) ## update D errD, metricA, _ = sess.run([d_loss, acc_metric, d_optim], { lr_image: b_imgs_96, hr_image: b_imgs_192 }) ## update G errG, errM, metricP, _ = sess.run( [g_loss, mse_loss, psnr_metric, g_optim], { lr_image: b_imgs_96, hr_image: b_imgs_192 }) print( "Epoch [%2d/%2d] %4d time: %4.2fs, d_loss: %.4f g_loss: %.4f (mse: %.4f, psnr: %.4f, accuracy: %.4f)" % (epoch, n_epoch, n_iter, time.time() - step_time, errD, errG, errM, metricP.mean(), metricA / 2)) total_d_loss += errD total_g_loss += errG total_mse_loss += errM total_psnr += metricP.mean() total_acc += metricA / 2 n_iter += 1 log = "[*] Epoch: [%2d/%2d] time: %4.2fs, d_loss: %.4f g_loss: %.4f (mse: %4f, psnr: %.4f, accuracy: %.4f)" % ( epoch, n_epoch, time.time() - epoch_time, total_d_loss / n_iter, total_g_loss / n_iter, total_mse_loss / n_iter, total_psnr / n_iter, total_acc / n_iter) print(log) if validation: b_imgs_192_V = tl.prepro.threading_data(valid_hr_imgs, fn=crop_sub_imgs_fn, size=(192, 192), is_random=True) b_imgs_96_V = tl.prepro.threading_data(b_imgs_192_V, fn=downsample_fn, size=(96, 96)) errM_V, metricP_V, _ = sess.run([mse_loss, psnr_metric, g_optim], { lr_image: b_imgs_96_V, hr_image: b_imgs_192_V }) print("Validation | mse: %.4f, psnr: %.4f" % (errM_V, metricP_V.mean())) ## quick evaluation on train set if (epoch != 0) and (epoch % save_every_epoch == 0): out = sess.run(net_g_test.outputs, {lr_image: sample_imgs_lr}) print("[*] save images") tl.vis.save_images( out, [ni, ni], os.path.join(save_dir_gan, 'train_{}.jpg'.format(epoch))) ## save model if (epoch != 0) and (epoch % save_every_epoch == 0): tl.files.save_npz(net_g.all_params, name=os.path.join(checkpoint_dir, 'g_srgan.npz'), sess=sess) tl.files.save_npz(net_d.all_params, name=os.path.join(checkpoint_dir, 'd_srgan.npz'), sess=sess)