def train(): train_iter, val_iter, test_iter = get_data_iter() model = SequenceLabelingModel(args, logger).cuda() optimizer, scheduler = get_optimizer_scheduler(model) early_stopping_criterion = EarlyStoppingCriterion(patience=args.early_stopping_patience) logger.info('Start training') for epoch in range(args.max_epochs): cur_lr = get_lr(optimizer) logger.info('Epoch %d, lr %.6f' % (epoch, cur_lr)) model.train() train_score = [] batch_num = len(train_iter) cur_num = 0 train_iter.init_epoch() progress = tqdm(train_iter, mininterval=2, leave=False, file=sys.stdout) for i, batch in enumerate(progress): optimizer.zero_grad() batch_score = model.forward(batch) train_score.append(batch_score.item()) cur_num += batch.batch_size progress.set_description(desc='%d/%d, train loss %.4f' % (i, batch_num, sum(train_score) / cur_num)) batch_score.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 5.0) optimizer.step() val_score = evaluate(model, val_iter, 'val') test_score = evaluate(model, test_iter, 'test') if not early_stopping_criterion.step(val_score): break scheduler.step(val_score)
def main(): # 加载配置文件 with open('./config.yml') as file_config: config = yaml.load(file_config) feature_names = config['model_params']['feature_names'] # 初始化embedding shape, dropouts, 预训练的embedding也在这里初始化) feature_weight_shape_dict, feature_weight_dropout_dict, \ feature_init_weight_dict = dict(), dict(), dict() for feature_name in feature_names: feature_weight_shape_dict[feature_name] = \ config['model_params']['embed_params'][feature_name]['shape'] feature_weight_dropout_dict[feature_name] = \ config['model_params']['embed_params'][feature_name]['dropout_rate'] path_pre_train = config['model_params']['embed_params'][feature_name]['path'] if path_pre_train: with open(path_pre_train, 'rb') as file_r: feature_init_weight_dict[feature_name] = pickle.load(file_r) # 加载数据 # 加载vocs path_vocs = [] for feature_name in feature_names: path_vocs.append(config['data_params']['voc_params'][feature_name]['path']) path_vocs.append(config['data_params']['voc_params']['label']['path']) vocs = load_vocs(path_vocs) # 加载训练数据 sep_str = config['data_params']['sep'] assert sep_str in ['table', 'space'] sep = '\t' if sep_str == 'table' else ' ' data_dict = init_data( path=config['data_params']['path_train'], feature_names=feature_names, sep=sep, vocs=vocs, max_len=config['model_params']['sequence_length'], model='train') # 训练模型 model = SequenceLabelingModel( sequence_length=config['model_params']['sequence_length'], nb_classes=config['model_params']['nb_classes'], nb_hidden=config['model_params']['bilstm_params']['num_units'], feature_weight_shape_dict=feature_weight_shape_dict, feature_init_weight_dict=feature_init_weight_dict, feature_weight_dropout_dict=feature_weight_dropout_dict, dropout_rate=config['model_params']['dropout_rate'], nb_epoch=config['model_params']['nb_epoch'], feature_names=feature_names, batch_size=config['model_params']['batch_size'], train_max_patience=config['model_params']['max_patience'], use_crf=config['model_params']['use_crf'], l2_rate=config['model_params']['l2_rate'], rnn_unit=config['model_params']['rnn_unit'], learning_rate=config['model_params']['learning_rate'], clip=config['model_params']['clip'], path_model=config['model_params']['path_model']) model.fit( data_dict=data_dict, dev_size=config['model_params']['dev_size'])
def __init__(self): self.vocab_path = FLAGS.vocab_path self.checkpoint_path = FLAGS.checkpoint_path self.freeze_graph_path = FLAGS.freeze_graph_path self.saved_model_path = FLAGS.saved_model_path self.use_crf = FLAGS.use_crf self.num_steps = FLAGS.num_steps self.default_label = FLAGS.default_label self.default_score = FLAGS.default_predict_score self.data_utils = DataUtils() self.tensorflow_utils = TensorflowUtils() self.num_classes = self.data_utils.get_vocabulary_size(os.path.join(FLAGS.vocab_path, 'labels_vocab.txt')) self.sequence_labeling_model = SequenceLabelingModel() self.init_predict_graph()
def __init__(self): self.tfrecords_path = FLAGS.tfrecords_path self.checkpoint_path = FLAGS.checkpoint_path self.tensorboard_path = FLAGS.tensorboard_path self.use_crf = FLAGS.use_crf self.learning_rate = FLAGS.learning_rate self.learning_rate_decay_factor = FLAGS.learning_rate_decay_factor self.decay_steps = FLAGS.decay_steps self.clip_norm = FLAGS.clip_norm self.max_training_step = FLAGS.max_training_step self.train_tfrecords_filename = os.path.join(self.tfrecords_path, 'train.tfrecords') self.test_tfrecords_filename = os.path.join(self.tfrecords_path, 'test.tfrecords') self.data_utils = DataUtils() self.num_classes = self.data_utils.get_vocabulary_size( os.path.join(FLAGS.vocab_path, 'labels_vocab.txt')) self.tensorflow_utils = TensorflowUtils() self.sequence_labeling_model = SequenceLabelingModel()
def main(): # 加载配置文件 with open('./config.yml') as file_config: config = yaml.load(file_config) feature_names = config['model_params']['feature_names'] use_char_feature = config['model_params']['use_char_feature'] # 初始化embedding shape, dropouts, 预训练的embedding也在这里初始化) feature_weight_shape_dict, feature_weight_dropout_dict, \ feature_init_weight_dict = dict(), dict(), dict() for feature_name in feature_names: feature_weight_shape_dict[feature_name] = \ config['model_params']['embed_params'][feature_name]['shape'] feature_weight_dropout_dict[feature_name] = \ config['model_params']['embed_params'][feature_name]['dropout_rate'] path_pre_train = config['model_params']['embed_params'][feature_name]['path'] if path_pre_train: with open(path_pre_train, 'rb') as file_r: feature_init_weight_dict[feature_name] = pickle.load(file_r) # char embedding shape if use_char_feature: feature_weight_shape_dict['char'] = \ config['model_params']['embed_params']['char']['shape'] conv_filter_len_list = config['model_params']['conv_filter_len_list'] conv_filter_size_list = config['model_params']['conv_filter_size_list'] else: conv_filter_len_list = None conv_filter_size_list = None # 加载数据 # 加载vocs path_vocs = [] if use_char_feature: path_vocs.append(config['data_params']['voc_params']['char']['path']) for feature_name in feature_names: path_vocs.append(config['data_params']['voc_params'][feature_name]['path']) path_vocs.append(config['data_params']['voc_params']['label']['path']) vocs = load_vocs(path_vocs) # 加载数据 sep_str = config['data_params']['sep'] assert sep_str in ['table', 'space'] sep = '\t' if sep_str == 'table' else ' ' max_len = config['model_params']['sequence_length'] word_len = config['model_params']['word_length'] data_dict = init_data( path=config['data_params']['path_test'], feature_names=feature_names, sep=sep, vocs=vocs, max_len=max_len, model='test', use_char_feature=use_char_feature, word_len=word_len) # 加载模型 model = SequenceLabelingModel( sequence_length=config['model_params']['sequence_length'], nb_classes=config['model_params']['nb_classes'], nb_hidden=config['model_params']['bilstm_params']['num_units'], num_layers=config['model_params']['bilstm_params']['num_layers'], feature_weight_shape_dict=feature_weight_shape_dict, feature_init_weight_dict=feature_init_weight_dict, feature_weight_dropout_dict=feature_weight_dropout_dict, dropout_rate=config['model_params']['dropout_rate'], nb_epoch=config['model_params']['nb_epoch'], feature_names=feature_names, batch_size=config['model_params']['batch_size'], train_max_patience=config['model_params']['max_patience'], use_crf=config['model_params']['use_crf'], l2_rate=config['model_params']['l2_rate'], rnn_unit=config['model_params']['rnn_unit'], learning_rate=config['model_params']['learning_rate'], use_char_feature=use_char_feature, conv_filter_size_list=conv_filter_size_list, conv_filter_len_list=conv_filter_len_list, word_length=word_len, path_model=config['model_params']['path_model']) saver = tf.train.Saver() saver.restore(model.sess, config['model_params']['path_model']) # 标记 viterbi_sequences = model.predict(data_dict) # 写入文件 label_voc = dict() for key in vocs[-1]: label_voc[vocs[-1][key]] = key with codecs.open(config['data_params']['path_test'], 'r', encoding='utf-8') as file_r: sentences = file_r.read().strip().split('\n\n') file_result = codecs.open( config['data_params']['path_result'], 'w', encoding='utf-8') for i, sentence in enumerate(sentences): for j, item in enumerate(sentence.split('\n')): if j < len(viterbi_sequences[i]): file_result.write('%s\t%s\n' % (item, label_voc[viterbi_sequences[i][j]])) else: file_result.write('%s\tO\n' % item) file_result.write('\n') file_result.close()
def main(): # 加载配置文件 print("config5") with open('./train_config/config_b2b_tag_5_only_jieba.yml') as file_config: config = yaml.load(file_config) feature_names = config['model_params']['feature_names'] use_char_feature = config['model_params']['use_char_feature'] # 初始化embedding shape, dropouts, 预训练的embedding也在这里初始化) feature_weight_shape_dict, feature_weight_dropout_dict, \ feature_init_weight_dict = dict(), dict(), dict() for feature_name in feature_names: feature_weight_shape_dict[feature_name] = \ config['model_params']['embed_params'][feature_name]['shape'] feature_weight_dropout_dict[feature_name] = \ config['model_params']['embed_params'][feature_name]['dropout_rate'] path_pre_train = config['model_params']['embed_params'][feature_name][ 'path'] if path_pre_train: with open(path_pre_train, 'rb') as file_r: feature_init_weight_dict[feature_name] = pickle.load(file_r) # char embedding shape if use_char_feature: feature_weight_shape_dict['char'] = \ config['model_params']['embed_params']['char']['shape'] conv_filter_len_list = config['model_params']['conv_filter_len_list'] conv_filter_size_list = config['model_params']['conv_filter_size_list'] else: conv_filter_len_list = None conv_filter_size_list = None # 加载数据 # 加载vocs path_vocs = [] if use_char_feature: path_vocs.append(config['data_params']['voc_params']['char']['path']) for feature_name in feature_names: path_vocs.append( config['data_params']['voc_params'][feature_name]['path']) path_vocs.append(config['data_params']['voc_params']['label']['path']) vocs = load_vocs(path_vocs) # 加载训练数据 sep_str = config['data_params']['sep'] assert sep_str in ['table', 'space'] sep = '\t' if sep_str == 'table' else ' ' max_len = config['model_params']['sequence_length'] word_len = config['model_params']['word_length'] data_dict = init_data(path=config['data_params']['path_train'], feature_names=feature_names, sep=sep, vocs=vocs, max_len=max_len, model='train', use_char_feature=use_char_feature, word_len=word_len) # 训练模型 model = SequenceLabelingModel( sequence_length=config['model_params']['sequence_length'], nb_classes=config['model_params']['nb_classes'], nb_hidden=config['model_params']['bilstm_params']['num_units'], num_layers=config['model_params']['bilstm_params']['num_layers'], rnn_dropout=config['model_params']['bilstm_params']['rnn_dropout'], feature_weight_shape_dict=feature_weight_shape_dict, feature_init_weight_dict=feature_init_weight_dict, feature_weight_dropout_dict=feature_weight_dropout_dict, dropout_rate=config['model_params']['dropout_rate'], nb_epoch=config['model_params']['nb_epoch'], feature_names=feature_names, batch_size=config['model_params']['batch_size'], train_max_patience=config['model_params']['max_patience'], use_crf=config['model_params']['use_crf'], l2_rate=config['model_params']['l2_rate'], rnn_unit=config['model_params']['rnn_unit'], learning_rate=config['model_params']['learning_rate'], clip=config['model_params']['clip'], use_char_feature=use_char_feature, conv_filter_size_list=conv_filter_size_list, conv_filter_len_list=conv_filter_len_list, cnn_dropout_rate=config['model_params']['conv_dropout'], word_length=word_len, path_model=config['model_params']['path_model']) model.fit(data_dict=data_dict, dev_size=config['model_params']['dev_size'])
for feature_name in feature_names: path_vocs.append(config['data_params']['voc_params'][feature_name]['path']) path_vocs.append(config['data_params']['voc_params']['label']['path']) vocs = load_vocs(path_vocs) print(vocs[-1]) print(len(vocs)) # 加载模型 model = SequenceLabelingModel( sequence_length=config['model_params']['sequence_length'], nb_classes=config['model_params']['nb_classes'], nb_hidden=config['model_params']['bilstm_params']['num_units'], feature_weight_shape_dict=feature_weight_shape_dict, feature_init_weight_dict=feature_init_weight_dict, feature_weight_dropout_dict=feature_weight_dropout_dict, dropout_rate=config['model_params']['dropout_rate'], nb_epoch=config['model_params']['nb_epoch'], feature_names=feature_names, batch_size=config['model_params']['batch_size'], train_max_patience=config['model_params']['max_patience'], use_crf=config['model_params']['use_crf'], l2_rate=config['model_params']['l2_rate'], rnn_unit=config['model_params']['rnn_unit'], learning_rate=config['model_params']['learning_rate'], path_model=config['model_params']['path_model']) def predict(string): choiceAction = [] choiceTarget = [] choiceData = [] lab = writetxt(string)
def main(): # 加载配置文件 with open('./config.yml') as file_config: config = yaml.load(file_config) feature_names = config['model_params']['feature_names'] logger.info(feature_names) use_char_feature = config['model_params']['use_char_feature'] logger.info(use_char_feature) # 初始化embedding shape, dropouts, 预训练的embedding也在这里初始化) feature_weight_shape_dict = dict() feature_weight_dropout_dict = dict() feature_init_weight_dict = dict() for feature_name in feature_names: feature_weight_shape_dict[feature_name] = config['model_params'][ 'embed_params'][feature_name]['shape'] feature_weight_dropout_dict[feature_name] = config['model_params'][ 'embed_params'][feature_name]['dropout_rate'] # embeding mat, 比voc多了两行, 因为voc从2开始编序, 0, 1行用0填充 path_pre_train = config['model_params']['embed_params'][feature_name][ 'path'] # 词嵌矩阵位置 # logger.info("%s init mat path: %s" % (feature_name, path_pre_train)) with open(path_pre_train, 'rb') as file_r: feature_init_weight_dict[feature_name] = pickle.load(file_r) logger.info(feature_weight_dropout_dict) logger.info(feature_weight_shape_dict) logger.info(feature_init_weight_dict) # char embedding shape if use_char_feature: # 暂时不考虑 feature_weight_shape_dict['char'] = config['model_params'][ 'embed_params']['char']['shape'] conv_filter_len_list = config['model_params']['conv_filter_len_list'] conv_filter_size_list = config['model_params']['conv_filter_size_list'] else: # 利用卷集层来提取char的信息 conv_filter_len_list = None conv_filter_size_list = None # 加载vocs path_vocs = [] if use_char_feature: path_vocs.append(config['data_params']['voc_params']['char'] ['path']) # vocs用于将文本数字序列化 for feature_name in feature_names: path_vocs.append( config['data_params']['voc_params'][feature_name]['path']) path_vocs.append(config['data_params']['voc_params']['label']['path']) vocs = load_vocs(path_vocs) # 加载训练数据 sep_str = config['data_params']['sep'] assert sep_str in ['table', 'space'] # 数据的分隔方式 sep = '\t' if sep_str == 'table' else ' ' max_len = config['model_params']['sequence_length'] word_len = config['model_params']['word_length'] # 通过voc 将input f1 和输出 label 数字序列化 得到训练的输入和输出 # data_dict = None data_dict = init_data(path=config['data_params']['path_train'], feature_names=feature_names, sep=sep, vocs=vocs, max_len=max_len, model='train', use_char_feature=use_char_feature, word_len=word_len) logger.info(data_dict) # 每个特征序列化后的数据 # 训练模型 model = SequenceLabelingModel( sequence_length=config['model_params']['sequence_length'], # 句子被固定长度 nb_classes=config['model_params']['nb_classes'], nb_hidden=config['model_params']['bilstm_params']['num_units'], num_layers=config['model_params']['bilstm_params']['num_layers'], rnn_dropout=config['model_params']['bilstm_params']['rnn_dropout'], feature_weight_shape_dict=feature_weight_shape_dict, feature_init_weight_dict=feature_init_weight_dict, feature_weight_dropout_dict=feature_weight_dropout_dict, dropout_rate=config['model_params']['dropout_rate'], nb_epoch=config['model_params']['nb_epoch'], feature_names=feature_names, batch_size=config['model_params']['batch_size'], train_max_patience=config['model_params']['max_patience'], use_crf=config['model_params']['use_crf'], l2_rate=config['model_params']['l2_rate'], rnn_unit=config['model_params']['rnn_unit'], learning_rate=config['model_params']['learning_rate'], clip=config['model_params']['clip'], use_char_feature=use_char_feature, conv_filter_size_list=conv_filter_size_list, conv_filter_len_list=conv_filter_len_list, cnn_dropout_rate=config['model_params']['conv_dropout'], word_length=word_len, path_model=config['model_params']['path_model'], last_train_sess_path=None, # 为了加快训练的速度我们继续载入前面训练的参数 transfer=False) # 是否对前面载入的参数进行迁移学习,True的话就重置LSTM的输出层 model.fit(data_dict=data_dict, dev_size=config['model_params']['dev_size']) """
def predict(testlist): # 加载配置文件 with open('./config.yml') as file_config: config = yaml.load(file_config) feature_names = config['model_params']['feature_names'] use_char_feature = config['model_params']['use_char_feature'] # 初始化embedding shape, dropouts, 预训练的embedding也在这里初始化) feature_weight_shape_dict, feature_weight_dropout_dict, \ feature_init_weight_dict = dict(), dict(), dict() for feature_name in feature_names: feature_weight_shape_dict[feature_name] = \ config['model_params']['embed_params'][feature_name]['shape'] feature_weight_dropout_dict[feature_name] = \ config['model_params']['embed_params'][feature_name]['dropout_rate'] path_pre_train = config['model_params']['embed_params'][feature_name][ 'path'] if path_pre_train: with open(path_pre_train, 'rb') as file_r: feature_init_weight_dict[feature_name] = pickle.load(file_r) # char embedding shape if use_char_feature: feature_weight_shape_dict['char'] = \ config['model_params']['embed_params']['char']['shape'] conv_filter_len_list = config['model_params']['conv_filter_len_list'] conv_filter_size_list = config['model_params']['conv_filter_size_list'] else: conv_filter_len_list = None conv_filter_size_list = None # 加载vocs path_vocs = [] if use_char_feature: path_vocs.append(config['data_params']['voc_params']['char']['path']) for feature_name in feature_names: path_vocs.append( config['data_params']['voc_params'][feature_name]['path']) path_vocs.append(config['data_params']['voc_params']['label']['path']) vocs = load_vocs(path_vocs) # 加载数据 sep_str = config['data_params']['sep'] assert sep_str in ['table', 'space'] sep = '\t' if sep_str == 'table' else ' ' max_len = config['model_params']['sequence_length'] word_len = config['model_params']['word_length'] data_dict = init_data(path=config['data_params']['path_test'], feature_names=feature_names, sep=sep, test_sens=testlist, vocs=vocs, max_len=max_len, model='test', use_char_feature=use_char_feature, word_len=word_len) # 加载模型 model = SequenceLabelingModel( sequence_length=config['model_params']['sequence_length'], nb_classes=config['model_params']['nb_classes'], nb_hidden=config['model_params']['bilstm_params']['num_units'], num_layers=config['model_params']['bilstm_params']['num_layers'], feature_weight_shape_dict=feature_weight_shape_dict, feature_init_weight_dict=feature_init_weight_dict, feature_weight_dropout_dict=feature_weight_dropout_dict, dropout_rate=config['model_params']['dropout_rate'], nb_epoch=config['model_params']['nb_epoch'], feature_names=feature_names, batch_size=config['model_params']['batch_size'], train_max_patience=config['model_params']['max_patience'], use_crf=config['model_params']['use_crf'], l2_rate=config['model_params']['l2_rate'], rnn_unit=config['model_params']['rnn_unit'], learning_rate=config['model_params']['learning_rate'], use_char_feature=use_char_feature, conv_filter_size_list=conv_filter_size_list, conv_filter_len_list=conv_filter_len_list, word_length=word_len, path_model=config['model_params']['path_model']) saver = tf.train.Saver() saver.restore(model.sess, config['model_params']['path_model']) # print('data_dict', data_dict) # 标记 result_sequences = model.predict(data_dict) #print('result_sequences', result_sequences) # 输出结果 label_voc = dict() for key in vocs[-1]: label_voc[vocs[-1][key]] = key outlist = [] for i, sentence in enumerate(testlist): templist = [] for j, item in enumerate(sentence): #char = recheck_char(item[0]) char = item[0] if j < len(result_sequences[i]): out = [char, label_voc[result_sequences[i][j]]] else: out = [char, 'O'] templist.append(out) outlist.append(templist) return outlist
def export_serving_model(): """输出tensorserving model""" with open('./config.yml') as file_config: config = yaml.load(file_config) feature_names = config['model_params']['feature_names'] use_char_feature = config['model_params']['use_char_feature'] # 初始化embedding shape, dropouts, 预训练的embedding也在这里初始化) feature_weight_shape_dict, feature_weight_dropout_dict, \ feature_init_weight_dict = dict(), dict(), dict() for feature_name in feature_names: feature_weight_shape_dict[feature_name] = \ config['model_params']['embed_params'][feature_name]['shape'] feature_weight_dropout_dict[feature_name] = \ config['model_params']['embed_params'][feature_name]['dropout_rate'] path_pre_train = config['model_params']['embed_params'][feature_name][ 'path'] if path_pre_train: with open(path_pre_train, 'rb') as file_r: feature_init_weight_dict[feature_name] = pickle.load(file_r) # char embedding shape if use_char_feature: feature_weight_shape_dict['char'] = \ config['model_params']['embed_params']['char']['shape'] conv_filter_len_list = config['model_params']['conv_filter_len_list'] conv_filter_size_list = config['model_params']['conv_filter_size_list'] else: conv_filter_len_list = None conv_filter_size_list = None # 加载vocs path_vocs = [] for feature_name in feature_names: path_vocs.append( config['data_params']['voc_params'][feature_name]['path']) path_vocs.append(config['data_params']['voc_params']['label']['path']) vocs = load_vocs(path_vocs) # 加载数据 sep_str = config['data_params']['sep'] assert sep_str in ['table', 'space'] sep = '\t' if sep_str == 'table' else ' ' max_len = config['model_params']['sequence_length'] word_len = config['model_params']['word_length'] model = SequenceLabelingModel( sequence_length=config['model_params']['sequence_length'], nb_classes=config['model_params']['nb_classes'], nb_hidden=config['model_params']['bilstm_params']['num_units'], num_layers=config['model_params']['bilstm_params']['num_layers'], feature_weight_shape_dict=feature_weight_shape_dict, feature_init_weight_dict=feature_init_weight_dict, feature_weight_dropout_dict=feature_weight_dropout_dict, dropout_rate=config['model_params']['dropout_rate'], nb_epoch=config['model_params']['nb_epoch'], feature_names=feature_names, batch_size=config['model_params']['batch_size'], train_max_patience=config['model_params']['max_patience'], use_crf=config['model_params']['use_crf'], l2_rate=config['model_params']['l2_rate'], rnn_unit=config['model_params']['rnn_unit'], learning_rate=config['model_params']['learning_rate'], use_char_feature=use_char_feature, conv_filter_size_list=conv_filter_size_list, conv_filter_len_list=conv_filter_len_list, word_length=word_len, path_model=config['model_params']['path_model']) session = model.sess saver = tf.train.Saver() saver.restore(session, config['model_params']['path_model']) # 输出tensorserving model 过程 model_version = 1 work_dir = './Model/ner_model' export_path_base = work_dir export_path = os.path.join(tf.compat.as_bytes(export_path_base), tf.compat.as_bytes(str(model_version))) print('Exporting trained model to', export_path) builder = tf.saved_model.builder.SavedModelBuilder(export_path) # 定义输入变量 tensor_info_input_x_f1 = tf.saved_model.utils.build_tensor_info( model.input_feature_ph_dict['f1']) tensor_info_weight_dropout_ph_dict_f1 = tf.saved_model.utils.build_tensor_info( model.weight_dropout_ph_dict['f1']) tensor_info_dropout_rate_ph = tf.saved_model.utils.build_tensor_info( model.dropout_rate_ph) tensor_info_rnn_dropout_rate_ph = tf.saved_model.utils.build_tensor_info( model.rnn_dropout_rate_ph) tensor_info_logits = tf.saved_model.utils.build_tensor_info(model.logits) tensor_info_actual_length = tf.saved_model.utils.build_tensor_info( model.sequence_actual_length) tensor_info_transition_params = tf.saved_model.utils.build_tensor_info( model.transition_params) # 构建过程 prediction_signature = ( tf.saved_model.signature_def_utils.build_signature_def( inputs={ 'input_x_f1': tensor_info_input_x_f1, 'weight_dropout_ph_dict_f1': tensor_info_weight_dropout_ph_dict_f1, 'dropout_rate_ph': tensor_info_dropout_rate_ph, 'rnn_dropout_rate_ph': tensor_info_rnn_dropout_rate_ph }, outputs={ 'transition_params': tensor_info_transition_params, 'logits': tensor_info_logits, 'sequence_actual_length': tensor_info_actual_length, }, method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME) ) builder.add_meta_graph_and_variables( session, [tf.saved_model.tag_constants.SERVING], signature_def_map={'ner_predict': prediction_signature}, main_op=tf.tables_initializer(), strip_default_attrs=True) builder.save() print('Done exporting!')