if __name__ == '__main__': nmt_parser = argparse.ArgumentParser() add_arguments(nmt_parser) FLAGS, unparsed = nmt_parser.parse_known_args() hparams = create_hparams(FLAGS) # loading the data from a file adj, features, edges = load_data(hparams.graph_file, hparams.nodes) num_nodes = adj[0].shape[0] #Test code #''' interpolation model2 = VAEG(hparams, placeholders, hparams.nodes, 1, edges) model2.restore(hparams.out_dir) #hparams.sample = True i = 0 ''' # getting embeddings sample_1 = model2.getembeddings(hparams, placeholders, adj[i], features[i]) ''' ''' sample_1 = model2.getembeddings(hparams, placeholders, adj[0], features[0]) sample_2 = model2.getembeddings(hparams, placeholders, adj[1], features[1]) while i < 1: model2.sample_graph_slerp(hparams, placeholders, i,sample_1, sample_2, "slerp", (i+1)*0.1, num=70) model2.sample_graph_slerp(hparams, placeholders, i,sample_1, sample_2, "lerp", (i+1)*0.1, num=70)
if __name__ == '__main__': nmt_parser = argparse.ArgumentParser() add_arguments(nmt_parser) FLAGS, unparsed = nmt_parser.parse_known_args() hparams = create_hparams(FLAGS) # loading the data from a file adj, weight, weight_bin, features, edges, hde = load_data(hparams.graph_file, hparams.nodes, hparams.bin_dim) #Test code #''' e = max([len(edge) for edge in edges]) n_f = len(features[0][0]) log_fact_k = log_fact(e) model2 = VAEG(hparams, placeholders, hparams.nodes, n_f, edges, log_fact_k, hde) model2.restore(hparams.out_dir) latent_points = [] ''' for i1 in range(len(adj)): sample1 = model2.getembeddings(hparams, placeholders, adj[i1], features[i1], weight_bin[i1], weight[i1]) latent_points.append(np.reshape(np.array(sample1), -1)) ''' #np.savetxt("latent_features.txt", np.array(latent_points)) #sample i = 0 while i < 1: model2.sample_graph(hparams, placeholders,adj, features, weight, weight_bin, i+hparams.offset, hde, hparams.nodes, hparams.edges) i += 1
sample=flags.sample) if __name__ == '__main__': nmt_parser = argparse.ArgumentParser() add_arguments(nmt_parser) FLAGS, unparsed = nmt_parser.parse_known_args() hparams = create_hparams(FLAGS) # loading the data from a file adj, features, edges = load_data(hparams.graph_file, hparams.nodes) num_nodes = adj[0].shape[0] num_features = features[0].shape[1] #print("Debug", num_nodes, adj[0][0]) # Training model = VAEG(hparams, placeholders, num_nodes, num_features, edges) # model.restore(hparams.out_dir) model.initialize() model.train(placeholders, hparams, adj, features) # Test code ''' model2 = VAEG(hparams, placeholders, 30, 1) model2.restore(hparams.out_dir) hparams.sample = True i = 0 G_good = load_embeddings(hparams.z_dir+'train0.txt') G_bad = load_embeddings(hparams.z_dir+'test_11.txt') #model2.sample_graph_slerp(hparams, placeholders, 5, G_good, G_bad, num=29)
if __name__ == '__main__': nmt_parser = argparse.ArgumentParser() add_arguments(nmt_parser) FLAGS, unparsed = nmt_parser.parse_known_args() hparams = create_hparams(FLAGS) # loading the data from a file adj, weight, weight_bin, features, edges, neg_edges, features1, smiles = load_data_new( hparams.graph_file, hparams.nodes, 1, 1, hparams.bin_dim) #Test code e = max([len(edge) for edge in edges]) n_f = len(features[0][0]) log_fact_k = log_fact(e) model2 = VAEG(hparams, placeholders, hparams.nodes, n_f, log_fact_k, len(adj)) model2.restore(hparams.out_dir) while i < 100: smiles = [] smiles_new = model2.sample_graph(hparams, placeholders, adj, features, features1, weight, weight_bin, edges, i) for s in smiles_new: if s != 'None': smiles.append(s) i += 1 print smiles with open(hparams.sample_file + "smiles.txt", "a") as f: for s in smiles: f.write(s + "\n")
sample=flags.sample, neg_sample_size=flags.neg_sample_size, node_sample=flags.node_sample, bfs_sample=flags.bfs_sample ) if __name__ == '__main__': nmt_parser = argparse.ArgumentParser() add_arguments(nmt_parser) FLAGS, unparsed = nmt_parser.parse_known_args() hparams = create_hparams(FLAGS) # loading the data from a file adj, weight, weight_bin, features, edges, neg_edges, features1, = load_data_new(hparams.graph_file, hparams.nodes, hparams.node_sample, hparams.bfs_sample, hparams.bin_dim) num_nodes = adj[0].shape[0] num_features = features[0].shape[1] lenedges = [len(edge[0]) for edge in edges] lenweight_bin = [len(weight_b[0]) for weight_b in weight_bin] print("Len edges", lenedges, lenweight_bin) print("Num features", num_features) print("Num examples", len(adj)) #print("Neg_index", neg_index) e = max([len(edge) for edge in edges]) log_fact_k = log_fact(e) # Training #''' model = VAEG(hparams, placeholders, num_nodes, num_features,log_fact_k, len(adj)) model.restore(hparams.out_dir) model.train(placeholders, hparams, adj, weight, weight_bin, features, edges, neg_edges, features1)