class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, hidden_size, seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.hidden_size = hidden_size self.seed = random.seed(seed) # Q-Network self.qnetwork_local = QNetwork(state_size, action_size, hidden_size, seed).to(device) self.qnetwork_target = QNetwork(state_size, action_size, hidden_size, seed).to(device) #self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) self.optimizer = optim.RMSprop(self.qnetwork_local.parameters(), lr=LR, momentum=0.95) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def step(self, state, action, reward, next_state, done): # Save experience in replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > BATCH_SIZE: experiences, idxs, ws = self.memory.sample() self.learn(experiences, idxs, ws, GAMMA) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def learn(self, experiences, idxs, ws, gamma): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences ## TODO: compute and minimize the loss next_action_values_local = self.qnetwork_local(states).gather( 1, actions) # Only change proposed for Double DQN: Get maximizing future actions from local network and get their # corresponding values from target network. Compare then these to the local taken actions. local_max_actions = self.qnetwork_local(next_states).detach().max( 1)[1].unsqueeze(1) next_action_values_target = self.qnetwork_target( next_states).detach().gather(1, local_max_actions) ''' print(next_action_values_local.shape) print(next_action_values_local[0][:]) print(next_action_values_local.gather(1, actions).shape) print(actions[0][0]) print(next_action_values_local.gather(1, actions)[0][0]) ''' y = rewards + (gamma * next_action_values_target * (1 - dones)) # Local network will be actualized, target one is used as ground truth ws = torch.from_numpy(ws.astype(float)).float().to(device) loss = F.mse_loss(ws * next_action_values_local, ws * y) errors = np.abs(y.cpu().data.numpy() - next_action_values_local.cpu().data.numpy()) self.memory.memory.update_batch(idxs, errors) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # ------------------- update target network ------------------- # # Copy from local to target network parameters self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data) def adjust_learning_rate(self, episode, val): print("adjusting learning rate!") for param_group in self.optimizer.param_groups: param_group['lr'] = val
class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) # Q-Network hidden_layers = [128, 64] self.qnetwork_local = QNetwork(state_size, action_size, hidden_layers, seed).to(device) self.qnetwork_target = QNetwork(state_size, action_size, hidden_layers, seed).to(device) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def step(self, state, action, reward, next_state, done): # Save experience in replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def learn(self, experiences, gamma): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences ## TODO: compute and minimize the loss "*** YOUR CODE HERE ***" max_actions = self.qnetwork_local.forward(next_states).detach().max( 1)[1].unsqueeze(1) output_target = self.qnetwork_target.forward(next_states).gather( 1, max_actions) td_target = rewards + gamma * (output_target * (1 - dones)) output_local = self.qnetwork_local(states).gather(1, actions) loss = F.mse_loss(output_local, td_target) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # ------------------- update target network ------------------- # self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)