'conv1': tf.Variable(tf.random_normal([7, 1, 128])), 'conv1_out': tf.Variable(tf.random_normal([128, 1])), 'out': tf.Variable(tf.random_normal([2 * num_hidden, num_classes])) } biases = { 'conv1': tf.Variable(tf.random_normal([128])), 'conv1_out': tf.Variable(tf.random_normal([1])), 'out': tf.Variable(tf.random_normal([num_classes])) } # 定义输入data、label X = tf.placeholder(tf.float32, [1, None, num_input], name='X') Y = tf.placeholder(tf.float32, [None, num_classes], name='Y') # 定义loss和优化函数 model_ = model_(X, num_hidden, weights, biases) logits = model_.modeling() prediction = tf.nn.softmax(logits) # 计算损失 loss_op = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=Y)) # 定义优化函数 optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) # optimizer = tf.keras.optimizers.SGD() # optimizer = tf.train.GradientDescentOptimizer() # optimizer = tf.train.MomentumOptimizer(learning_rate,0.9,use_nesterov=True) train_process = optimizer.minimize(loss_op) # 定义准确率 acc = tf.reduce_mean(
'conv1': tf.Variable(tf.random_normal([7, 1, 128])), 'conv1_out': tf.Variable(tf.random_normal([128, 1])), 'out': tf.Variable(init([2 * num_hidden, num_classes])) } biases = { 'conv1': tf.Variable(tf.random_normal([128])), 'conv1_out': tf.Variable(tf.random_normal([1])), 'out': tf.Variable(init([num_classes])) } # 定义输入data、label X = tf.placeholder(tf.float32, [None, time_steps, num_input], name='X') Y = tf.placeholder(tf.float32, [None, num_classes], name='Y') # 定义loss和优化函数 model_ = model_(X, num_hidden, weights, biases, batch_size) logits = model_.modeling() prediction = tf.nn.softmax(logits) # 计算损失 lr = tf.Variable(0.001, dtype=tf.float32) loss_op = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=Y)) # 定义优化函数 optimizer = tf.train.AdamOptimizer(learning_rate=lr) # optimizer = tf.keras.optimizers.SGD() # optimizer = tf.train.GradientDescentOptimizer() # optimizer = tf.train.MomentumOptimizer(learning_rate,0.9,use_nesterov=True) train_process = optimizer.minimize(loss_op) # 定义准确率