def write_examples_to_dataset_file(example_list, categories, width, height, use_bgr_ordering, output_dataset): """ Saves an array of examples to a dataset file. """ print("Processing {} examples, using image size {}x{}, bgr={}".format(len(example_list), width, height, use_bgr_ordering)) with open(output_dataset, 'w') as dataset_file: # Write header if categories: dataset_file.write("# Category labels\n") for i, category in enumerate(categories): dataset_file.write("# {} : {}\n".format(i, category)) for example in example_list: # Try to read this as an image image = cv2.imread(example[1]) if image is not None: # Write label dataset_file.write("{}".format(example[0])) print("Processing {0[0]} | {0[1]}".format(example)) resized = modelHelpers.prepare_image_for_model(image, width, height, not use_bgr_ordering) # Write image data valuesWritten = 0 for value in resized: dataset_file.write("\t{}".format(value)) valuesWritten = valuesWritten + 1 # Write label, source file as comment dataset_file.write("\t# class={0[2]}, source={0[1]}".format(example)) dataset_file.write("\n") print(" Wrote {} data values".format(valuesWritten)) else: print("Skipping {}, could not open as an image".format(example[1])) print() print("Wrote {} examples to {}".format(len(example_list), output_dataset))
def write_examples_to_dataset_file(example_list, categories, width, height, use_bgr_ordering, output_dataset, verbose=False): """ Saves an array of examples to a dataset file. """ print("Processing {} examples, using image size {}x{}, bgr={}".format( len(example_list), width, height, use_bgr_ordering)) with open(output_dataset, 'w') as dataset_file: # Write header if categories: dataset_file.write("# Category labels\n") for i, category in enumerate(categories): dataset_file.write("# {} : {}\n".format(i, category)) count = 0 for example in example_list: # Try to read this as an image image = cv2.imread(example[1]) if image is not None: if verbose: print("Processing {0[0]} | {0[1]}".format(example)) # Write label dataset_file.write("{}".format(example[0])) # Write image data resized = modelHelpers.prepare_image_for_model( image, width, height, not use_bgr_ordering, convert_to_float=False, preprocess_tag=None) dataset_file.write("\t") resized.tofile(dataset_file, sep="\t", format="%s") # Write label, source file as comment dataset_file.write( "\t# class={0[2]}, source={0[1]}".format(example)) dataset_file.write("\n") if verbose: print(" Wrote {} data values".format(len(resized))) else: if (count + 1) % 1000 == 0: print(".", sep="", end="") count += 1 else: print("Skipping {}, could not open as an image".format( example[1])) print() print("Wrote {} examples to {}".format(len(example_list), output_dataset))
def write_examples_to_dataset_file(example_list, width, height, use_bgr_ordering, output_dataset): """ Saves an array of examples to a dataset file. """ print("Processing {} examples, using image size {}x{}, bgr={}".format( len(example_list), width, height, use_bgr_ordering)) with open(output_dataset, 'w') as dataset_file: for example in example_list: # Write label dataset_file.write("{}".format(example[0])) print("Processing {} | {}".format(example[0], example[1])) image = cv2.imread(example[1]) resized = modelHelpers.prepare_image_for_model( image, width, height, not use_bgr_ordering) # Write image data valuesWritten = 0 for value in resized: dataset_file.write("\t{}".format(value)) valuesWritten = valuesWritten + 1 dataset_file.write("\n") print(" Wrote {} data values".format(valuesWritten))