コード例 #1
0
    def test_from_json(self):
        self.assertEqual(TensorrtConfig(max_batch_size=7, data_type=None, enable_strict_types=False),
                         TensorrtConfig.from_json({'max_batch_size': 7}))

        self.assertEqual(TensorrtConfig(max_batch_size=7, data_type=None, enable_strict_types=False),
                         TensorrtConfig.from_json({'max_batch_size': 7, 'data_type': None}))

        self.assertEqual(TensorrtConfig(max_batch_size=7, data_type='FP16', enable_strict_types=False),
                         TensorrtConfig.from_json({'max_batch_size': 7, 'data_type': 'FP16'}))

        self.assertEqual(TensorrtConfig(max_batch_size=7, data_type=None, enable_strict_types=True),
                         TensorrtConfig.from_json({'max_batch_size': 7, 'enable_strict_types': True}))
コード例 #2
0
    def test_from_json(self):
        self.assertEqual(
            Config(max_batch_size=7,
                   enable_fp16=False,
                   enable_strict_types=False),
            Config.from_json({'max_batch_size': 7}))

        self.assertEqual(
            Config(max_batch_size=7,
                   enable_fp16=False,
                   enable_strict_types=False),
            Config.from_json({
                'max_batch_size': 7,
                'enable_fp16': False
            }))

        self.assertEqual(
            Config(max_batch_size=7,
                   enable_fp16=True,
                   enable_strict_types=False),
            Config.from_json({
                'max_batch_size': 7,
                'enable_fp16': True
            }))

        self.assertEqual(
            Config(max_batch_size=7,
                   enable_fp16=False,
                   enable_strict_types=True),
            Config.from_json({
                'max_batch_size': 7,
                'enable_strict_types': True
            }))
コード例 #3
0
    def test_from_env(self):
        self.assertEqual(Config(max_batch_size=7, enable_fp16=False, enable_strict_types=False),
                         Config.from_env({'MAX_BATCH_SIZE': '7'}))

        self.assertEqual(Config(max_batch_size=7, enable_fp16=False, enable_strict_types=False),
                         Config.from_env({'MAX_BATCH_SIZE': '7', 'ENABLE_FP16': '0'}))

        self.assertEqual(Config(max_batch_size=7, enable_fp16=True, enable_strict_types=False),
                         Config.from_env({'MAX_BATCH_SIZE': '7', 'ENABLE_FP16': '1'}))

        self.assertEqual(Config(max_batch_size=7, enable_fp16=False, enable_strict_types=False),
                         Config.from_env({'MAX_BATCH_SIZE': '7', 'ENABLE_STRICT_TYPES': '0'}))

        self.assertEqual(Config(max_batch_size=7, enable_fp16=False, enable_strict_types=True),
                         Config.from_env({'MAX_BATCH_SIZE': '7', 'ENABLE_STRICT_TYPES': '1'}))
コード例 #4
0
    def test_from_env(self):
        self.assertEqual(TensorrtConfig(max_batch_size=7, data_type=None, enable_strict_types=False),
                         TensorrtConfig.from_env({'MAX_BATCH_SIZE': '7'}))

        self.assertEqual(TensorrtConfig(max_batch_size=7, data_type=None, enable_strict_types=False),
                         TensorrtConfig.from_env({'MAX_BATCH_SIZE': '7', 'DATA_TYPE': None}))

        self.assertEqual(TensorrtConfig(max_batch_size=7, data_type='FP16', enable_strict_types=False),
                         TensorrtConfig.from_env({'MAX_BATCH_SIZE': '7', 'DATA_TYPE': 'FP16'}))

        self.assertEqual(TensorrtConfig(max_batch_size=7, data_type=None, enable_strict_types=False),
                         TensorrtConfig.from_env({'MAX_BATCH_SIZE': '7', 'ENABLE_STRICT_TYPES': '0'}))

        self.assertEqual(TensorrtConfig(max_batch_size=7, data_type=None, enable_strict_types=True),
                         TensorrtConfig.from_env({'MAX_BATCH_SIZE': '7', 'ENABLE_STRICT_TYPES': '1'}))
コード例 #5
0
    def test_compile_simple(self):
        for batch_size in [3, None]:
            onnx_model = _make_onnx_model(func=lambda input_x, input_y, _: tf.
                                          add(input_x, input_y, name='z'),
                                          batch_size_1=batch_size,
                                          batch_size_2=batch_size)

            compiled = compiler.compile_source(source=onnx_model,
                                               config=Config(max_batch_size=4))

            self.assertEqual(compiled.get_inputs(), [
                ModelInput(name='x:0',
                           data_type=TfDataType.DT_FLOAT,
                           format=None,
                           dims=[4]),
                ModelInput(name='y:0',
                           data_type=TfDataType.DT_FLOAT,
                           format=None,
                           dims=[4])
            ])

            self.assertEqual(compiled.input_data_formats, [None, None])
            self.assertEqual(compiled.get_outputs(), [
                ModelOutput(
                    name='z:0', data_type=TfDataType.DT_FLOAT, dims=[4])
            ])
            self.assertIsInstance(compiled.cuda_engine, ICudaEngine)
コード例 #6
0
    def test_compile_inconsistent_batch_size(self):
        onnx_model = _make_onnx_model(func=lambda input_x, input_y, _: tf.add(input_x, input_y, name='z'),
                                      batch_size_1=3,
                                      batch_size_2=None)

        with self.assertRaises(ValueError) as error:
            compiler.compile_source(source=onnx_model, config=Config(max_batch_size=4))

        self.assertEqual(error.exception.args, ('Inconsistent batch size specification.',))
コード例 #7
0
    def test_compile_simple(self):
        onnx_model = _make_onnx_model(
            lambda input_x, input_y, _: tf.add(input_x, input_y, name='z'))
        compiled = compiler.compile_source(source=onnx_model,
                                           config=Config(max_batch_size=4))

        self.assertEqual(compiled.inputs, [
            Input(name='x:0', data_format=None),
            Input(name='y:0', data_format=None)
        ])

        self.assertEqual(compiled.outputs, ['z:0'])

        self.assertIsInstance(compiled.cuda_engine, ICudaEngine)
コード例 #8
0
    def test_compile_fp16(self):
        def _build_model(input_x, input_y, session):
            weight = tf.Variable(initial_value=0.0, dtype=tf.float32, name='w')

            session.run(weight.initializer)

            return tf.multiply(weight, input_x + input_y, name='z')

        for batch_size in [3, None]:
            onnx_model = _make_onnx_model(func=_build_model, batch_size_1=batch_size, batch_size_2=batch_size)

            compiled = compiler.compile_source(source=onnx_model,
                                               config=Config(max_batch_size=4,
                                                             enable_fp16=True,
                                                             enable_strict_types=True))

            self.assertEqual(compiled.get_inputs(),
                             [ModelInput(name='x:0', data_type=TfDataType.DT_FLOAT, format=None, dims=[4]),
                              ModelInput(name='y:0', data_type=TfDataType.DT_FLOAT, format=None, dims=[4])])

            self.assertEqual(compiled.input_data_formats, [None, None])
            self.assertEqual(compiled.get_outputs(), [ModelOutput(name='z:0', data_type=TfDataType.DT_FLOAT, dims=[4])])
            self.assertIsInstance(compiled.cuda_engine, ICudaEngine)
コード例 #9
0
    def test_compile_int8(self):
        from .. import mini_cuda  # pylint: disable=import-outside-toplevel

        def _build_model(input_x, input_y, session):
            weight = tf.Variable(initial_value=0.0, dtype=tf.float32, name='w')

            session.run(weight.initializer)

            return tf.multiply(weight, input_x + input_y, name='z')

        class _MyCalibrator(IInt8EntropyCalibrator2):
            def __init__(self):
                super().__init__()

                self._buffers = [mini_cuda.allocate_memory(4 * 4 * 3), mini_cuda.allocate_memory(4 * 4 * 3)]
                self._cache = None
                self._index = 0

            def close(self):
                for buffer in self._buffers:
                    buffer.close()

            def get_batch(self, names, p_str=None):
                del names, p_str

                if self._index == 16:
                    return None

                self._index += 1

                return list(map(int, self._buffers))

            def get_batch_size(self):
                return 3

            def read_calibration_cache(self):
                return self._cache

            def write_calibration_cache(self, cache):
                self._cache = cache

        mini_cuda.init()

        for batch_size in [3, None]:
            onnx_model = _make_onnx_model(func=_build_model, batch_size_1=batch_size, batch_size_2=batch_size)

            with contextlib.closing(mini_cuda.get_device(0).create_context(0)), \
                 contextlib.closing(_MyCalibrator()) as calibrator:
                compiled = compiler.compile_source(source=onnx_model,
                                                   config=Config(max_batch_size=4,
                                                                 int8_calibrator=calibrator,
                                                                 enable_int8=True,
                                                                 enable_fp16=True,
                                                                 enable_strict_types=True))

            self.assertEqual(compiled.get_inputs(),
                             [ModelInput(name='x:0', data_type=TfDataType.DT_FLOAT, format=None, dims=[4]),
                              ModelInput(name='y:0', data_type=TfDataType.DT_FLOAT, format=None, dims=[4])])

            self.assertEqual(compiled.input_data_formats, [None, None])
            self.assertEqual(compiled.get_outputs(), [ModelOutput(name='z:0', data_type=TfDataType.DT_FLOAT, dims=[4])])
            self.assertIsInstance(compiled.cuda_engine, ICudaEngine)
コード例 #10
0
 def test_from_env(self):
     self.assertEqual(Config.from_env({'max_batch_size': '7'}),
                      Config(max_batch_size=7))
コード例 #11
0
 def test_from_json(self):
     self.assertEqual(Config.from_json({'max_batch_size': 7}),
                      Config(max_batch_size=7))