コード例 #1
0
        def roi_func_extra(boxes, already_aligned_features=None):
            if already_aligned_features is None:
                aligned_features = multilevel_roi_align(features[:4], boxes, 7)
            else:
                # for hard example mining
                aligned_features = already_aligned_features
            tiled = tf.tile(roi_aligned_extra_features,
                            [tf.shape(aligned_features)[0], 1, 1, 1])
            concat_features = tf.concat((tiled, aligned_features), axis=1)

            with argscope(Conv2D,
                          data_format='channels_first',
                          kernel_initializer=tf.variance_scaling_initializer(
                              scale=2.0,
                              mode='fan_out',
                              distribution='untruncated_normal'
                              if get_tf_version_tuple() >=
                              (1, 12) else 'normal')):
                with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
                    reduced_features = Conv2D('conv_reduce',
                                              concat_features,
                                              256,
                                              1,
                                              activation=None)
            return reduced_features
コード例 #2
0
    def _run_third_stage(self, inputs, second_stage_features, image_hw):
        boxes, scores = get_tensors_by_names(['output/boxes', 'output/scores'])
        # let's fix (as in finalize) the boxes, so we can roi align only one time
        aligned_features_curr = multilevel_roi_align(second_stage_features[:4], boxes, 7)
        # these also need to be extracted!
        aligned_features_curr = tf.identity(aligned_features_curr, name='third_stage_features_out')

        ff_gt_tracklet_scores, _ = self._score_for_third_stage(ref_feats=inputs['ff_gt_tracklet_feat'][tf.newaxis],
                                                               det_feats=aligned_features_curr)
        tf.identity(ff_gt_tracklet_scores, name='ff_gt_tracklet_scores')
        sparse_tracklet_scores, tracklet_score_indices = self._score_for_third_stage(
            ref_feats=inputs['active_tracklets_feats'], det_feats=aligned_features_curr,
            dense=False, ref_boxes=inputs['active_tracklets_boxes'], det_boxes=boxes, image_hw=image_hw,
            tracklet_distance_threshold=inputs['tracklet_distance_threshold'])
        tf.identity(sparse_tracklet_scores, name='sparse_tracklet_scores')
        tf.identity(tracklet_score_indices, name='tracklet_score_indices')
コード例 #3
0
 def roi_func(boxes):
     return multilevel_roi_align(features[:4], boxes, 7)
コード例 #4
0
    def roi_heads(self, image, features, proposals, targets):
        image_shape2d = tf.shape(image)[2:]     # h,w
        assert len(features) == 5, "Features have to be P23456!"
        gt_boxes, gt_labels, *_ = targets

        if self.training:
            proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes, gt_labels)

        fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC)
        if not cfg.FPN.CASCADE:
            roi_feature_fastrcnn = multilevel_roi_align(features[:4], proposals.boxes, 7)

            head_feature = fastrcnn_head_func('fastrcnn', roi_feature_fastrcnn)
            fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs(
                'fastrcnn/outputs', head_feature, cfg.DATA.NUM_CLASS)
            fastrcnn_head = FastRCNNHead(proposals, fastrcnn_box_logits, fastrcnn_label_logits,
                                         gt_boxes, tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32))
        else:
            def roi_func(boxes):
                return multilevel_roi_align(features[:4], boxes, 7)

            fastrcnn_head = CascadeRCNNHead(
                proposals, roi_func, fastrcnn_head_func,
                (gt_boxes, gt_labels), image_shape2d, cfg.DATA.NUM_CLASS)

        if self.training:
            all_losses = fastrcnn_head.losses()

            if cfg.MODE_MASK:
                gt_masks = targets[2]
                # maskrcnn loss
                roi_feature_maskrcnn = multilevel_roi_align(
                    features[:4], proposals.fg_boxes(), 14,
                    name_scope='multilevel_roi_align_mask')
                maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC)
                mask_logits = maskrcnn_head_func(
                    'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY)   # #fg x #cat x 28 x 28

                target_masks_for_fg = crop_and_resize(
                    tf.expand_dims(gt_masks, 1),
                    proposals.fg_boxes(),
                    proposals.fg_inds_wrt_gt, 28,
                    pad_border=False)  # fg x 1x28x28
                target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets')
                all_losses.append(maskrcnn_loss(mask_logits, proposals.fg_labels(), target_masks_for_fg))
            return all_losses
        else:
            decoded_boxes = fastrcnn_head.decoded_output_boxes()
            decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes')
            label_scores = fastrcnn_head.output_scores(name='fastrcnn_all_scores')
            final_boxes, final_scores, final_labels = fastrcnn_predictions(
                decoded_boxes, label_scores, name_scope='output')
            if cfg.MODE_MASK:
                # Cascade inference needs roi transform with refined boxes.
                roi_feature_maskrcnn = multilevel_roi_align(features[:4], final_boxes, 14)
                maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC)
                mask_logits = maskrcnn_head_func(
                    'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY)   # #fg x #cat x 28 x 28
                indices = tf.stack([tf.range(tf.size(final_labels)), tf.cast(final_labels, tf.int32) - 1], axis=1)
                final_mask_logits = tf.gather_nd(mask_logits, indices)   # #resultx28x28
                tf.sigmoid(final_mask_logits, name='output/masks')
            return []
コード例 #5
0
ファイル: train.py プロジェクト: yongxinw/tensorpack
 def roi_func(boxes):
     return multilevel_roi_align(p23456[:4], boxes, 7)
コード例 #6
0
ファイル: train.py プロジェクト: yongxinw/tensorpack
    def build_graph(self, *inputs):
        inputs = dict(zip(self.input_names, inputs))
        num_fpn_level = len(cfg.FPN.ANCHOR_STRIDES)
        assert len(cfg.RPN.ANCHOR_SIZES) == num_fpn_level
        is_training = get_current_tower_context().is_training

        all_anchors_fpn = get_all_anchors_fpn()
        multilevel_anchors = [
            RPNAnchors(all_anchors_fpn[i],
                       inputs['anchor_labels_lvl{}'.format(i + 2)],
                       inputs['anchor_boxes_lvl{}'.format(i + 2)])
            for i in range(len(all_anchors_fpn))
        ]

        image = self.preprocess(inputs['image'])  # 1CHW
        image_shape2d = tf.shape(image)[2:]  # h,w

        c2345 = resnet_fpn_backbone(image, cfg.BACKBONE.RESNET_NUM_BLOCK)
        p23456 = fpn_model('fpn', c2345)
        self.slice_feature_and_anchors(image_shape2d, p23456,
                                       multilevel_anchors)

        # Multi-Level RPN Proposals
        rpn_outputs = [
            rpn_head('rpn', pi, cfg.FPN.NUM_CHANNEL,
                     len(cfg.RPN.ANCHOR_RATIOS)) for pi in p23456
        ]
        multilevel_label_logits = [k[0] for k in rpn_outputs]
        multilevel_box_logits = [k[1] for k in rpn_outputs]

        proposal_boxes, proposal_scores = generate_fpn_proposals(
            multilevel_anchors, multilevel_label_logits, multilevel_box_logits,
            image_shape2d)

        gt_boxes, gt_labels = inputs['gt_boxes'], inputs['gt_labels']
        if is_training:
            proposals = sample_fast_rcnn_targets(proposal_boxes, gt_boxes,
                                                 gt_labels)
        else:
            proposals = BoxProposals(proposal_boxes)

        fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC)
        if not cfg.FPN.CASCADE:
            roi_feature_fastrcnn = multilevel_roi_align(
                p23456[:4], proposals.boxes, 7)

            head_feature = fastrcnn_head_func('fastrcnn', roi_feature_fastrcnn)
            fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs(
                'fastrcnn/outputs', head_feature, cfg.DATA.NUM_CLASS)
            fastrcnn_head = FastRCNNHead(
                proposals, fastrcnn_box_logits, fastrcnn_label_logits,
                tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32))
        else:

            def roi_func(boxes):
                return multilevel_roi_align(p23456[:4], boxes, 7)

            fastrcnn_head = CascadeRCNNHead(proposals, roi_func,
                                            fastrcnn_head_func, image_shape2d,
                                            cfg.DATA.NUM_CLASS)

        if is_training:
            all_losses = []
            all_losses.extend(
                multilevel_rpn_losses(multilevel_anchors,
                                      multilevel_label_logits,
                                      multilevel_box_logits))

            all_losses.extend(fastrcnn_head.losses())

            if cfg.MODE_MASK:
                # maskrcnn loss
                roi_feature_maskrcnn = multilevel_roi_align(
                    p23456[:4],
                    proposals.fg_boxes(),
                    14,
                    name_scope='multilevel_roi_align_mask')
                maskrcnn_head_func = getattr(model_mrcnn,
                                             cfg.FPN.MRCNN_HEAD_FUNC)
                mask_logits = maskrcnn_head_func(
                    'maskrcnn', roi_feature_maskrcnn,
                    cfg.DATA.NUM_CATEGORY)  # #fg x #cat x 28 x 28

                target_masks_for_fg = crop_and_resize(
                    tf.expand_dims(inputs['gt_masks'], 1),
                    proposals.fg_boxes(),
                    proposals.fg_inds_wrt_gt,
                    28,
                    pad_border=False)  # fg x 1x28x28
                target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1,
                                                 'sampled_fg_mask_targets')
                all_losses.append(
                    maskrcnn_loss(mask_logits, proposals.fg_labels(),
                                  target_masks_for_fg))

            wd_cost = regularize_cost('.*/W',
                                      l2_regularizer(cfg.TRAIN.WEIGHT_DECAY),
                                      name='wd_cost')
            all_losses.append(wd_cost)

            total_cost = tf.add_n(all_losses, 'total_cost')
            add_moving_summary(total_cost, wd_cost)
            return total_cost
        else:
            decoded_boxes = fastrcnn_head.decoded_output_boxes()
            decoded_boxes = clip_boxes(decoded_boxes,
                                       image_shape2d,
                                       name='fastrcnn_all_boxes')
            label_scores = fastrcnn_head.output_scores(
                name='fastrcnn_all_scores')
            final_boxes, final_scores, final_labels = fastrcnn_predictions(
                decoded_boxes, label_scores, name_scope='output')
            if cfg.MODE_MASK:
                # Cascade inference needs roi transform with refined boxes.
                roi_feature_maskrcnn = multilevel_roi_align(
                    p23456[:4], final_boxes, 14)
                maskrcnn_head_func = getattr(model_mrcnn,
                                             cfg.FPN.MRCNN_HEAD_FUNC)
                mask_logits = maskrcnn_head_func(
                    'maskrcnn', roi_feature_maskrcnn,
                    cfg.DATA.NUM_CATEGORY)  # #fg x #cat x 28 x 28
                indices = tf.stack([
                    tf.range(tf.size(final_labels)),
                    tf.to_int32(final_labels) - 1
                ],
                                   axis=1)
                final_mask_logits = tf.gather_nd(mask_logits,
                                                 indices)  # #resultx28x28
                tf.sigmoid(final_mask_logits, name='output/masks')
コード例 #7
0
    def build_graph(self, *inputs):
        num_fpn_level = len(cfg.FPN.ANCHOR_STRIDES)
        assert len(cfg.RPN.ANCHOR_SIZES) == num_fpn_level
        is_training = get_current_tower_context().is_training
        image = inputs[0]
        input_anchors = inputs[1: 1 + 2 * num_fpn_level]
        multilevel_anchors = [RPNAnchors(*args) for args in
                              zip(get_all_anchors_fpn(), input_anchors[0::2], input_anchors[1::2])]
        gt_boxes, gt_labels = inputs[11], inputs[12]
        if cfg.MODE_MASK:
            gt_masks = inputs[-1]

        image = self.preprocess(image)     # 1CHW
        image_shape2d = tf.shape(image)[2:]     # h,w

        c2345 = resnet_fpn_backbone(image, cfg.BACKBONE.RESNET_NUM_BLOCK)
        p23456 = fpn_model('fpn', c2345)
        self.slice_feature_and_anchors(image_shape2d, p23456, multilevel_anchors)

        # Multi-Level RPN Proposals
        rpn_outputs = [rpn_head('rpn', pi, cfg.FPN.NUM_CHANNEL, len(cfg.RPN.ANCHOR_RATIOS))
                       for pi in p23456]
        multilevel_label_logits = [k[0] for k in rpn_outputs]
        multilevel_box_logits = [k[1] for k in rpn_outputs]

        proposal_boxes, proposal_scores = generate_fpn_proposals(
            multilevel_anchors, multilevel_label_logits,
            multilevel_box_logits, image_shape2d)

        if is_training:
            rcnn_boxes, rcnn_labels, fg_inds_wrt_gt = sample_fast_rcnn_targets(
                proposal_boxes, gt_boxes, gt_labels)
        else:
            # The boxes to be used to crop RoIs.
            rcnn_boxes = proposal_boxes

        roi_feature_fastrcnn = multilevel_roi_align(p23456[:4], rcnn_boxes, 7)

        fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC)
        fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_head_func(
            'fastrcnn', roi_feature_fastrcnn, cfg.DATA.NUM_CLASS)

        if is_training:
            # rpn loss:
            rpn_label_loss, rpn_box_loss = multilevel_rpn_losses(
                multilevel_anchors, multilevel_label_logits, multilevel_box_logits)

            # fastrcnn loss:
            matched_gt_boxes = tf.gather(gt_boxes, fg_inds_wrt_gt)

            fg_inds_wrt_sample = tf.reshape(tf.where(rcnn_labels > 0), [-1])   # fg inds w.r.t all samples
            fg_sampled_boxes = tf.gather(rcnn_boxes, fg_inds_wrt_sample)
            fg_fastrcnn_box_logits = tf.gather(fastrcnn_box_logits, fg_inds_wrt_sample)

            fastrcnn_label_loss, fastrcnn_box_loss = self.fastrcnn_training(
                image, rcnn_labels, fg_sampled_boxes,
                matched_gt_boxes, fastrcnn_label_logits, fg_fastrcnn_box_logits)

            if cfg.MODE_MASK:
                # maskrcnn loss
                fg_labels = tf.gather(rcnn_labels, fg_inds_wrt_sample)
                roi_feature_maskrcnn = multilevel_roi_align(
                    p23456[:4], fg_sampled_boxes, 14,
                    name_scope='multilevel_roi_align_mask')
                maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC)
                mask_logits = maskrcnn_head_func(
                    'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY)   # #fg x #cat x 28 x 28

                target_masks_for_fg = crop_and_resize(
                    tf.expand_dims(gt_masks, 1),
                    fg_sampled_boxes,
                    fg_inds_wrt_gt, 28,
                    pad_border=False)  # fg x 1x28x28
                target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets')
                mrcnn_loss = maskrcnn_loss(mask_logits, fg_labels, target_masks_for_fg)
            else:
                mrcnn_loss = 0.0

            wd_cost =regularize_cost('fastrcnn/.*/W', l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), name='wd_cost')
            #wd_cost = regularize_cost(
            #    '.*/W', l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), name='wd_cost')

            total_cost = tf.add_n([rpn_label_loss, rpn_box_loss,
                                   fastrcnn_label_loss, fastrcnn_box_loss,
                                   mrcnn_loss, wd_cost], 'total_cost')

            add_moving_summary(total_cost, wd_cost)
            return total_cost
        else:
            final_boxes, final_labels = self.fastrcnn_inference(
                image_shape2d, rcnn_boxes, fastrcnn_label_logits, fastrcnn_box_logits)
            if cfg.MODE_MASK:
                # Cascade inference needs roi transform with refined boxes.
                roi_feature_maskrcnn = multilevel_roi_align(p23456[:4], final_boxes, 14)
                maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC)
                mask_logits = maskrcnn_head_func(
                    'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY)   # #fg x #cat x 28 x 28
                indices = tf.stack([tf.range(tf.size(final_labels)), tf.to_int32(final_labels) - 1], axis=1)
                final_mask_logits = tf.gather_nd(mask_logits, indices)   # #resultx28x28
                tf.sigmoid(final_mask_logits, name='final_masks')
コード例 #8
0
    def roi_heads(self,
                  image,
                  ref_features,
                  ref_box,
                  features,
                  proposals,
                  targets,
                  hard_negative_features=None,
                  hard_positive_features=None,
                  hard_positive_ious=None,
                  hard_positive_gt_boxes=None,
                  hard_positive_jitter_boxes=None,
                  precomputed_ref_features=None,
                  extra_feats=None):
        image_shape2d = tf.shape(image)[2:]  # h,w
        assert len(features) == 5, "Features have to be P23456!"
        gt_boxes, gt_labels, *_ = targets

        if self.training:
            proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes,
                                                 gt_labels)

        fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC)

        if precomputed_ref_features is None:
            roi_aligned_ref_features = multilevel_roi_align(
                ref_features[:4], ref_box[tf.newaxis], 7)
        else:
            roi_aligned_ref_features = precomputed_ref_features[tf.newaxis]


# //////////

        roi_aligned_extra_features = extra_feats[tf.newaxis]
        # //////////

        if cfg.MODE_SHARED_CONV_REDUCE:
            scope = tf.get_variable_scope()
        else:
            scope = ""

        assert cfg.FPN.CASCADE

        def roi_func(boxes, already_aligned_features=None):
            if already_aligned_features is None:
                aligned_features = multilevel_roi_align(features[:4], boxes, 7)
            else:
                # for hard example mining
                aligned_features = already_aligned_features
            tiled = tf.tile(roi_aligned_ref_features,
                            [tf.shape(aligned_features)[0], 1, 1, 1])
            concat_features = tf.concat((tiled, aligned_features), axis=1)

            with argscope(Conv2D,
                          data_format='channels_first',
                          kernel_initializer=tf.variance_scaling_initializer(
                              scale=2.0,
                              mode='fan_out',
                              distribution='untruncated_normal'
                              if get_tf_version_tuple() >=
                              (1, 12) else 'normal')):
                with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
                    reduced_features = Conv2D('conv_reduce',
                                              concat_features,
                                              256,
                                              1,
                                              activation=None)
            return reduced_features

        def roi_func_extra(boxes, already_aligned_features=None):
            if already_aligned_features is None:
                aligned_features = multilevel_roi_align(features[:4], boxes, 7)
            else:
                # for hard example mining
                aligned_features = already_aligned_features
            tiled = tf.tile(roi_aligned_extra_features,
                            [tf.shape(aligned_features)[0], 1, 1, 1])
            concat_features = tf.concat((tiled, aligned_features), axis=1)

            with argscope(Conv2D,
                          data_format='channels_first',
                          kernel_initializer=tf.variance_scaling_initializer(
                              scale=2.0,
                              mode='fan_out',
                              distribution='untruncated_normal'
                              if get_tf_version_tuple() >=
                              (1, 12) else 'normal')):
                with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
                    reduced_features = Conv2D('conv_reduce',
                                              concat_features,
                                              256,
                                              1,
                                              activation=None)
            return reduced_features

        if cfg.MODE_HARD_MINING and self.training:
            fastrcnn_head = CascadeRCNNHeadWithHardExamples(
                proposals, roi_func, fastrcnn_head_func, (gt_boxes, gt_labels),
                image_shape2d, cfg.DATA.NUM_CLASS, hard_negative_features,
                hard_positive_features, cfg.HARD_NEGATIVE_LOSS_SCALING_FACTOR,
                cfg.HARD_POSITIVE_LOSS_SCALING_FACTOR, hard_positive_ious,
                hard_positive_gt_boxes, hard_positive_jitter_boxes)
        else:
            if cfg.MODE_EXTRA_FEATURES:
                fastrcnn_head = CascadeRCNNHead(proposals, roi_func,
                                                fastrcnn_head_func,
                                                (gt_boxes, gt_labels),
                                                image_shape2d,
                                                cfg.DATA.NUM_CLASS,
                                                roi_func_extra)
            else:
                fastrcnn_head = CascadeRCNNHead(proposals, roi_func,
                                                fastrcnn_head_func,
                                                (gt_boxes, gt_labels),
                                                image_shape2d,
                                                cfg.DATA.NUM_CLASS)

        if cfg.EXTRACT_GT_FEATURES:
            # get boxes and features for each of the three cascade stages!
            b0 = proposals.boxes
            b1, b2, _ = fastrcnn_head._cascade_boxes
            f0 = multilevel_roi_align(features[:4], b0, 7)
            f1 = multilevel_roi_align(features[:4], b1, 7)
            f2 = multilevel_roi_align(features[:4], b2, 7)
            tf.concat([b0, b1, b2], axis=0, name="boxes_for_extraction")
            tf.concat([f0, f1, f2], axis=0, name="features_for_extraction")

        if self.training:
            all_losses = fastrcnn_head.losses()

            if cfg.MODE_MASK:
                gt_masks = targets[2]
                # maskrcnn loss
                roi_feature_maskrcnn = multilevel_roi_align(
                    features[:4],
                    proposals.fg_boxes(),
                    14,
                    name_scope='multilevel_roi_align_mask')
                maskrcnn_head_func = getattr(model_mrcnn,
                                             cfg.FPN.MRCNN_HEAD_FUNC)
                mask_logits = maskrcnn_head_func(
                    'maskrcnn', roi_feature_maskrcnn,
                    cfg.DATA.NUM_CATEGORY)  # #fg x #cat x 28 x 28

                target_masks_for_fg = crop_and_resize(
                    tf.expand_dims(gt_masks, 1),
                    proposals.fg_boxes(),
                    proposals.fg_inds_wrt_gt,
                    28,
                    pad_border=False)  # fg x 1x28x28
                target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1,
                                                 'sampled_fg_mask_targets')
                all_losses.append(
                    maskrcnn_loss(mask_logits, proposals.fg_labels(),
                                  target_masks_for_fg))

            if cfg.MEASURE_IOU_DURING_TRAINING:
                decoded_boxes = fastrcnn_head.decoded_output_boxes()
                decoded_boxes = clip_boxes(decoded_boxes,
                                           image_shape2d,
                                           name='fastrcnn_all_boxes')
                label_scores = fastrcnn_head.output_scores(
                    name='fastrcnn_all_scores')
                final_boxes, final_scores, final_labels = fastrcnn_predictions(
                    decoded_boxes, label_scores, name_scope='output_train')
                # if predictions are empty, this might break...
                # to prevent, stack dummy box
                boxes_for_iou = tf.concat([
                    final_boxes[:1],
                    tf.constant([[0.0, 0.0, 1.0, 1.0]], dtype=tf.float32)
                ],
                                          axis=0)
                from examples.FasterRCNN.utils.box_ops import pairwise_iou
                iou_at_1 = tf.identity(pairwise_iou(gt_boxes[:1],
                                                    boxes_for_iou)[0, 0],
                                       name="train_iou_at_1")
                add_moving_summary(iou_at_1)

            return all_losses
        else:
            decoded_boxes = fastrcnn_head.decoded_output_boxes()
            decoded_boxes = clip_boxes(decoded_boxes,
                                       image_shape2d,
                                       name='fastrcnn_all_boxes')
            label_scores = fastrcnn_head.output_scores(
                name='fastrcnn_all_scores')

            final_boxes, final_scores, final_labels = fastrcnn_predictions(
                decoded_boxes, label_scores, name_scope='output')
            if cfg.MODE_MASK:
                # Cascade inference needs roi transform with refined boxes.
                roi_feature_maskrcnn = multilevel_roi_align(
                    features[:4], final_boxes, 14)
                maskrcnn_head_func = getattr(model_mrcnn,
                                             cfg.FPN.MRCNN_HEAD_FUNC)
                mask_logits = maskrcnn_head_func(
                    'maskrcnn', roi_feature_maskrcnn,
                    cfg.DATA.NUM_CATEGORY)  # #fg x #cat x 28 x 28
                indices = tf.stack([
                    tf.range(tf.size(final_labels)),
                    tf.cast(final_labels, tf.int32) - 1
                ],
                                   axis=1)
                final_mask_logits = tf.gather_nd(mask_logits,
                                                 indices)  # #resultx28x28
                tf.sigmoid(final_mask_logits, name='output/masks')
            return []
コード例 #9
0
ファイル: train.py プロジェクト: quanlzheng/tensorpack
 def roi_func(boxes):
     return multilevel_roi_align(p23456[:4], boxes, 7)
コード例 #10
0
ファイル: train.py プロジェクト: quanlzheng/tensorpack
    def build_graph(self, *inputs):
        inputs = dict(zip(self.input_names, inputs))
        num_fpn_level = len(cfg.FPN.ANCHOR_STRIDES)
        assert len(cfg.RPN.ANCHOR_SIZES) == num_fpn_level
        is_training = get_current_tower_context().is_training

        all_anchors_fpn = get_all_anchors_fpn()
        multilevel_anchors = [RPNAnchors(
            all_anchors_fpn[i],
            inputs['anchor_labels_lvl{}'.format(i + 2)],
            inputs['anchor_boxes_lvl{}'.format(i + 2)]) for i in range(len(all_anchors_fpn))]

        image = self.preprocess(inputs['image'])     # 1CHW
        image_shape2d = tf.shape(image)[2:]     # h,w

        c2345 = resnet_fpn_backbone(image, cfg.BACKBONE.RESNET_NUM_BLOCK)
        p23456 = fpn_model('fpn', c2345)
        self.slice_feature_and_anchors(image_shape2d, p23456, multilevel_anchors)

        # Multi-Level RPN Proposals
        rpn_outputs = [rpn_head('rpn', pi, cfg.FPN.NUM_CHANNEL, len(cfg.RPN.ANCHOR_RATIOS))
                       for pi in p23456]
        multilevel_label_logits = [k[0] for k in rpn_outputs]
        multilevel_box_logits = [k[1] for k in rpn_outputs]

        proposal_boxes, proposal_scores = generate_fpn_proposals(
            multilevel_anchors, multilevel_label_logits,
            multilevel_box_logits, image_shape2d)

        gt_boxes, gt_labels = inputs['gt_boxes'], inputs['gt_labels']
        if is_training:
            proposals = sample_fast_rcnn_targets(proposal_boxes, gt_boxes, gt_labels)
        else:
            proposals = BoxProposals(proposal_boxes)

        fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC)
        if not cfg.FPN.CASCADE:
            roi_feature_fastrcnn = multilevel_roi_align(p23456[:4], proposals.boxes, 7)

            head_feature = fastrcnn_head_func('fastrcnn', roi_feature_fastrcnn)
            fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs(
                'fastrcnn/outputs', head_feature, cfg.DATA.NUM_CLASS)
            fastrcnn_head = FastRCNNHead(proposals, fastrcnn_box_logits, fastrcnn_label_logits,
                                         tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32))
        else:
            def roi_func(boxes):
                return multilevel_roi_align(p23456[:4], boxes, 7)

            fastrcnn_head = CascadeRCNNHead(
                proposals, roi_func, fastrcnn_head_func, image_shape2d, cfg.DATA.NUM_CLASS)

        if is_training:
            all_losses = []
            all_losses.extend(multilevel_rpn_losses(
                multilevel_anchors, multilevel_label_logits, multilevel_box_logits))

            all_losses.extend(fastrcnn_head.losses())

            if cfg.MODE_MASK:
                # maskrcnn loss
                roi_feature_maskrcnn = multilevel_roi_align(
                    p23456[:4], proposals.fg_boxes(), 14,
                    name_scope='multilevel_roi_align_mask')
                maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC)
                mask_logits = maskrcnn_head_func(
                    'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY)   # #fg x #cat x 28 x 28

                target_masks_for_fg = crop_and_resize(
                    tf.expand_dims(inputs['gt_masks'], 1),
                    proposals.fg_boxes(),
                    proposals.fg_inds_wrt_gt, 28,
                    pad_border=False)  # fg x 1x28x28
                target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets')
                all_losses.append(maskrcnn_loss(mask_logits, proposals.fg_labels(), target_masks_for_fg))

            wd_cost = regularize_cost(
                '.*/W', l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), name='wd_cost')
            all_losses.append(wd_cost)

            total_cost = tf.add_n(all_losses, 'total_cost')
            add_moving_summary(total_cost, wd_cost)
            return total_cost
        else:
            decoded_boxes = fastrcnn_head.decoded_output_boxes()
            decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes')
            label_scores = fastrcnn_head.output_scores(name='fastrcnn_all_scores')
            final_boxes, final_scores, final_labels = fastrcnn_predictions(
                decoded_boxes, label_scores, name_scope='output')
            if cfg.MODE_MASK:
                # Cascade inference needs roi transform with refined boxes.
                roi_feature_maskrcnn = multilevel_roi_align(p23456[:4], final_boxes, 14)
                maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC)
                mask_logits = maskrcnn_head_func(
                    'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY)   # #fg x #cat x 28 x 28
                indices = tf.stack([tf.range(tf.size(final_labels)), tf.to_int32(final_labels) - 1], axis=1)
                final_mask_logits = tf.gather_nd(mask_logits, indices)   # #resultx28x28
                tf.sigmoid(final_mask_logits, name='output/masks')