def roi_func_extra(boxes, already_aligned_features=None): if already_aligned_features is None: aligned_features = multilevel_roi_align(features[:4], boxes, 7) else: # for hard example mining aligned_features = already_aligned_features tiled = tf.tile(roi_aligned_extra_features, [tf.shape(aligned_features)[0], 1, 1, 1]) concat_features = tf.concat((tiled, aligned_features), axis=1) with argscope(Conv2D, data_format='channels_first', kernel_initializer=tf.variance_scaling_initializer( scale=2.0, mode='fan_out', distribution='untruncated_normal' if get_tf_version_tuple() >= (1, 12) else 'normal')): with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): reduced_features = Conv2D('conv_reduce', concat_features, 256, 1, activation=None) return reduced_features
def _run_third_stage(self, inputs, second_stage_features, image_hw): boxes, scores = get_tensors_by_names(['output/boxes', 'output/scores']) # let's fix (as in finalize) the boxes, so we can roi align only one time aligned_features_curr = multilevel_roi_align(second_stage_features[:4], boxes, 7) # these also need to be extracted! aligned_features_curr = tf.identity(aligned_features_curr, name='third_stage_features_out') ff_gt_tracklet_scores, _ = self._score_for_third_stage(ref_feats=inputs['ff_gt_tracklet_feat'][tf.newaxis], det_feats=aligned_features_curr) tf.identity(ff_gt_tracklet_scores, name='ff_gt_tracklet_scores') sparse_tracklet_scores, tracklet_score_indices = self._score_for_third_stage( ref_feats=inputs['active_tracklets_feats'], det_feats=aligned_features_curr, dense=False, ref_boxes=inputs['active_tracklets_boxes'], det_boxes=boxes, image_hw=image_hw, tracklet_distance_threshold=inputs['tracklet_distance_threshold']) tf.identity(sparse_tracklet_scores, name='sparse_tracklet_scores') tf.identity(tracklet_score_indices, name='tracklet_score_indices')
def roi_func(boxes): return multilevel_roi_align(features[:4], boxes, 7)
def roi_heads(self, image, features, proposals, targets): image_shape2d = tf.shape(image)[2:] # h,w assert len(features) == 5, "Features have to be P23456!" gt_boxes, gt_labels, *_ = targets if self.training: proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes, gt_labels) fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC) if not cfg.FPN.CASCADE: roi_feature_fastrcnn = multilevel_roi_align(features[:4], proposals.boxes, 7) head_feature = fastrcnn_head_func('fastrcnn', roi_feature_fastrcnn) fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs( 'fastrcnn/outputs', head_feature, cfg.DATA.NUM_CLASS) fastrcnn_head = FastRCNNHead(proposals, fastrcnn_box_logits, fastrcnn_label_logits, gt_boxes, tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32)) else: def roi_func(boxes): return multilevel_roi_align(features[:4], boxes, 7) fastrcnn_head = CascadeRCNNHead( proposals, roi_func, fastrcnn_head_func, (gt_boxes, gt_labels), image_shape2d, cfg.DATA.NUM_CLASS) if self.training: all_losses = fastrcnn_head.losses() if cfg.MODE_MASK: gt_masks = targets[2] # maskrcnn loss roi_feature_maskrcnn = multilevel_roi_align( features[:4], proposals.fg_boxes(), 14, name_scope='multilevel_roi_align_mask') maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC) mask_logits = maskrcnn_head_func( 'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28 target_masks_for_fg = crop_and_resize( tf.expand_dims(gt_masks, 1), proposals.fg_boxes(), proposals.fg_inds_wrt_gt, 28, pad_border=False) # fg x 1x28x28 target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets') all_losses.append(maskrcnn_loss(mask_logits, proposals.fg_labels(), target_masks_for_fg)) return all_losses else: decoded_boxes = fastrcnn_head.decoded_output_boxes() decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes') label_scores = fastrcnn_head.output_scores(name='fastrcnn_all_scores') final_boxes, final_scores, final_labels = fastrcnn_predictions( decoded_boxes, label_scores, name_scope='output') if cfg.MODE_MASK: # Cascade inference needs roi transform with refined boxes. roi_feature_maskrcnn = multilevel_roi_align(features[:4], final_boxes, 14) maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC) mask_logits = maskrcnn_head_func( 'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28 indices = tf.stack([tf.range(tf.size(final_labels)), tf.cast(final_labels, tf.int32) - 1], axis=1) final_mask_logits = tf.gather_nd(mask_logits, indices) # #resultx28x28 tf.sigmoid(final_mask_logits, name='output/masks') return []
def roi_func(boxes): return multilevel_roi_align(p23456[:4], boxes, 7)
def build_graph(self, *inputs): inputs = dict(zip(self.input_names, inputs)) num_fpn_level = len(cfg.FPN.ANCHOR_STRIDES) assert len(cfg.RPN.ANCHOR_SIZES) == num_fpn_level is_training = get_current_tower_context().is_training all_anchors_fpn = get_all_anchors_fpn() multilevel_anchors = [ RPNAnchors(all_anchors_fpn[i], inputs['anchor_labels_lvl{}'.format(i + 2)], inputs['anchor_boxes_lvl{}'.format(i + 2)]) for i in range(len(all_anchors_fpn)) ] image = self.preprocess(inputs['image']) # 1CHW image_shape2d = tf.shape(image)[2:] # h,w c2345 = resnet_fpn_backbone(image, cfg.BACKBONE.RESNET_NUM_BLOCK) p23456 = fpn_model('fpn', c2345) self.slice_feature_and_anchors(image_shape2d, p23456, multilevel_anchors) # Multi-Level RPN Proposals rpn_outputs = [ rpn_head('rpn', pi, cfg.FPN.NUM_CHANNEL, len(cfg.RPN.ANCHOR_RATIOS)) for pi in p23456 ] multilevel_label_logits = [k[0] for k in rpn_outputs] multilevel_box_logits = [k[1] for k in rpn_outputs] proposal_boxes, proposal_scores = generate_fpn_proposals( multilevel_anchors, multilevel_label_logits, multilevel_box_logits, image_shape2d) gt_boxes, gt_labels = inputs['gt_boxes'], inputs['gt_labels'] if is_training: proposals = sample_fast_rcnn_targets(proposal_boxes, gt_boxes, gt_labels) else: proposals = BoxProposals(proposal_boxes) fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC) if not cfg.FPN.CASCADE: roi_feature_fastrcnn = multilevel_roi_align( p23456[:4], proposals.boxes, 7) head_feature = fastrcnn_head_func('fastrcnn', roi_feature_fastrcnn) fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs( 'fastrcnn/outputs', head_feature, cfg.DATA.NUM_CLASS) fastrcnn_head = FastRCNNHead( proposals, fastrcnn_box_logits, fastrcnn_label_logits, tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32)) else: def roi_func(boxes): return multilevel_roi_align(p23456[:4], boxes, 7) fastrcnn_head = CascadeRCNNHead(proposals, roi_func, fastrcnn_head_func, image_shape2d, cfg.DATA.NUM_CLASS) if is_training: all_losses = [] all_losses.extend( multilevel_rpn_losses(multilevel_anchors, multilevel_label_logits, multilevel_box_logits)) all_losses.extend(fastrcnn_head.losses()) if cfg.MODE_MASK: # maskrcnn loss roi_feature_maskrcnn = multilevel_roi_align( p23456[:4], proposals.fg_boxes(), 14, name_scope='multilevel_roi_align_mask') maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC) mask_logits = maskrcnn_head_func( 'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28 target_masks_for_fg = crop_and_resize( tf.expand_dims(inputs['gt_masks'], 1), proposals.fg_boxes(), proposals.fg_inds_wrt_gt, 28, pad_border=False) # fg x 1x28x28 target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets') all_losses.append( maskrcnn_loss(mask_logits, proposals.fg_labels(), target_masks_for_fg)) wd_cost = regularize_cost('.*/W', l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), name='wd_cost') all_losses.append(wd_cost) total_cost = tf.add_n(all_losses, 'total_cost') add_moving_summary(total_cost, wd_cost) return total_cost else: decoded_boxes = fastrcnn_head.decoded_output_boxes() decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes') label_scores = fastrcnn_head.output_scores( name='fastrcnn_all_scores') final_boxes, final_scores, final_labels = fastrcnn_predictions( decoded_boxes, label_scores, name_scope='output') if cfg.MODE_MASK: # Cascade inference needs roi transform with refined boxes. roi_feature_maskrcnn = multilevel_roi_align( p23456[:4], final_boxes, 14) maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC) mask_logits = maskrcnn_head_func( 'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28 indices = tf.stack([ tf.range(tf.size(final_labels)), tf.to_int32(final_labels) - 1 ], axis=1) final_mask_logits = tf.gather_nd(mask_logits, indices) # #resultx28x28 tf.sigmoid(final_mask_logits, name='output/masks')
def build_graph(self, *inputs): num_fpn_level = len(cfg.FPN.ANCHOR_STRIDES) assert len(cfg.RPN.ANCHOR_SIZES) == num_fpn_level is_training = get_current_tower_context().is_training image = inputs[0] input_anchors = inputs[1: 1 + 2 * num_fpn_level] multilevel_anchors = [RPNAnchors(*args) for args in zip(get_all_anchors_fpn(), input_anchors[0::2], input_anchors[1::2])] gt_boxes, gt_labels = inputs[11], inputs[12] if cfg.MODE_MASK: gt_masks = inputs[-1] image = self.preprocess(image) # 1CHW image_shape2d = tf.shape(image)[2:] # h,w c2345 = resnet_fpn_backbone(image, cfg.BACKBONE.RESNET_NUM_BLOCK) p23456 = fpn_model('fpn', c2345) self.slice_feature_and_anchors(image_shape2d, p23456, multilevel_anchors) # Multi-Level RPN Proposals rpn_outputs = [rpn_head('rpn', pi, cfg.FPN.NUM_CHANNEL, len(cfg.RPN.ANCHOR_RATIOS)) for pi in p23456] multilevel_label_logits = [k[0] for k in rpn_outputs] multilevel_box_logits = [k[1] for k in rpn_outputs] proposal_boxes, proposal_scores = generate_fpn_proposals( multilevel_anchors, multilevel_label_logits, multilevel_box_logits, image_shape2d) if is_training: rcnn_boxes, rcnn_labels, fg_inds_wrt_gt = sample_fast_rcnn_targets( proposal_boxes, gt_boxes, gt_labels) else: # The boxes to be used to crop RoIs. rcnn_boxes = proposal_boxes roi_feature_fastrcnn = multilevel_roi_align(p23456[:4], rcnn_boxes, 7) fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC) fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_head_func( 'fastrcnn', roi_feature_fastrcnn, cfg.DATA.NUM_CLASS) if is_training: # rpn loss: rpn_label_loss, rpn_box_loss = multilevel_rpn_losses( multilevel_anchors, multilevel_label_logits, multilevel_box_logits) # fastrcnn loss: matched_gt_boxes = tf.gather(gt_boxes, fg_inds_wrt_gt) fg_inds_wrt_sample = tf.reshape(tf.where(rcnn_labels > 0), [-1]) # fg inds w.r.t all samples fg_sampled_boxes = tf.gather(rcnn_boxes, fg_inds_wrt_sample) fg_fastrcnn_box_logits = tf.gather(fastrcnn_box_logits, fg_inds_wrt_sample) fastrcnn_label_loss, fastrcnn_box_loss = self.fastrcnn_training( image, rcnn_labels, fg_sampled_boxes, matched_gt_boxes, fastrcnn_label_logits, fg_fastrcnn_box_logits) if cfg.MODE_MASK: # maskrcnn loss fg_labels = tf.gather(rcnn_labels, fg_inds_wrt_sample) roi_feature_maskrcnn = multilevel_roi_align( p23456[:4], fg_sampled_boxes, 14, name_scope='multilevel_roi_align_mask') maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC) mask_logits = maskrcnn_head_func( 'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28 target_masks_for_fg = crop_and_resize( tf.expand_dims(gt_masks, 1), fg_sampled_boxes, fg_inds_wrt_gt, 28, pad_border=False) # fg x 1x28x28 target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets') mrcnn_loss = maskrcnn_loss(mask_logits, fg_labels, target_masks_for_fg) else: mrcnn_loss = 0.0 wd_cost =regularize_cost('fastrcnn/.*/W', l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), name='wd_cost') #wd_cost = regularize_cost( # '.*/W', l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), name='wd_cost') total_cost = tf.add_n([rpn_label_loss, rpn_box_loss, fastrcnn_label_loss, fastrcnn_box_loss, mrcnn_loss, wd_cost], 'total_cost') add_moving_summary(total_cost, wd_cost) return total_cost else: final_boxes, final_labels = self.fastrcnn_inference( image_shape2d, rcnn_boxes, fastrcnn_label_logits, fastrcnn_box_logits) if cfg.MODE_MASK: # Cascade inference needs roi transform with refined boxes. roi_feature_maskrcnn = multilevel_roi_align(p23456[:4], final_boxes, 14) maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC) mask_logits = maskrcnn_head_func( 'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28 indices = tf.stack([tf.range(tf.size(final_labels)), tf.to_int32(final_labels) - 1], axis=1) final_mask_logits = tf.gather_nd(mask_logits, indices) # #resultx28x28 tf.sigmoid(final_mask_logits, name='final_masks')
def roi_heads(self, image, ref_features, ref_box, features, proposals, targets, hard_negative_features=None, hard_positive_features=None, hard_positive_ious=None, hard_positive_gt_boxes=None, hard_positive_jitter_boxes=None, precomputed_ref_features=None, extra_feats=None): image_shape2d = tf.shape(image)[2:] # h,w assert len(features) == 5, "Features have to be P23456!" gt_boxes, gt_labels, *_ = targets if self.training: proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes, gt_labels) fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC) if precomputed_ref_features is None: roi_aligned_ref_features = multilevel_roi_align( ref_features[:4], ref_box[tf.newaxis], 7) else: roi_aligned_ref_features = precomputed_ref_features[tf.newaxis] # ////////// roi_aligned_extra_features = extra_feats[tf.newaxis] # ////////// if cfg.MODE_SHARED_CONV_REDUCE: scope = tf.get_variable_scope() else: scope = "" assert cfg.FPN.CASCADE def roi_func(boxes, already_aligned_features=None): if already_aligned_features is None: aligned_features = multilevel_roi_align(features[:4], boxes, 7) else: # for hard example mining aligned_features = already_aligned_features tiled = tf.tile(roi_aligned_ref_features, [tf.shape(aligned_features)[0], 1, 1, 1]) concat_features = tf.concat((tiled, aligned_features), axis=1) with argscope(Conv2D, data_format='channels_first', kernel_initializer=tf.variance_scaling_initializer( scale=2.0, mode='fan_out', distribution='untruncated_normal' if get_tf_version_tuple() >= (1, 12) else 'normal')): with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): reduced_features = Conv2D('conv_reduce', concat_features, 256, 1, activation=None) return reduced_features def roi_func_extra(boxes, already_aligned_features=None): if already_aligned_features is None: aligned_features = multilevel_roi_align(features[:4], boxes, 7) else: # for hard example mining aligned_features = already_aligned_features tiled = tf.tile(roi_aligned_extra_features, [tf.shape(aligned_features)[0], 1, 1, 1]) concat_features = tf.concat((tiled, aligned_features), axis=1) with argscope(Conv2D, data_format='channels_first', kernel_initializer=tf.variance_scaling_initializer( scale=2.0, mode='fan_out', distribution='untruncated_normal' if get_tf_version_tuple() >= (1, 12) else 'normal')): with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): reduced_features = Conv2D('conv_reduce', concat_features, 256, 1, activation=None) return reduced_features if cfg.MODE_HARD_MINING and self.training: fastrcnn_head = CascadeRCNNHeadWithHardExamples( proposals, roi_func, fastrcnn_head_func, (gt_boxes, gt_labels), image_shape2d, cfg.DATA.NUM_CLASS, hard_negative_features, hard_positive_features, cfg.HARD_NEGATIVE_LOSS_SCALING_FACTOR, cfg.HARD_POSITIVE_LOSS_SCALING_FACTOR, hard_positive_ious, hard_positive_gt_boxes, hard_positive_jitter_boxes) else: if cfg.MODE_EXTRA_FEATURES: fastrcnn_head = CascadeRCNNHead(proposals, roi_func, fastrcnn_head_func, (gt_boxes, gt_labels), image_shape2d, cfg.DATA.NUM_CLASS, roi_func_extra) else: fastrcnn_head = CascadeRCNNHead(proposals, roi_func, fastrcnn_head_func, (gt_boxes, gt_labels), image_shape2d, cfg.DATA.NUM_CLASS) if cfg.EXTRACT_GT_FEATURES: # get boxes and features for each of the three cascade stages! b0 = proposals.boxes b1, b2, _ = fastrcnn_head._cascade_boxes f0 = multilevel_roi_align(features[:4], b0, 7) f1 = multilevel_roi_align(features[:4], b1, 7) f2 = multilevel_roi_align(features[:4], b2, 7) tf.concat([b0, b1, b2], axis=0, name="boxes_for_extraction") tf.concat([f0, f1, f2], axis=0, name="features_for_extraction") if self.training: all_losses = fastrcnn_head.losses() if cfg.MODE_MASK: gt_masks = targets[2] # maskrcnn loss roi_feature_maskrcnn = multilevel_roi_align( features[:4], proposals.fg_boxes(), 14, name_scope='multilevel_roi_align_mask') maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC) mask_logits = maskrcnn_head_func( 'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28 target_masks_for_fg = crop_and_resize( tf.expand_dims(gt_masks, 1), proposals.fg_boxes(), proposals.fg_inds_wrt_gt, 28, pad_border=False) # fg x 1x28x28 target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets') all_losses.append( maskrcnn_loss(mask_logits, proposals.fg_labels(), target_masks_for_fg)) if cfg.MEASURE_IOU_DURING_TRAINING: decoded_boxes = fastrcnn_head.decoded_output_boxes() decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes') label_scores = fastrcnn_head.output_scores( name='fastrcnn_all_scores') final_boxes, final_scores, final_labels = fastrcnn_predictions( decoded_boxes, label_scores, name_scope='output_train') # if predictions are empty, this might break... # to prevent, stack dummy box boxes_for_iou = tf.concat([ final_boxes[:1], tf.constant([[0.0, 0.0, 1.0, 1.0]], dtype=tf.float32) ], axis=0) from examples.FasterRCNN.utils.box_ops import pairwise_iou iou_at_1 = tf.identity(pairwise_iou(gt_boxes[:1], boxes_for_iou)[0, 0], name="train_iou_at_1") add_moving_summary(iou_at_1) return all_losses else: decoded_boxes = fastrcnn_head.decoded_output_boxes() decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes') label_scores = fastrcnn_head.output_scores( name='fastrcnn_all_scores') final_boxes, final_scores, final_labels = fastrcnn_predictions( decoded_boxes, label_scores, name_scope='output') if cfg.MODE_MASK: # Cascade inference needs roi transform with refined boxes. roi_feature_maskrcnn = multilevel_roi_align( features[:4], final_boxes, 14) maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC) mask_logits = maskrcnn_head_func( 'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28 indices = tf.stack([ tf.range(tf.size(final_labels)), tf.cast(final_labels, tf.int32) - 1 ], axis=1) final_mask_logits = tf.gather_nd(mask_logits, indices) # #resultx28x28 tf.sigmoid(final_mask_logits, name='output/masks') return []
def build_graph(self, *inputs): inputs = dict(zip(self.input_names, inputs)) num_fpn_level = len(cfg.FPN.ANCHOR_STRIDES) assert len(cfg.RPN.ANCHOR_SIZES) == num_fpn_level is_training = get_current_tower_context().is_training all_anchors_fpn = get_all_anchors_fpn() multilevel_anchors = [RPNAnchors( all_anchors_fpn[i], inputs['anchor_labels_lvl{}'.format(i + 2)], inputs['anchor_boxes_lvl{}'.format(i + 2)]) for i in range(len(all_anchors_fpn))] image = self.preprocess(inputs['image']) # 1CHW image_shape2d = tf.shape(image)[2:] # h,w c2345 = resnet_fpn_backbone(image, cfg.BACKBONE.RESNET_NUM_BLOCK) p23456 = fpn_model('fpn', c2345) self.slice_feature_and_anchors(image_shape2d, p23456, multilevel_anchors) # Multi-Level RPN Proposals rpn_outputs = [rpn_head('rpn', pi, cfg.FPN.NUM_CHANNEL, len(cfg.RPN.ANCHOR_RATIOS)) for pi in p23456] multilevel_label_logits = [k[0] for k in rpn_outputs] multilevel_box_logits = [k[1] for k in rpn_outputs] proposal_boxes, proposal_scores = generate_fpn_proposals( multilevel_anchors, multilevel_label_logits, multilevel_box_logits, image_shape2d) gt_boxes, gt_labels = inputs['gt_boxes'], inputs['gt_labels'] if is_training: proposals = sample_fast_rcnn_targets(proposal_boxes, gt_boxes, gt_labels) else: proposals = BoxProposals(proposal_boxes) fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC) if not cfg.FPN.CASCADE: roi_feature_fastrcnn = multilevel_roi_align(p23456[:4], proposals.boxes, 7) head_feature = fastrcnn_head_func('fastrcnn', roi_feature_fastrcnn) fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs( 'fastrcnn/outputs', head_feature, cfg.DATA.NUM_CLASS) fastrcnn_head = FastRCNNHead(proposals, fastrcnn_box_logits, fastrcnn_label_logits, tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32)) else: def roi_func(boxes): return multilevel_roi_align(p23456[:4], boxes, 7) fastrcnn_head = CascadeRCNNHead( proposals, roi_func, fastrcnn_head_func, image_shape2d, cfg.DATA.NUM_CLASS) if is_training: all_losses = [] all_losses.extend(multilevel_rpn_losses( multilevel_anchors, multilevel_label_logits, multilevel_box_logits)) all_losses.extend(fastrcnn_head.losses()) if cfg.MODE_MASK: # maskrcnn loss roi_feature_maskrcnn = multilevel_roi_align( p23456[:4], proposals.fg_boxes(), 14, name_scope='multilevel_roi_align_mask') maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC) mask_logits = maskrcnn_head_func( 'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28 target_masks_for_fg = crop_and_resize( tf.expand_dims(inputs['gt_masks'], 1), proposals.fg_boxes(), proposals.fg_inds_wrt_gt, 28, pad_border=False) # fg x 1x28x28 target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets') all_losses.append(maskrcnn_loss(mask_logits, proposals.fg_labels(), target_masks_for_fg)) wd_cost = regularize_cost( '.*/W', l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), name='wd_cost') all_losses.append(wd_cost) total_cost = tf.add_n(all_losses, 'total_cost') add_moving_summary(total_cost, wd_cost) return total_cost else: decoded_boxes = fastrcnn_head.decoded_output_boxes() decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes') label_scores = fastrcnn_head.output_scores(name='fastrcnn_all_scores') final_boxes, final_scores, final_labels = fastrcnn_predictions( decoded_boxes, label_scores, name_scope='output') if cfg.MODE_MASK: # Cascade inference needs roi transform with refined boxes. roi_feature_maskrcnn = multilevel_roi_align(p23456[:4], final_boxes, 14) maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC) mask_logits = maskrcnn_head_func( 'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28 indices = tf.stack([tf.range(tf.size(final_labels)), tf.to_int32(final_labels) - 1], axis=1) final_mask_logits = tf.gather_nd(mask_logits, indices) # #resultx28x28 tf.sigmoid(final_mask_logits, name='output/masks')