コード例 #1
0
    def predict(self, stock):
        from model_handler import ModelHandler
        import matplotlib.dates as mdates
        import datetime as dt
        import numpy as np
        import matplotlib.pyplot as plt
        import pandas as pd

        myModelHandler = ModelHandler()
        regressor = myModelHandler.load_json_model(stock)

        # Importing the training set
        dataset = pd.read_csv(stock.csv_name)  #
        dates = dataset.iloc[len(dataset) - 31:len(dataset) - 1, 0].values
        dates = [dt.datetime.strptime(d, '%Y-%m-%d').date() for d in dates]

        # Feature Scaling
        from sklearn.preprocessing import MinMaxScaler
        sc = MinMaxScaler(feature_range=(0, 1))

        dataset_test = dataset[len(dataset) - 30:]
        real_stock_price = dataset_test.iloc[:, 1:2].values

        # Getting the predicted stock price
        dataset = dataset['Open']
        inputs = dataset[len(dataset) - len(dataset_test) - 60:].values
        inputs = inputs.reshape(-1, 1)
        inputs = sc.fit_transform(inputs)

        X_test = []
        for i in range(60, 90):
            X_test.append(inputs[i - 60:i, 0])

        X_test = np.array(X_test)
        X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))

        predicted_stock_price = regressor.predict(X_test)
        print(real_stock_price)

        predicted_stock_price = sc.inverse_transform(predicted_stock_price)
        plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
        plt.gca().xaxis.set_major_locator(mdates.DayLocator())
        plt.plot(dates,
                 real_stock_price,
                 color='red',
                 label=f'Actual {stock.ticker} Stock Price')
        plt.plot(dates,
                 predicted_stock_price,
                 color='blue',
                 label=f'Predicted {stock.ticker} Stock Price')
        plt.gcf().autofmt_xdate()
        plt.title(f'{stock.ticker} Stock Price Prediction')
        plt.xlabel('Time')
        plt.ylabel(f'{stock.ticker} Stock Price')
        plt.legend()
        plt.show()
コード例 #2
0
    def forecast(self, stock):
        """Loads the trained model, forecasts the values then displays a graph of the values"""
        # Load the trained model
        model_handler = ModelHandler()
        model = model_handler.load_json_model(stock)

        # Importing the training set
        dataset = pd.read_csv(stock.csv_name)
        dates = dataset.iloc[len(dataset) - 31:len(dataset) - 1, 0].values
        dates = [dt.datetime.strptime(d, '%Y-%m-%d').date() for d in dates]

        # Create the test dataset
        dataset_test = dataset[len(dataset) - 30:]
        real_stock_price = dataset_test.iloc[:, 1:2].values
        dataset = dataset['Open']
        inputs = dataset[len(dataset) - len(dataset_test) - 60:].values
        inputs = inputs.reshape(-1, 1)

        # Feature Scaling
        sc = MinMaxScaler(feature_range=(0, 1))
        inputs = sc.fit_transform(inputs)

        x_test = []
        x_test.append(inputs[0:60, 0])
        predicted_values = []
        for i in range(1, 31):
            x_test_np = np.array(x_test)
            x_test_np = np.reshape(x_test_np,
                                   (x_test_np.shape[0], x_test_np.shape[1], 1))
            new_data = model.predict(x_test_np)
            predicted_values.append(new_data[0])
            x_test[0] = np.delete(x_test[0], 0)
            x_test[0] = np.concatenate([x_test[0], new_data[0]])

        predicted_values = sc.inverse_transform(predicted_values)
        plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
        plt.gca().xaxis.set_major_locator(mdates.DayLocator())
        plt.plot(dates,
                 real_stock_price,
                 color='red',
                 label=f'Actual {stock.ticker} Stock Price')
        plt.plot(dates,
                 predicted_values,
                 color='blue',
                 label=f'Predicted {stock.ticker} Stock Price')
        plt.gcf().autofmt_xdate()
        plt.title(f'{stock.ticker} Stock Price Prediction')
        plt.xlabel('Time')
        plt.ylabel(f'{stock.ticker} Stock Price')
        plt.legend()
        plt.show()