def _prune_model(self, session): pruning_hparams = pruning.get_pruning_hparams().parse( self.pruning_spec) p = pruning.Pruning(pruning_hparams, sparsity=self.sparsity) self.mask_update_op = p.conditional_mask_update_op() tf.global_variables_initializer().run() for _ in range(20): session.run(self.mask_update_op) session.run(self.increment_global_step)
def ApplyPruning(cls, pruning_hparams_dict, lstmobj, weight_name, wm_pc, # pylint:disable=invalid-name dtype, scope): if not cls._pruning_obj: cls.Setup(pruning_hparams_dict, global_step=py_utils.GetGlobalStep()) compression_op_spec = pruning.get_pruning_hparams().override_from_dict( pruning_hparams_dict) return apply_customized_lstm_matrix_compression(cls._pruning_obj, py_utils.WeightParams, py_utils.WeightInit, lstmobj, weight_name, wm_pc.shape, dtype, scope, compression_op_spec)
def _GetMaskUpdateOp(self): """Returns op to update masks and threshold variables for model pruning.""" p = self.params tp = p.train mask_update_op = tf.no_op() if tp.pruning_hparams_dict: assert isinstance(tp.pruning_hparams_dict, dict) pruning_hparams = pruning.get_pruning_hparams().override_from_dict( tp.pruning_hparams_dict) pruning_obj = pruning.Pruning( pruning_hparams, global_step=self.global_step) pruning_obj.add_pruning_summaries() mask_update_op = pruning_obj.conditional_mask_update_op() return mask_update_op
def _blockMasking(self, hparams, weights, expected_mask): threshold = tf.Variable(0.0, name="threshold") sparsity = tf.Variable(0.5, name="sparsity") test_spec = ",".join(hparams) pruning_hparams = pruning.get_pruning_hparams().parse(test_spec) # Set up pruning p = pruning.Pruning(pruning_hparams, sparsity=sparsity) with self.cached_session(): tf.global_variables_initializer().run() _, new_mask = p._maybe_update_block_mask(weights, threshold) # Check if the mask is the same size as the weights self.assertAllEqual(new_mask.get_shape(), weights.get_shape()) mask_val = new_mask.eval() self.assertAllEqual(mask_val, expected_mask)
def testGroupSpecificBlockSparsity(self): param_list = [ "begin_pruning_step=1", "pruning_frequency=1", "end_pruning_step=100", "target_sparsity=0.5", "group_sparsity_map=[group1:0.6,group2:0.75]", "group_block_dims_map=[group1:2x2,group2:2x4]", "threshold_decay=0.0", "group_pruning=True", ] test_spec = ",".join(param_list) pruning_hparams = pruning.get_pruning_hparams().parse(test_spec) stacked_tensor_1 = pruning_utils.expand_tensor( tf.reshape(tf.linspace(1.0, 100.0, 100), [1, 100]), [2, 2]) stacked_tensor_2 = pruning_utils.expand_tensor( tf.reshape(tf.linspace(1.0, 100.0, 100), [1, 100]), [2, 4]) stacked_tensor_3 = pruning_utils.expand_tensor( tf.reshape(tf.linspace(1.0, 200.0, 100), [1, 100]), [2, 4]) with tf.variable_scope("layer1"): w1 = tf.Variable(stacked_tensor_1, name="weights") _ = pruning.apply_mask_with_group(w1, group_name="group1") with tf.variable_scope("layer2"): w2 = tf.Variable(stacked_tensor_2, name="weights") _ = pruning.apply_mask_with_group(w2, group_name="group2") with tf.variable_scope("layer3"): w3 = tf.Variable(stacked_tensor_2, name="kernel") _ = pruning.apply_mask_with_group(w3, group_name="group2") with tf.variable_scope("layer4"): w4 = tf.Variable(stacked_tensor_3, name="kernel") _ = pruning.apply_mask_with_group(w4, group_name="group2") p = pruning.Pruning(pruning_hparams) mask_update_op = p.conditional_mask_update_op() increment_global_step = tf.assign_add(self.global_step, 1) with self.cached_session() as session: tf.global_variables_initializer().run() for _ in range(110): session.run(mask_update_op) session.run(increment_global_step) self.assertAllClose(session.run(pruning.get_weight_sparsity()), [0.6, 0.9, 0.9, 0.45])
def Setup(cls, pruning_hparams_dict, global_step): # pylint:disable=invalid-name """Set up the pruning op with pruning hyperparameters and global step. Args: pruning_hparams_dict: a dict containing pruning hyperparameters; global_step: global step in TensorFlow. """ if cls._pruning_obj is not None: pass assert pruning_hparams_dict is not None assert isinstance(pruning_hparams_dict, dict) cls._pruning_hparams_dict = pruning_hparams_dict cls._global_step = global_step cls._pruning_hparams = pruning.get_pruning_hparams( ).override_from_dict(pruning_hparams_dict) cls._pruning_obj = pruning.Pruning(spec=cls._pruning_hparams, global_step=global_step)
def testFirstOrderGradientBlockMasking(self): param_list = [ "prune_option=first_order_gradient", "gradient_decay_rate=0.5", "block_height=2", "block_width=2", "threshold_decay=0", "block_pooling_function=AVG", ] threshold = tf.Variable(0.0, name="threshold") sparsity = tf.Variable(0.5, name="sparsity") test_spec = ",".join(param_list) pruning_hparams = pruning.get_pruning_hparams().parse(test_spec) weights_avg = tf.constant([[0.1, 0.1, 0.2, 0.2], [0.1, 0.1, 0.2, 0.2], [0.3, 0.3, 0.4, 0.4], [0.3, 0.3, 0.4, 0.4]]) expected_mask = [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [1., 1., 1., 1.], [1., 1., 1., 1.]] w = tf.Variable(weights_avg, name="weights") _ = pruning.apply_mask(w, prune_option="first_order_gradient") p = pruning.Pruning(pruning_hparams, sparsity=sparsity) old_weight_update_op = p.old_weight_update_op() gradient_update_op = p.gradient_update_op() with self.cached_session() as session: tf.global_variables_initializer().run() session.run(gradient_update_op) session.run(old_weight_update_op) weights = pruning.get_weights() _ = pruning.get_old_weights() gradients = pruning.get_gradients() weight = weights[0] gradient = gradients[0] _, new_mask = p._maybe_update_block_mask(weight, threshold, gradient) self.assertAllEqual(new_mask.get_shape(), weight.get_shape()) mask_val = new_mask.eval() self.assertAllEqual(mask_val, expected_mask)
def _sparsity_m_by_n_masking(self, weight, block_size=4, sparsity=0.5): block_sparse_param = "block_width=" + str(block_size) param_list = [ "target_sparsity=0.5", "intra_block_sparsity=True", block_sparse_param, ] test_spec = ",".join(param_list) pruning_hparams = pruning.get_pruning_hparams().parse(test_spec) sparsity = tf.Variable(sparsity, name="sparsity") p = pruning.Pruning(pruning_hparams, sparsity=sparsity) mask_update_op = p.conditional_mask_update_op() with self.cached_session() as session: tf.global_variables_initializer().run() session.run(mask_update_op) _, new_mask = p._maybe_update_block_mask(weight, block_size) return new_mask
def setUp(self): super(PruningSpeechUtilsTest, self).setUp() # Add global step variable to the graph self.global_step = tf.train.get_or_create_global_step() # Add sparsity self.sparsity = tf.Variable(0.5, name="sparsity") # Parse hparams self.pruning_hparams = pruning.get_pruning_hparams().parse( self.TEST_HPARAMS) self.pruning_obj = pruning.Pruning( self.pruning_hparams, global_step=self.global_step) def MockWeightParamsFn(shape, init=None, dtype=None): if init is None: init = MockWeightInit.Constant(0.0) if dtype is None: dtype = tf.float32 return {"dtype": dtype, "shape": shape, "init": init} self.mock_weight_params_fn = MockWeightParamsFn self.mock_lstmobj = MockLSTMCell() self.wm_pc = np.zeros((2, 2))
def testSecondOrderGradientCalculation(self): param_list = [ "prune_option=second_order_gradient", "gradient_decay_rate=0.5", ] test_spec = ",".join(param_list) pruning_hparams = pruning.get_pruning_hparams().parse(test_spec) tf.logging.info(pruning_hparams) w = tf.Variable(tf.linspace(1.0, 10.0, 10), name="weights") _ = pruning.apply_mask(w, prune_option="second_order_gradient") p = pruning.Pruning(pruning_hparams) old_weight_update_op = p.old_weight_update_op() old_old_weight_update_op = p.old_old_weight_update_op() gradient_update_op = p.gradient_update_op() with self.cached_session() as session: tf.global_variables_initializer().run() session.run(old_weight_update_op) session.run(old_old_weight_update_op) session.run(tf.assign(w, tf.math.scalar_mul(2.0, w))) session.run(gradient_update_op) old_weights = pruning.get_old_weights() old_old_weights = pruning.get_old_old_weights() gradients = pruning.get_gradients() old_weight = old_weights[0] old_old_weight = old_old_weights[0] gradient = gradients[0] self.assertAllEqual( gradient.eval(), tf.math.scalar_mul(0.5, tf.nn.l2_normalize(tf.linspace(1.0, 10.0, 10))).eval()) self.assertAllEqual(old_weight.eval(), old_old_weight.eval())
def train(): """Train CIFAR-10 for a number of steps.""" with tf.Graph().as_default(): global_step = contrib_framework.get_or_create_global_step() # Get images and labels for CIFAR-10. images, labels = cifar10.distorted_inputs() # Build a Graph that computes the logits predictions from the # inference model. logits = cifar10.inference(images) # Calculate loss. loss = cifar10.loss(logits, labels) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = cifar10.train(loss, global_step) # Parse pruning hyperparameters pruning_hparams = pruning.get_pruning_hparams().parse( FLAGS.pruning_hparams) # Create a pruning object using the pruning hyperparameters pruning_obj = pruning.Pruning(pruning_hparams, global_step=global_step) # Use the pruning_obj to add ops to the training graph to update the masks # The conditional_mask_update_op will update the masks only when the # training step is in [begin_pruning_step, end_pruning_step] specified in # the pruning spec proto mask_update_op = pruning_obj.conditional_mask_update_op() # Use the pruning_obj to add summaries to the graph to track the sparsity # of each of the layers pruning_obj.add_pruning_summaries() class _LoggerHook(tf.train.SessionRunHook): """Logs loss and runtime.""" def begin(self): self._step = -1 def before_run(self, run_context): self._step += 1 self._start_time = time.time() return tf.train.SessionRunArgs(loss) # Asks for loss value. def after_run(self, run_context, run_values): duration = time.time() - self._start_time loss_value = run_values.results if self._step % 10 == 0: num_examples_per_step = 128 examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ( '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print(format_str % (datetime.datetime.now(), self._step, loss_value, examples_per_sec, sec_per_batch)) with tf.train.MonitoredTrainingSession( checkpoint_dir=FLAGS.train_dir, hooks=[ tf.train.StopAtStepHook(last_step=FLAGS.max_steps), tf.train.NanTensorHook(loss), _LoggerHook() ], config=tf.ConfigProto(log_device_placement=FLAGS. log_device_placement)) as mon_sess: while not mon_sess.should_stop(): mon_sess.run(train_op) # Update the masks mon_sess.run(mask_update_op)