コード例 #1
0
def get_model(name):
    assert name == 'vgg-16'
    model = keras.applications.vgg16.VGG16()
    model_preprocessing = keras.applications.resnet50.preprocess_input
    load_preprocess = lambda image_filepaths: model_preprocessing(
        load_images(image_filepaths, image_size=224))
    wrapper = KerasWrapper(model, load_preprocess)
    wrapper.image_size = 224
    return wrapper
コード例 #2
0
def keras_model(module, model_function, image_size, identifier=None, model_kwargs=None):
    module = import_module(f"keras.applications.{module}")
    model_ctr, model_preprocessing = getattr(module, model_function), getattr(module, "preprocess_input")
    model = model_ctr(**(model_kwargs or {}))
    from model_tools.activations.keras import load_images
    load_preprocess = lambda image_filepaths: model_preprocessing(load_images(image_filepaths, image_size=image_size))
    wrapper = KerasWrapper(model, load_preprocess, identifier=identifier)
    wrapper.image_size = image_size
    return wrapper
コード例 #3
0
ファイル: tensorflow.py プロジェクト: mschrimpf/pixel-model
def get_model(name):
    assert name == 'resnet50'
    model = TFSlimModel.init('resnet-50_v1',
                             net_name='resnet_v1_50',
                             preprocessing_type='vgg',
                             image_size=224,
                             labels_offset=0)
    model_preprocessing = keras.applications.resnet50.preprocess_input
    load_preprocess = lambda image_filepaths: model_preprocessing(
        load_images(image_filepaths, image_size=224))
    wrapper = KerasWrapper(model, load_preprocess)
    wrapper.image_size = 224
    return wrapper
コード例 #4
0
ファイル: __init__.py プロジェクト: shashikg/candidate_models
 def load_preprocess_images(image_filepaths):
     images = load_images(image_filepaths)
     images = [transform(image) for image in images]
     images = [image.unsqueeze(0) for image in images]
     images = np.concatenate(images)
     return images